波谱学复习资料2012.10
- 格式:ppt
- 大小:1.25 MB
- 文档页数:38
波谱总复习一.名词解释:1.饱和:低能态与高能态核数趋于相等,吸收信号完全消失。
2. 驰豫:高能态的原子核不发射原来所吸收的能量由高能态回到低能态的过程。
(非辐射)3. 自旋一晶格驰豫(纵向驰豫):高能态的核自旋体系与其周围的环境之间的能量交换过程。
4. 自旋-自旋驰豫(横向驰豫):一些高能态的自旋核把能量转移给同类的低能态核,同时一些低能态的核获得能量跃迁到高能态,因而各种取向的核的总数并没有改变,全体核的总能量也不改变。
5. 屏蔽效应(Shielding effect)核外电子在与外加磁场垂直的平面上绕核旋转时将产生一个与外加磁场相对抗的第二磁场,使原子核实际所受磁场减弱,这种作用叫做电子的屏蔽效应。
hv(频率)=△E=2μ(磁矩)H0(1-σ)6. 屏蔽常数σ( shielding constant)电子屏蔽作用大小,取决于核外电子云密度,即化学环境。
7.化学位移δ:IUPAC规定:把TMS共振峰的位置规定为零,待测氢核的共振峰位置按照"左正右负”表示。
没有单位(ppm与δ不能共存)。
常见δ范围0-10。
化学位移-总结化学环境不同的质子共振频率不同;核外电子云密度高,屏蔽作用强,共振所需的频率低;共振峰的位置用化学位移δ( ppm)表示,δTMS= 0;不同频率的NMR仪测定同一-组质子δ值相同,△v不同。
8. 峰面积的大小与产生该峰的质子数目成比例。
9. 自旋耦合(自旋干扰):相邻两个(组)磁性核之间的相互干扰作用。
10. 自旋裂分:自旋耦合引起的谱线增多的现象。
11. 自旋-自旋耦合常数(耦合常数):相互耦合的氢核产生信号裂分,裂分峰间的距离,用J表示,单位Hz (或c/s),反映相互耦合的两个(组)核间的干扰作用强度。
J越大,干扰越小,离得越远。
12. 同核耦合( homee-coupling):氢核之间相互也可以发生自旋耦合的作用。
13.化学等同:分子中处于相同的化学环境,具有相同的δ值的氢核称为化学等同(价)氢核。
《波谱分析》期末复习资料·《波谱分析》期末复习资料⼀、名词解释:1、摩尔吸光系数;根据⽐尔定律,吸光度A与吸光物质的浓度c和吸收池光程长b 的乘积成正⽐。
当c的单位为g/L,b的单位为cm时,则A = abc,⽐例系数a称为吸收系数,单位为L/g.cm;当c的单位为mol/L,b的单位为cm时,则A = εbc,⽐例系数ε称为摩尔吸收系数,单位为L/mol.cm,数值上ε等于a与吸光物质的摩尔质量的乘积。
它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以⼀定波长的光通过时,所引起的吸光度值A。
ε值取决于⼊射光的波长和吸光物质的吸光特性,亦受溶剂和温度的影响。
显然,显⾊反应产物的ε值愈⼤,基于该显⾊反应的光度测定法的灵敏度就愈⾼。
2、⾮红外活性振动;物质分⼦吸收红外光发⽣振动和转动能级跃迁,必须满⾜两个条件:1. 红外辐射光量⼦具有的能量等于分⼦振动能级能量差△E2. 分⼦振动时必须伴随偶极矩的变化,具有偶极矩的变化的分⼦振动是红外活性振动,否则是⾮红外活性振动。
3、弛豫;⼈们把向平衡状态恢复的过程称为弛豫过程。
原⼦核从激化的状态回复到平衡排列状态的过程叫弛豫过程。
这个过程遵循指数变化规律,其时间常数称为弛豫时间。
弛豫过程所需的时间叫弛豫时间。
即达到热动平衡所需的时间。
热动平衡即因热量⽽导致的动态平衡。
4、碳谱的γ-效应;5、麦⽒重排是MCLATTERTY对质谱分析中离⼦的重排反应提出的经验规则。
具有不饱和官能团C=X(X为O、S、N、C等)及其γ-H原⼦结构的化合物,γ-H原⼦可以通过六元环空间排列的过渡态,向缺电⼦(C=X+ )的部位转移,发⽣γ-H的断裂,同时伴随C=X 的β键断裂(属于均裂),这种断裂称为McLafferty重排,简称麦⽒重排(麦⽒于1956年发现),例如:2-戊酮在质谱中,位于含有杂原⼦双键的γ-位氢原⼦,通过六员过渡态转移到杂原⼦上的过程称之为麦⽒重排。
紫外-可见(kějiàn)光谱:➢电子光谱➢朗伯比尔定律(dìnglǜ) A= εcl➢发色团、助色团➢红移、蓝移是什么(shén me)?导致红移、蓝移的因素(yīn sù)?➢K、B、E、R带分别(fēnbié)对应哪种跃迁?根据波长以及摩尔吸光系数判断是哪个带?➢苯胺在酸性条件下E2和B带(均为π-π*跃迁)均发生蓝移,苯酚在碱性条件下发生红移原因?➢共轭烯烃的紫外吸收位置计算规则及应用➢紫外溶剂的选择红外光谱:➢分子光谱➢基本公式:➢红外的分区:近红外、中红外、远红外➢红外吸收波数的计算公式➢分子振动自由度的数目:线性分子3n-5,非线性分子3n-6➢红外活性➢影响红外吸收频率的因素(考虑折合质量以及双键性增强或减弱):质量效应、电子效应(诱导效应、中介效应、共轭效应)、空间效应氢键对羰基和羟基吸收频率的影响➢各类化合物的特征吸收:烷烃:C-H:3000以下1460cm-1:CH2的变形振动(δ)和CH3的反对称变形振动(νas)1375cm-1:CH3的对称变形振动;异丙基和叔丁基此处吸收峰发生裂分,前者强度相似,后者低频峰比高频峰强度大很多烯烃:C-H:3050±50C=C:1650顺反式的判断(CH面外弯曲振动吸收峰不同)炔烃:C-H: 3300C≡C:2100(注:C≡N:2250)芳香烃:C-H:3050±50C-H:1650-1450(1-4个峰)C-H面外弯曲振动对应的苯环取代类型:苯:670;单取代:750,700;二取代:1,2-取代(750)、1,3-取代(800,700)、1,4-取代(820)醇酚醚:OH:3300宽峰醇酚的C-O伸缩振动:1200-1000;区分伯仲叔季醇(1050、1100、1150、1200)醚的C-O-C伸缩振动(zhèndòng):反对称伸缩振动1275-1060,对称伸缩(shēn suō)振动弱甲氧基:C-H对称伸缩(shēn suō)振动2850-2815,较一般(yībān)甲基频率低,对称(duìchèn)变形振动从1370移到1460羰基化合物:1.醛酮:1715左右,醛C-H伸缩振动:2820-2720两个峰2.羧酸(二聚体):3200-2500(OH伸缩)、1710(C=O)、920(二聚体OH非平面摇摆振动)3.酯:1730(C=O)、1200(C-O-C非对称伸缩)4.酸酐:两个羰基的对称和反对称伸缩1750、1800,开链酸酐两峰强度相似,环状低波数峰强5.酰胺:a)伯酰胺:1690-1650(C=O)、3350和3180(NH2的反对称和对称伸缩)b)仲酰胺:1680-1655(C=O)、1550-1530(C-N-H弯曲振动)、3470-3400(NH伸缩)胺:1.伯胺3490、3400(NH2反对称伸缩、对称伸缩)2.仲胺3500-3300(一个吸收峰)3.叔胺无NH峰➢解析顺序和原则:“先特征后指纹;先最强后次强;先粗查后细找;先否定后肯定;解析一组相关峰”核磁共振氢谱:➢核磁共振研究的对象:具有磁矩的原子核,即有自旋的核。
波谱解析复习题波谱解析复习题波谱解析是一门重要的分析技术,广泛应用于化学、物理、天文学等领域。
在波谱解析中,我们通过观察和分析光谱图来获取物质的信息。
本文将带您回顾一些波谱解析的基础知识,并提供一些复习题,以帮助您巩固对这一主题的理解。
一、紫外-可见吸收光谱紫外-可见吸收光谱是一种常用的波谱技术,用于研究物质在紫外和可见光区的吸收行为。
它通过测量物质对不同波长光的吸收程度来确定物质的结构和浓度。
1. 什么是吸收光谱?如何表示吸收光谱图?吸收光谱是指物质对特定波长或一定范围内的光的能量吸收的图谱。
在吸收光谱图中,横轴表示波长或频率,纵轴表示吸收强度或吸光度。
吸收光谱图通常以峰的形式出现,峰的高度和形状与物质的吸收特性相关。
2. 为什么紫外-可见吸收光谱常用于分析有机化合物?紫外-可见吸收光谱对于分析有机化合物非常有用,因为有机化合物通常在紫外和可见光区域吸收较强。
通过测量有机化合物在不同波长的吸收情况,我们可以推断出它们的结构和浓度。
二、红外光谱红外光谱是一种用于研究物质分子振动和转动行为的波谱技术。
它通过测量物质对红外光的吸收来确定物质的化学成分和结构。
1. 什么是红外光谱?红外光谱图如何表示?红外光谱是指物质对红外辐射(通常是波长在2.5-25微米之间的光)的吸收行为。
红外光谱图通常以波数(cm-1)表示,横轴表示波数,纵轴表示吸收强度或吸收百分比。
2. 红外光谱在有机化学中的应用有哪些?红外光谱在有机化学中有广泛的应用。
通过红外光谱,我们可以确定有机化合物的官能团、分子结构和键的类型。
例如,羟基、羰基、胺基等官能团在红外光谱中有特征性的吸收峰,可以用于鉴定有机化合物的结构。
三、核磁共振光谱核磁共振光谱是一种用于研究物质中原子核的磁共振行为的波谱技术。
它通过测量原子核在外加磁场下的共振吸收来确定物质的结构和环境。
1. 什么是核磁共振光谱?核磁共振光谱图如何表示?核磁共振光谱是指物质中原子核在外加磁场下发生共振吸收的现象。
波谱考试试题库波谱学是一门研究物质与电磁波相互作用的学科,它在化学、物理学、生物学等领域有着广泛的应用。
波谱考试试题库通常包含了各种波谱分析方法的理论知识、实验技术以及数据分析等方面的问题。
以下是一些可能包含在波谱考试试题库中的问题类型:1. 基本概念题:- 波谱分析中,什么是拉曼散射和红外吸收的区别?- 核磁共振(NMR)中,化学位移是如何定义的?2. 原理理解题:- 描述紫外-可见光谱分析的原理及其在分子结构分析中的应用。
- 解释质谱分析中,分子离子峰和碎片离子峰的区别及其在化合物鉴定中的意义。
3. 仪器操作题:- 在使用红外光谱仪进行样品分析时,需要注意哪些操作步骤?- 核磁共振波谱仪的样品制备有哪些基本要求?4. 数据分析题:- 给出一个典型的红外光谱图,分析其可能对应的化合物类型。
- 根据质谱图,推测分子的分子量和可能的结构特征。
5. 应用案例题:- 描述如何使用拉曼光谱分析生物样品中的特定分子。
- 举例说明核磁共振波谱在药物结构鉴定中的应用。
6. 计算题:- 给定一组NMR氢谱数据,计算化合物的化学位移值,并推测可能的化学结构。
- 根据质谱图的碎片峰,计算分子的可能分子量。
7. 实验设计题:- 设计一个实验来区分两种具有相似化学性质的化合物。
- 描述如何使用波谱技术来追踪化学反应的进程。
8. 理论综合题:- 讨论波谱分析在新材料开发中的重要性及其面临的挑战。
- 分析不同波谱技术在环境监测中的应用及其优缺点。
9. 案例分析题:- 根据一个具体的波谱分析案例,讨论实验结果的可能解释和实验中可能遇到的问题。
- 分析一个复杂的波谱图,并提出合理的解释和进一步的实验建议。
10. 前沿探索题:- 描述当前波谱学领域的最新进展和未来发展趋势。
- 讨论波谱技术在生物医学领域的潜在应用。
这些问题覆盖了波谱学的多个方面,旨在考察学生对波谱学基础知识的掌握程度,以及他们分析问题和解决问题的能力。
考试时,学生需要根据自己的知识储备和理解来解答这些问题。
一、名词解释:
1、生色基、助色基、红移现象、蓝移现象、增色效应、减色效应、官能团吸收峰、(n+1 规则)、偶合常数、基频峰、亚稳离子、自旋-自旋偶合?
二、问答题:
1、有机化合物结构测定的经典方法?
2、有机分子电子跃迁有哪几种类型?
4、紫外谱图提供的结构信息有哪些?
5、产生红外光谱的必要条件?
6、影响IR谱峰位置变化的因素有哪些?举例说明之。
7、IR谱图解析的基本步骤?
8、影响化学位移的因素有哪些?举例说明之。
9、NMR谱图可以向我们提供关于有机分子结构的哪些信息?
10、NMR谱图解析的基本步骤?
11、波谱综合分析方法的基本步骤?
12、紫外吸收光谱的基本原理是什么?
13、影响离子断裂的因素有哪些?
14、解析红外谱图应注意哪些事项?
15、化学位移是如何产生的?
三、波谱解析:
1. 分子式为C6H14,红外光谱如下,试推其结构。
2. 分子式为C8H7N ,红外光谱如下,试推其结构。
3. 分子式为C4H6 O2,红外光谱如下,试推其结构。
4. 分子式为C10H14S ,红外光谱如下,试推其结构。
5、C3H6O2IR 3000cm-1 1700cm-1
=1 NMR 11.3 (单峰1H) 2.3 (四重峰2H)
1.2 (三重峰3H)
6、C7H8O IR 3300,3010,1500,1600,730,690cm-1
=4 NMR 7.2 (多重峰5H) 4.5 (单峰2H)
3.7 (宽峰1H)
7、根据下列谱图决定化合物的结构,并解析谱图。
1.不同物质的λmax有时可能相同,但εmax不一定相同;2.有机化合物的紫外—可见吸收光谱,是其分子中外层价电子跃迁的结果(三种):σ电子、π电子、n电子外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。
主要有四种跃迁所需能量ΔΕ大小顺序为:n→π*< π→π*< n→σ*< σ→σ*3.σ→σ*跃迁所需能量最大,σ电子只有吸收远紫外光的能量才能发生跃迁。
饱和烷烃的分子吸收光谱出现在远紫外区(吸收波长λ<200nm,只能被真空紫外分光光度计检测到)。
如甲烷的λ为125nm,乙烷λmax为135nm。
n→σ*跃迁所需能量较大。
吸收波长为150~250nm,大部分在远紫外区,近紫外区仍不易观察到。
含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n →σ*跃迁。
如一氯甲烷、甲醇、三甲基胺n →σ*跃迁的λ分别为173nm、183nm 和227nm。
π→π*跃迁所需能量较小,吸收波长处于远紫外区的近紫外端或近紫外区,摩尔吸光系数εmax一般在104L·mol-1·cm-1以上,属于强吸收。
不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁。
如:乙烯π→π*跃迁的λ为162 nm,εmax为: 1×104 L·mol-1·cm-1。
n →π*跃迁需能量最低,吸收波长λ>200nm。
这类跃迁在跃迁选律上属于禁阻跃迁,摩尔吸光系数一般为10~100L·mol-1 ·cm-1,吸收谱带强度较弱。
分子中孤对电子和π键同时存在时发生n →π*跃迁。
丙酮n →π*跃迁的λ为275nm εmax为22 L·mol-1·cm -1(溶剂环己烷)。
4.生色团:最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生的。
这两种跃迁均要求有机物分子中含有不饱和基团。
这类含有π键的不饱和基团称为生色团。
四大谱图的基本原理及对有机化合物结构鉴定中分别起到什么作用?紫外UV :原理:吸收紫外光能量,引起分子中电子能级的跃迁用途:用来提供分子中共轭体系的信息红外IR :原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁用途:用来确定特征官能团,确定结构核磁共振波谱法 NMR :原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁用途:1H-NMR:化学位移→某质子所处的化学环境;峰的数目→相邻基团的氢数;积分面积→本身官能团所含H数;13C-NM R→提供C骨架信息质谱分析法 MS :原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离用途:结合分子断裂过程的机理→拼凑化合物分子结构,确定分子量紫外:电子跃迁的类型及能量大小:主要有四种跃迁类型,跃迁所需能量为:σ→σ*﹥n→σ*≧π→π*﹥n→π*1.σ→σ*跃迁;这种电子跃迁需要较高的的能量,所以能吸收短波长的紫外线,一般发生在低于150nm的远紫外区。
一般饱和烷烃分子为此类跃迁,所需能量最大,吸收波长λmax <200,仅在远紫在外区可能观察到它们的吸收谱带,只能被真空紫外分光光度计检测到。
2.π→π*跃迁;双键或叁键中中π轨道电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁差不多,200nm左右;吸收强度大,ε在104~105范围内。
若有共轭体系,波长向长波方向移动(200~700 nm)。
含不饱和键的化合物发生π→π*跃迁,例如C=O 、C=C、C≡C3.n→σ*;该跃迁为杂原子的非键轨道中的电子向σ*轨道跃迁,一般在150~250nm左右。
原子半径较大的硫或碘的衍生物n-电子能级较高吸收光谱的在近紫外220~250nm附近。
含非键电子的饱和烃衍生物(N、P、S、O和卤素原子)均呈现此类跃迁4.n→π*跃迁;n电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁所需能量较小,吸收峰在200~400 nm左右。
质谱有机化合物分子离子峰的稳定性顺序:芳香化合物>共轭链烯>烯烃>脂环化合物>直链烷烃>酮>胺>酯>醚>酸>支链烷烃>醇CH 3CH 2CH2CH2COCH2CH2CH2CH3或CH3CH2CH2COCH2CH (CH 3)21.在离子源中用电子轰击有机物,使它失去电子成为分子离子,最容易失去的电子是:A :杂原子上的n 电子B :双键 上的Л电子C :C-C 键上的σ电子D :C-H 键上σ电子2.在质谱仪中,质量分析 作用原理是:10 0189106532470% O F B A S E P E A K m / z = 4 35 - M e t h y l p e n t a d e c a n e- m / z相对强度A:离子的质荷比(m / e),与轨迹曲线半径(R),磁场强度(H)和加速度电压(V)有定量的关系B:固定H和V,(m / e)与R2成正比C:固定R和V,m / e与H成正比D:固定R和V,m / e与H2成正比E:固定R和H,m / e 与V成反比3 在质谱图中,被称为基峰或标准峰的是:A:一定是分子离子峰B:质荷比最大的峰C:一定是奇电子离子峰D:强度最小的离子峰E:强度最大的离子4分子离子峰的强度与化合物结构有关,以下几种说法正确的是:A:分子离子的分解活化能越高,则分子离子峰越强B:分子离子热稳定性好,则分子离子峰越强C:芳香烃及含双键化合物的分子离子峰越强D:同系化合物碳链越长,支链越多则分子离子峰越强E:饱和醇类及胺分子离子峰弱5下面五种化合物,分子离子峰最强的是:A:芳香烃B:共轭烯C:酰胺D:酯E:醇6辨认分子离子峰,以下几种说法正确的是:A:是质量最大的峰B:是丰度最大的峰C:有些化合物的分子离子峰不出现D:分子离子峰现相邻离子峰质量≥14质量单位E:不含氮或偶数氮的化合物,分子离子峰的质量数必为数7 对烷的开裂规律,以下几种说法正确的是:A:产生一系列相差14质量单位的奇质量数的离子B:直链烷烃质谱图上m / e 43或m / e 57峰的相对丰度最大C:支链烷烃易发生β开裂D:正碳离子的稳定性是8 对于烯烃的开裂规律,以下几种说法正确的是:A:分子离子峰强度较大B:单烯易发生α开裂C:单烯易发生β开裂,也称为烯丙基断裂D:形成一系列碎片离子的质量是41+14n E:预计1-庚烯的质谱图上m / e 41是基峰10 对含杂原子化合物,如醇,胺,醚的开规律,以下几种说法正确的是:A:它们都易发生α开裂B:它们都易发生β开裂,生成含氧正离子或亚离子C:醇的主要特征峰是30+14nD:胺的主要特征峰是30+14nE:醚的β开裂生成45+14n离子,α开裂形成31+14n离子(二)填充题1 质谱法与前面介绍的波谱法不同之处在于它是检测样品离子的_____和_____来进行分析。