均值滤波 中值滤波 直方图均衡
- 格式:docx
- 大小:458.12 KB
- 文档页数:15
均值滤波和中值滤波
均值滤波和中值滤波是图像处理的两种常用的滤波算法,它们的目的都是为了去掉图像中的噪声,以使图像变得更清晰,以满足下一步处理所需。
均值滤波是一种很常见的滤波算法。
该算法通过统计一定形状的邻域窗口内像素的灰度值,将窗口中各点像素的灰度值求平均,然后将新的灰度值赋给窗口中的每一点像素,从而进行滤波。
由于噪声的特性,噪声点往往灰度值低于其它像素,因此采用均值滤波的过滤效果良好,能够很好的消除噪声,但是也会消除掉有帮助的图像信息,因此多数情况下只是用于滤除少量的随机噪声,而不能用于去除椒盐噪声。
中值滤波则是另一种常用的滤波算法。
它的原理是通过统计一定范围内像素的中位数来进行滤波。
先以块为单位,确定该块中某一点处的灰度值。
然后,把该点所在连通区域的所有点的灰度值读取出来排序,去掉最大值和最小值,再求中间的中位数,将这个中位数作为该点处的灰度值,从而进行滤波处理。
中值滤波主要用于滤除椒盐噪声,可以更好的保留原始图像的信息,但是它的耗时较多,且由于中位数的计算,比较麻烦。
总之,均值滤波和中值滤波作为图像滤波的两种常用技术,具有他们各自良好的应用特点和优势,根据不同的情况和需求,可以采用适当的技术进行滤波,以满足下一步处理的条件。
中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法,它们在图像去噪和平滑处理中起着重要的作用。
本文将从原理、应用以及优缺点等方面介绍这两种滤波方法。
一、中值滤波中值滤波是一种非线性滤波方法,其基本原理是用像素点周围邻域内的中值来代替该像素点的灰度值。
中值滤波可以有效地去除图像中的椒盐噪声和脉冲噪声,同时能够保持图像的边缘信息。
其处理过程如下:1.选取一个模板,模板的大小根据噪声的程度来确定;2.将模板中的像素点按照灰度值大小进行排序,取其中位数作为中心像素点的灰度值;3.将中心像素点的灰度值替换为中值;4.重复以上步骤,对整个图像进行滤波。
中值滤波的优点是能够有效地去除椒盐噪声和脉冲噪声,同时保持图像的边缘信息。
然而,中值滤波也存在一些缺点,例如不能处理高斯噪声和均匀噪声,对图像细节信息的保护效果较差。
二、均值滤波均值滤波是一种线性平滑滤波方法,其基本原理是用像素点周围邻域内的平均值来代替该像素点的灰度值。
均值滤波可以有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
其处理过程如下:1.选取一个模板,模板的大小根据滤波效果来确定;2.计算模板内所有像素点的灰度值的平均值;3.将中心像素点的灰度值替换为平均值;4.重复以上步骤,对整个图像进行滤波。
均值滤波的优点是能够有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。
然而,均值滤波也存在一些缺点,例如不能处理椒盐噪声和脉冲噪声,对图像细节信息的保护效果较差。
中值滤波和均值滤波在图像处理中各有优劣。
中值滤波适用于去除椒盐噪声和脉冲噪声,能够保持图像的边缘信息,但在处理高斯噪声和均匀噪声时效果较差。
而均值滤波适用于去除高斯噪声和均匀噪声,能够保持图像的整体平滑,但对于细节信息的保护效果较差。
在实际应用中,根据图像的特点和噪声的类型选择合适的滤波方法是很重要的。
如果图像受到椒盐噪声和脉冲噪声的影响,可以选择中值滤波进行去噪处理;如果图像受到高斯噪声和均匀噪声的影响,可以选择均值滤波进行平滑处理。
均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。
本文将对这三种滤波方法进行介绍、比较和分析。
一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。
这样可以有效地平滑图像并去除高频噪声。
然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。
二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。
它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。
加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。
通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。
高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。
三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。
具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。
然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。
比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。
均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。
高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。
中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。
图像增强的方法有哪些
图像增强的方法包括以下几种:
1. 直方图均衡化(Histogram equalization):通过调整图像的像素分布,增强图像的对比度。
2. 自适应直方图均衡化(Adaptive histogram equalization):与直方图均衡化类似,但是对图像的小区域进行局部均衡化,可以更好地保留细节信息。
3. 均值滤波(Mean filter):用图像中像素的平均值替代该像素的值,平滑图像的同时增强细节。
4. 中值滤波(Median filter):用图像中像素的中值替代该像素的值,能够有效去除椒盐噪声,保留图像边缘。
5. 高斯滤波(Gaussian filter):使用高斯函数对图像进行平滑,可以模糊图像的同时去除噪声。
6. 锐化增强(Sharpening):利用锐化算子对图像进行卷积,突出图像的边缘和细节。
7. 退化与恢复(Degradation and restoration):通过建立图像模糊模型和噪
声模型,对退化图像进行恢复。
8. 增强滤波(Enhancement filter):通过设计特定的增强滤波器,对图像进行增强,如Sobel滤波器、Prewitt滤波器等。
9. 超分辨率(Super-resolution):通过使用多帧图像或者其他方法,提高低分辨率图像的细节和清晰度。
以上仅是图像增强的一些常见方法,随着图像处理技术的不断发展,还有很多其他方法可以用于图像增强。
均值滤波,中值滤波,最⼤值滤波,最⼩值滤波
均值滤波:
均值滤波是图像处理中常⽤的⼿段,从频率域观点来看均值滤波是⼀种低通滤波器,⾼频信号将被去掉,因此可以帮助消除图像尖锐噪声,实现图像平滑,模糊等功能。
理想的均值滤波是⽤每个像素和它周围像素计算出来的均值替换图像中每个像素。
采样Kernel数据通常是3x3的矩阵,如下所⽰:
从左到右,从上到下计算图像中的每个像素,最终得到处理后的图像。
均值滤波可以加上两个参数,即迭代次数,kernel数据⼤⼩。
⼀个相同⼤⼩的kernel,经过多次迭代效果会越来越好。
同样:迭代次数相同,均值滤波的效果就越明显。
中值滤波:
中值滤波也是消除图像噪声最常见的⼿段之⼀,特别是消除椒盐噪声,中值滤波的效果要⽐均值滤波更好。
中值滤波和均值滤波唯⼀的不同是,不是⽤均值来替换中⼼每个像素,⽽是将周围像素和中⼼像素排序以后,取中值,⼀个3x3⼤⼩的中值滤波如下:
最⼤最⼩值滤波:
最⼤最⼩值滤波是⼀种⽐较保守的图像处理⼿段,与中值滤波类似,⾸先要排序周围像素和中⼼像素值,然后将中⼼像素的值与最⼩和最⼤像素值⽐较,如果⽐最⼩值⼩,则替换中⼼像素为最⼩值,如果中⼼像素值⽐最⼤值⼤,则替换中⼼像素为最⼤值。
⼀个Kernel矩阵为3x3的最⼤最⼩滤波如下:。
10种常用滤波方法
滤波是信号处理领域中常用的技术,用于去除噪声、增强信号的一些特征或改变信号的频谱分布。
在实际应用中,经常使用以下10种常用滤波方法:
1.均值滤波:将像素点周围邻域像素的平均值作为该像素点的新值,适用于去除高斯噪声和椒盐噪声。
2.中值滤波:将像素点周围邻域像素的中值作为该像素点的新值,适用于去除椒盐噪声和激动噪声。
3.高斯滤波:使用高斯核函数对图像进行滤波,通过调整高斯窗口的大小和标准差来控制滤波效果。
适用于去除高斯噪声。
4.双边滤波:通过考虑像素的空间距离和像素值的相似性,对图像进行滤波。
适用于平滑图像的同时保留边缘信息。
5. 锐化滤波:通过滤波操作突出图像中的边缘和细节信息,常用的方法有拉普拉斯滤波和Sobel滤波。
6.中可变值滤波:与中值滤波相似,但适用于非线性信号和背景噪声的去除。
7.分位值滤波:通过对像素值进行分位数计算来对图像进行滤波,可以去除图像中的异常像素。
8.快速傅里叶变换滤波:通过对信号进行傅里叶变换,滤除特定频率的成分,常用于频谱分析和滤波。
9.小波变换滤波:利用小波变换的多尺度分析特性,对信号进行滤波处理,适用于图像去噪和图像压缩。
10.自适应滤波:通过根据信号的局部特征自动调整滤波参数,适用于信号中存在时间和空间变化的情况。
以上是常见的10种滤波方法,每种方法都有不同的适用场景和优缺点。
在实际应用中,选择合适的滤波方法需要根据具体的信号特征和处理需求来确定。
数字图像上机报告一、实验内容:四点平滑、八点平滑、中值滤波、直方图均匀化、线性变换二、实验目的:1、四点平滑、八点平滑:去除高斯噪声,使图像平滑,缺点是会使图像模糊,模糊程度与领域半径成正比丢失边沿。
2、中值滤波:去除图像中的椒盐噪声,平滑图像,同样会使图像模糊,丢失边缘。
三、编程思想:1、四点平滑:f(i, j) ——表示(i, j)点的实际灰度值g(i, j) ——变换后输出图象(i, j)点的实际灰度值以(i, j)点为中心取其上下左右四个像素点的灰度值和点(i, j)取平均,将均值赋给g(i, j)作为输出灰度值。
2、八点平滑:f(i, j) ——表示(i, j)点的实际灰度值g(i, j) ——变换后输出图象(i, j)点的实际灰度值以(i, j)点为中心取一个N×N的窗口(N = 3,5,7,…八点滤波时N=3),窗口内象素组成的点集以A来表示,经邻域平均法滤波后,平滑后g(i, j)的值为九个像素点的灰度值值和。
3、中值滤波:取以(i, j)点为中心取一个N×N的窗口(N = 3,5,7,…),对窗口内的所有像素点的像素值进行排序,去中值作为该点的输出灰度值。
取合理的邻近像素值来替代噪声点,所以只适合于椒盐噪声的去除(去椒盐噪声比超限像素平均分更有效),不适合高斯噪声的去除。
在滤除随机噪声时,中值滤波要比均值滤波效果弱。
四、代码及实现效果1、四点平滑:代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'gaussian',0.01,0.002); %加入高斯噪声figure,imshow(g),title('加入高斯噪声之后的图象');p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=2:p(1)-2for j=2:p(2)-2%c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘s=x1(i,j)+x1(i-1,j)+x1(i+1,j)+x1(i,j+1)+x1(i,j-1); %求c矩阵(即模板)中各元素之和x2(i,j)=s/5; %将模板各元素的均值赋给模板中心位置的元素endend%未被赋值的元素取原值d=uint8(x2);figure,imshow(d),title('滤波后');2、八点平滑:代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'gaussian',0.01,0.002); %加入高斯噪声figure,imshow(g),title('加入高斯噪声之后的图象');n=input('请输入均值滤波器模板大小\n');a(1:n,1:n)=1; %a即n×n模板,元素全是1p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=1:p(1)-n+1for j=1:p(2)-n+1c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘s=sum(sum(c)); %求c矩阵(即模板)中各元素之和x2(i+(n-1)/2,j+(n-1)/2)=s/(n*n);%将模板各元素的均值赋给模板中心位置的元素endendd=uint8(x2);figure,imshow(d),title('滤波后');3、中值滤波代码:clearclose allh=imread('che.jpg'); %读入彩色图片c=rgb2gray(h); %把彩色图片转化成灰度图片,256级figure,imshow(c),title('原始图象'); %显示原始图象g=imnoise(c,'salt & pepper',0.04);%加椒盐噪声figure,imshow(g),title('加入高斯噪声之后的图象');n=input('请输入均值滤波器模板大小\n');a(1:n,1:n)=1; %a即n×n模板,元素全是1p=size(g); %输入图像是p×q的,且p>n,q>nx1=double(g);x2=x1;for i=1:p(1)-n+1for j=1:p(2)-n+1c=x1(i:i+(n-1),j:j+(n-1));%取出x1中从(i,j)开始的n行n列元素,即模板(n ×n的)e=c(1,:); %是c矩阵的第一行for u=2:ne=[e,c(u,:)]; %将c矩阵变为一个行矩阵endmm=median(e); %mm是中值x2(i+(n-1)/2,j+(n-1)/2)=mm; %将模板各元素的中值赋给模板中心位置的元素endendd=uint8(x2);figure,imshow(d),title('滤波后');4、直方图均匀化代码:c lear all;a=imread('D:/lina.jpg');[m,n]=size(a);b=zeros(1,256);for i=1:mfor j=1:nk=a(i,j)+1; %k可能为0,矩阵从一开始,故此处加一,0~255变1~256 b(k)=b(k)+1; %循环计算每级灰度出现次数endendb=b/(m*n); %概率figure,bar(0:255,b,'y') % 直方图title('原图像直方图')xlabel('灰度值')ylabel('出现概率')c=zeros(1,256);for i=1:256for j=1:ic(i)=b(j)+c(i);endendd=round((c*256)+0.5); % 归到相近级的灰度for i=1:256e(i)=sum(b(find(d==i))); % 计算现有每个灰度级出现的概率end,find函数返回d中所有为i的横坐标索引值figure,bar(0:255,e,'b')title('均衡化后的直方图')xlabel('灰度值')ylabel('出现概率')将图像界面放大竟出现了颜色黄色和蓝色。
遥感图像解译中的图像增强和分类技术介绍概述:遥感图像解译是指通过对遥感数据进行处理和解析,来获取地理信息的过程。
在这一过程中,图像增强和分类技术是至关重要的工具,可以提高图像质量和准确度。
本文将介绍遥感图像解译中的图像增强和分类技术的原理和应用。
一、图像增强技术图像增强技术是指通过对原始遥感图像进行处理,改善图像质量的方法。
1. 直方图均衡化直方图均衡化是通过变换图像的灰度级分布,增强图像的对比度和亮度。
该方法适用于单一场景中的图像。
通过对原始图像中每个像素的像素值进行统计,可以得到图像的灰度级分布。
根据统计分布,可以将原始图像中的灰度级重新映射,使得图像的灰度级分布更均匀。
这样可以增强图像的对比度,使得图像中的目标更加清晰可见。
2. 滤波技术滤波技术通过对图像进行空域或频域的滤波处理,来改善图像的质量。
常用的滤波方法包括线性滤波和非线性滤波。
线性滤波方法包括均值滤波、中值滤波等,主要用于降噪和平滑图像。
非线性滤波方法包括边缘增强滤波、退化滤波等,主要用于增强图像的边缘信息。
3. 多尺度分析多尺度分析是一种基于图像的不同尺度表示,来提取图像不同层次特征的方法。
常用的多尺度分析方法包括小波变换、尺度空间分析等。
通过对不同尺度下的图像进行处理和分析,可以获得更全面的图像信息。
这些信息可以用于图像分类和目标检测等应用。
二、图像分类技术图像分类技术是将遥感图像中的像素点或图像区域划分为不同的类别的过程。
图像分类是遥感图像解译的关键步骤,它可以帮助我们理解和分析图像中的地物信息。
1. 监督分类监督分类是一种通过人工标签指定不同类别的样本进行训练的分类方法。
在监督分类过程中,我们首先需要选择一种合适的分类算法,如支持向量机(SVM)、决策树、人工神经网络等。
然后,根据已标注的样本,使用分类算法进行训练和分类预测。
监督分类方法适用于有充足样本且具有明显特征的图像。
2. 无监督分类无监督分类是一种不依赖于人工标签的分类方法。
一、直方图均衡化1.直方图均衡化直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
2.Matlab中直方图均衡化程序clear all ;close all ;tuu=imread('picture1.JPG');tu=rgb2gray(tuu); %将彩色图片转换为灰度图graydis=zeros(1,256);%设置矩阵大小graydispro=zeros(1,256);new_graydis=zeros(1,256);new_graydispro=zeros(1,256);[h, w]=size(tu);new_tu=zeros(h,w);% 计算原始直方图各灰度级像素个数graydisfor x=1:hfor y=1:wgraydis(1,(tu(x,y)+1))=graydis(1,(tu(x,y)+1))+1;endend%计算原始直方图graydisprograydispro=graydis./sum(graydis);subplot(1,2,1);plot(graydispro);title('灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算原始累计直方图for i=2:256graydispro(1,i)=graydispro(1,i)+graydispro(1,i-1);end%计算和原始灰度对应的新的灰度t[],建立映射关系for i=1:256t(1,i)=floor(255*graydispro(1,i)+0.5);end%统计新直方图各灰度级像素个数new_graydisfor i=1:256new_graydis(1,t(1,i)+1)=new_graydis(1,t(1,i)+1)+graydis(1,i); end%计算新的灰度直方图new_graydispronew_graydispro=new_graydis./sum(new_graydis);subplot(1,2,2);plot(new_graydispro);title('均衡化后的灰度直方图');xlabel('灰度值');ylabel('像素的概率密度');%计算直方图均衡后的新图new_tufor x=1:hfor y=1:wnew_tu(x,y)=t(1,tu(x,y)+1);endendfigure,imshow(tu,[]);title('原图');figure,imshow(new_tu,[]);title('直方图均衡化后的图');3.程序运行结果图1 原始图像图2 直方图均衡化后的图从图1和图2中明显可以看出,原始图像中树下的暗区几乎看不清有什么,而经过直方图均衡化以后可以看到有两只猴子,不但如此,均衡化后的途中树枝和树干也变得更加清晰。
均值滤波、中值滤波、高斯滤波的公式如下:
1.均值滤波:使用邻域平均法,用均值代替原图像中的各个像素值。
设有一个滤波
模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=∑f(x,y)/m m为该模板中包含当前像素在内的像素总个数。
2.中值滤波:其数学公式为y[n]=median(x[n-k],…,x[n],…,x[n+k]) 其中x xx是原始
信号,y yy是滤波后的信号,n nn是当前位置,k kk是窗口大小。
3.高斯滤波:高斯函数可以用来模拟存在噪声的图像。
假设有一幅大小为N×N像
素的图像f(x,y),那么任意一点(x,y)上的像素值可以用高斯函数来描述:
f(x,y)=∫∫f(u,v)exp[-{(u-x)^2+(v-y)^2}/2σ^2]dudv 其中,f(u,v)是原始图像上(u,v)点的像素值,σ是高斯滤波参数,表示高斯函数的“宽度”。
以上信息仅供参考,如有需要,建议咨询专业人士。
十一种通用软件滤波算法滤波算法是一种常用的信号处理算法,用于去除信号中的噪声、干扰或者其他不需要的成分,以提高信号质量。
通用软件滤波算法主要用于数字信号处理,以下是十一种常见的通用软件滤波算法:1. 均值滤波算法(Mean Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的平均值。
它适用于消除高频噪声。
2. 中值滤波算法(Median Filtering):将输入信号的每个采样值替换为其周围邻域内所有样本的中值。
它适用于去除椒盐噪声。
3. 加权平均滤波算法(Weighted Mean Filtering):在均值滤波算法基础上,引入权值对周围样本进行加权平均,以便更好地保留原始信号的特征。
4. 自适应均值滤波算法(Adaptive Mean Filtering):根据信号的每个采样与周围样本的灰度差异,调整均值滤波算法的滤波参数,以提高滤波效果。
5. 高斯滤波算法(Gaussian Filtering):通过计算输入信号的每个采样与其周围邻域内各个样本之间的高斯核函数权重的加权平均来滤波信号。
6. 卡尔曼滤波算法(Kalman Filtering):根据系统状态特性和测量信息,结合时间和测量的线性状态方程,通过最小化预测误差方差来估计和滤波信号。
7. 二阶无限脉冲响应滤波器算法(IIR Filtering):基于差分方程和递归方式运算的滤波算法,具有较好的频率响应,但容易产生数值不稳定和计算复杂度高的问题。
8. 有限脉冲响应滤波器算法(FIR Filtering):基于加权线性组合的方式来滤波信号,具有稳定性好、易于实现的特点。
9. 最小均方滤波算法(Least Mean Square Filtering):通过最小化滤波器的均方误差来更新滤波器权值,以逼近滤波器的最优解。
10. 快速傅里叶变换滤波算法(FFT Filtering):利用快速傅里叶变换将信号从时域转换为频域,并利用频域上的特性进行滤波。
数字图像处理实验三均值滤波、中值滤波的计算机实现12281166 崔雪莹计科1202 班一、实验目的:1)熟悉均值滤波、中值滤波处理的理论基础;2)掌握均值滤波、中值滤波的计算机实现方法;3)学习VC++ 6。
0 的编程方法;4)验证均值滤波、中值滤波处理理论;5)观察均值滤波、中值滤波处理的结果。
二、实验的软、硬件平台:硬件:微型图像处理系统,包括:主机,PC机;摄像机;软件:操作系统:WINDOWS2000或WINDOWSXP应用软件:VC++6.0三、实验内容:1)握高级语言编程技术;2)编制均值滤波、中值滤波处理程序的方法;3)编译并生成可执行文件;4)考察处理结果。
四、实验要求:1)学习VC+确6。
0编程的步骤及流程;2)编写均值滤波、中值滤波的程序;3)编译并改错;4)把该程序嵌入试验二给出的界面中(作适当修改);5)提交程序及文档;6)写出本次实验的体会。
五、实验结果截图实验均值滤波采用的是3X3的方块,取周围的像素点取得其均值代替原像素点。
边缘像素的处理方法是复制边缘的像素点,增加一个边框,计算里面的像素值得均值滤波。
均值氓浜1W赵六、实验体会本次实验在前一次的实验基础上增加均值滤波和中值滤波,对于椒盐噪声的处理,发现中值滤波的效果更为好一点,而均值滤波是的整个图像变得模糊了一点,效果差异较大。
本次实验更加增加了对数字图像处理的了解与学习。
七、实验程序代码注释及分析// HistDemoADIg.h :头文件//#in elude "ImageWnd.h"#pragma once// CHistDemoADIg 对话框classCHistDemoADIg : public CDialogEx{//构造public:CHistDemoADlg(CWnd* pParent = NULL); // 标准构造函数intnWidth;intnHeight;intnLen;intnByteWidth;BYTE *lpBackup;BYTE *lpBitmap;BYTE *lpBits;CStringFileName;CImageWndsource,dest;// 对话框数据enum { IDD = IDD_HISTDEMOA_DIALOG };protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV 支持// 实现protected:HICON m_hIcon;// 生成的消息映射函数virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();DECLARE_MESSAGE_MAP()public:voidLoadBitmap(void);afx_msg void OnOpen();afx_msg void OnHist();voidHistogramEq(void);voidNoColor(void);void HistogramEq1(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMeanFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput);voidMedianFilter(intnWidth,intnHeight,BYTE *lpInput,BYTE *lpOutput); afx_msgvoid OnBnClickedClose();afx_msg void OnBnClickedMeanfilter();afx_msg void OnBnClickedMedianfilter();};HistDemoADlg.cpp 对HistDemoADlg.h 进行具体的实现,OnOpen() 函数响应ID 为IDC_OPEN的按钮事件,而且会调取文件选择对话框,选取文件之后,会显示在原始图像区域显示对应的位图图像,OnHist()函数会响应ID为IDC_HIST的按钮事件,调用HistogramEq()进行直方图均衡化的处理,HistogramEq()会调用HistogramEq1()进行直方图均衡化的处理,并用dst.setlmage()显示处理之后的图像,以及NoColor()函数,对原始图像转化为灰度图像之后再显示。
图像识别是计算机视觉领域中的一个重要任务,其目标是通过计算机对输入的图像进行分析和理解。
然而,在进行图像识别之前,我们常常需要对图像进行预处理,以便提高识别的准确性和效率。
本文将介绍图像识别中常见的预处理技术。
一、图像去噪图像中常常存在噪点或者干扰,这些噪点会对图像识别产生负面影响。
因此,图像去噪是图像预处理的重要一环。
常见的图像去噪技术包括均值滤波、中值滤波和高斯滤波等。
均值滤波通过计算领域内像素的平均值来平滑图像,中值滤波通过计算领域内像素的中值来去除噪点,而高斯滤波则通过对领域内像素进行加权平均来降低噪声干扰。
二、图像增强为了使图像更加清晰和易于识别,我们可以对图像进行增强处理。
常见的图像增强技术包括直方图均衡化、对比度增强和边缘增强等。
直方图均衡化通过对图像像素值进行重新分配,使得图像的直方图更加均匀,从而提高图像的对比度和细节。
对比度增强通过增加图像的对比度来使图像更加鲜明。
边缘增强则通过增强图像的边缘信息,使得物体边缘更加清晰。
三、图像尺寸调整由于不同的识别模型对图像尺寸有一定的要求,因此在进行图像识别之前,我们通常需要将图像进行尺寸调整。
图像尺寸调整技术可以分为缩放和裁剪两种。
缩放技术通过对图像进行放大或缩小操作来改变图像的尺寸,裁剪技术则通过去除图像的部分区域来改变图像的尺寸。
选择何种尺寸调整技术取决于具体的识别模型和应用场景。
四、图像灰度化对于一些基于统计特征的识别算法,如支持向量机(SVM)和人工神经网络(ANN),图像的灰度化处理是十分必要的。
图像灰度化可以将彩色图像转换成灰度图像,从而降低计算复杂性,并且保留大部分重要的结构信息。
常见的图像灰度化技术包括加权平均法和分量法等。
加权平均法通过对彩色图像的RGB三个分量进行加权平均来得到灰度图像,分量法则是根据人眼对彩色信号敏感度的不同来计算灰度值。
五、图像去背景在某些情况下,我们需要将图像中的目标物体与背景进行分离,以便更好地进行识别。
中值和均值滤波算法中值滤波和均值滤波是两种常用的图像滤波算法,它们可以有效地去除图像中的噪声。
本文将分别介绍中值滤波和均值滤波的原理、算法以及它们的应用。
中值滤波是一种非线性滤波算法,其核心思想是将每个像素点的灰度值替换为其周围像素点灰度值的中值。
这样做的好处是可以有效地去除椒盐噪声等孤立的噪声点,而不会使图像变模糊。
中值滤波的算法如下:1.选择一个适当的窗口大小,窗口的大小通常为奇数,以确保有一个中心像素。
2.将窗口中的像素按照灰度值大小进行排序,找到中间位置的像素值。
3.将该中间像素值替换为原始像素值。
中值滤波算法的优点是简单高效,在去除椒盐噪声等孤立噪声点的同时,能够保持图像的边缘和细节。
均值滤波是一种线性滤波算法,其核心思想是用周围像素点的平均值替代当前像素点的值。
均值滤波的算法如下:1.选择一个适当的窗口大小。
2.将窗口中的像素值求平均,得到一个新的像素值。
3.将该新像素值替换为原始像素值。
均值滤波算法的优点是简单易实现,计算速度快。
它可以有效地去除高斯噪声等随机噪声,但在去除椒盐噪声等孤立噪声点的效果稍差。
中值滤波和均值滤波广泛应用于图像降噪、图像增强等领域。
它们各自有适用的场景。
中值滤波适用于去除孤立噪声点较多的图像,而均值滤波适用于去除随机噪声较多的图像。
此外,中值滤波适用于去除椒盐噪声等孤立噪声点,而均值滤波可能会模糊图像细节。
在实际应用中,根据图像的特点和滤波效果要求,可以结合使用中值滤波和均值滤波,以达到更好的降噪效果。
首先使用中值滤波去除孤立噪声点,然后再使用均值滤波去除随机噪声,这样可以在保留图像细节的同时降低噪声干扰。
综上所述,中值滤波和均值滤波是两种常用的图像滤波算法,它们有各自的原理和优点。
根据实际需求,选择适当的滤波算法可以有效地去除图像中的噪声,提高图像质量。
一、图像噪声由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。
常见的图像噪声有高斯噪声、椒盐噪声等。
1、椒盐噪声2、高斯噪声高斯噪声是指噪声的密度服从高斯分布的一类噪声,由于高斯噪声在空间和频域中数学上的易处理性,这种噪声(也称为正态噪声)模型经常被用于实践中。
高斯噪声随机变量z的概率密度函数由下式给出:加入高斯噪声后的效果:二、图像平滑图像平滑从信号处理的角度看就是去除其中的高频信息,保留低频信息。
因此我们可以对图像实施低通滤波。
低通滤波可以去除图像中的噪声,对图像进行平滑。
根据滤波器的不同可以分为:均值滤波、高斯滤波、中值滤波、双边滤波我们认为高频信息就是噪声,低频信息就是有用的内容。
1、均值滤波(1)api介绍(2)实例分析import cv2 as cvimport numpy as npimport matplotlib.pyplot as pltfrom matplotlib import font_manager#字体设置my_font = font_manager.fontproperties(fname="c:/windows/fonts/sthupo.ttf")#1、读取图像img = cv.imread("./images/girl.jpg")#2、均值滤波blur = cv.blur(img, (5,5))#3、图像显示plt.figure(figsize=(10,8), dpi=100)# subplot中的121代表[1,2,1],表示在本区域里显示1行2列个图像,最后的1表示本图像显示在第一个位置。
plt.subplot(121)plt.imshow(img[:,:,::-1])plt.title("原图", fontproperties=my_font)plt.xticks([]), plt.yticks([])plt.subplot(122)plt.imshow(blur[:,:,::-1])plt.title("均值滤波后的结果", fontproperties=my_font)plt.xticks([]), plt.yticks([])plt.show()2、高斯滤波图像是二维的,所以使用二维高斯分布。
Matlab技术图像去噪与去模糊方法总结引言图像的噪声和模糊经常会影响到图像的质量和可用性。
在现实生活中,由于环境的不可控因素或图像传感器本身的限制,我们常常会面对图像存在噪声和模糊的情况。
因此,如何有效地去除图像中的噪声和模糊成为了图像处理中的重要问题。
本文将总结Matlab技术中常用的图像去噪和去模糊方法,并介绍它们的原理和应用场景。
一、图像去噪方法1. 均值滤波均值滤波是一种常见的图像去噪方法,它基于图像中的像素局部平均值来代替原始像素的值。
均值滤波器将一个像素的值设置为相邻像素的平均值,从而实现去除图像中的噪声。
2. 中值滤波中值滤波是一种非线性滤波器,它在处理噪声图像时非常有效。
该方法通过使用像素值的中值来替换像素值,从而去除图像中的噪声。
中值滤波器对于椒盐噪声和脉冲噪声有很好的去除效果。
3. 小波去噪法小波去噪法是一种基于小波变换的图像处理方法。
它将图像分解为不同尺度的子图像,并通过阈值处理去除子图像中的噪声。
小波去噪法可以有效地保留图像细节,并在去除噪声的同时保持图像的清晰度。
二、图像去模糊方法1. 维纳滤波维纳滤波是一种常用的图像去模糊方法,它通过最小化图像的噪声和失真之间的均方误差来恢复原始图像。
维纳滤波器在频域或空域中操作,可以根据图像的特点选择最适合的滤波器。
2. 直方图均衡化直方图均衡化是一种将图像的像素强度值映射到特定范围的方法。
在去模糊处理中,直方图均衡化可以增强图像的对比度,减少图像的模糊程度。
3. 傅里叶变换傅里叶变换是一种将图像从时域转换到频域的方法。
在图像去模糊中,可以使用傅里叶变换来将图像转换到频域,然后应用滤波器来去除模糊。
三、图像去噪和去模糊方法的应用场景1. 医学影像医学影像中的噪声和模糊会影响到医生对病情的判断。
因此,图像去噪和去模糊在医学影像中具有重要意义。
例如,在CT扫描中,可以使用均值滤波和小波去噪法来去除图像中的噪声;而在MRI影像中,可以使用维纳滤波和傅里叶变换来恢复图像的清晰度和细节。
直方图均衡及图像滤波一、实验目的1、通过实验进一步加深图像直方图均衡和滤波原理的理解;2、提高Matlab编程能力。
二、实验原理(一)直方图均衡原理在实际应用中,希望能够有目的地增强某个灰度区间的图像,即能够人为地修正直方图的形状,使之与期望的形状相匹配,这就是直方图规定化的基本思想。
换句话说,希望可以人为地改变直方图形状,使之成为某个特定的形状,直方图规定化就是针对上述要求提出来的一种增强技术,它可以按照预先设定的某个形状来调整图像的直方图。
每一可能的灰度层次所占的像素个数尽量均等,每个像素具有同样的显示机会,从而使图像细节清晰,改善图像的整体对比度。
(二)中值滤波中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
模板通常为3×3和5×5区域,也可以是其他不同的形状,如线状,圆形,十字形,圆环形等。
(三)均值滤波均值滤波是一种利用模版对图像进行模板操作的图像平滑方法,所谓模版是指模版中所有系数都取相同值的模版,常用的3×3和5×5模版。
邻域平均法的思想是通过一点和邻域内像素点求平均来去除突变的像素点,从而滤掉一定噪声,其优点是算法简单,计算速度快,其代价会造成图像在一定程度上的模糊。
三、实验内容(一)直方图均衡首先读入一幅图像,利用Matlab的rgb2gray()函数将其转化为灰度图,便于接下来的处理。
转化成的灰度图像如下图所示:图1 原灰度图上面灰度图的直方图如下:图2 原灰度图的直方图上面原始图像的直方图共256个灰度级,我们统计每个灰度级内像素数量k n ,每个灰度级像素数量占像素总数量的比例kn N,计算累计直方图做出灰度直方图: 1k k k i n s N==∑ 累计直方图如下:图3 累积直方图然后按照()int 10.5k k L s =-+⎢⎥⎣⎦的映射关系,将原像素的灰度值变为该式映射的灰度值,从而获得均衡后的图像和均衡后的直方图。
实验报告一.实验目的对图像进行空域增强,实现均值滤波、中值滤波、直方图均衡。
二.实验内容对加入椒盐噪声的图像进行均值滤波、中值滤波,对图像实现直方图均衡,通过改变图像的直方图来改变图像中像素的灰度,以达到图像增强的目标。
三.实验原理均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。
再用模板中的全体像素的平均值来代替原来像素值。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,)x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,)u x y,即x y,作为处理后图像在该点上的灰度值(,)1(,)(,)u x y f x y m=∑,m 为该模板中包含当前像素在内的像素总个数。
中值滤波的原理中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。
中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。
在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。
中值滤波的目的是保护图像边缘的同时去除噪声。
在一维的情况下,中值滤波器是一个含有奇数个像素的窗口,在处理之后,将窗口正中的像素灰度值用窗口内各像素灰度值的中值来代替。
设有一个维序列12,,...n f f f ,取窗口长度为奇数m ,对此序列进行中值滤波,就是从输入序列中相续抽出m 个数,,,,,i v i i v f f f -+,其中为窗口的中心值(1)/2v m =-,再将这m 个点的数值按其数值大小排列,取其序号为正中间的那个数作为滤波输出。
中值滤波表达式为:{}v i i v i i f f f Med F +-=,,,,对二维序列{X i,j }的中值滤波,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。
二维中值滤波可表示为:{}为滤波窗口,A x Med F j i Aj i ,,=在实际使用窗口时,窗口的尺寸一般先用33⨯再取55⨯逐渐增大,直到其滤波效果满意为止。
由于中值滤波是非线性运算,在输入和输出之间的频率上不存在一一对应关系,故不能用一般线性滤波器频率特性的研究方法。
设G 为输入信号频谱,F 为输出信号频谱,定义F G H /=为中值滤波器的频率响应特性,实现表明H 是与G 有关,呈不规则波动不大的曲线,其均值比较平坦,可以认为信号经中值滤波后,传输函数近似为1,即中值滤波对信号的频域影响不大,频谱基本不变。
直方图均衡的原理利用直方图统计的结果,通过使图像的直方图均衡的方法称为直方图均衡化,可以达到增强图像的显示效果的作用。
由于通过直方图统计,可以观察出,图像中各种亮度所占的比例大都分布不均匀,设法增加在直方图统计中所占比例高的像素和其他占的比例少的像素之间的亮度差,可以提高图像的显示效果。
简单来说,直方图增强的方法就是压缩直方图中比例少的像素所占用的灰度范围,多出来的灰度空间按照统计比例分配给直方图中比例高的像素使用。
这种方法主要是针对人眼对灰度差别越大的图像更容易分辨的特点而做的增强。
灰度直方图的计算十分简单,依据定义在离散形式下有下面的公式成立:()1,1,0,-==L k nn k pk公式中:k n 为图像中出现k s 级灰度的像素数,n 是图像像素总数,而nn k即为频数。
计算累积直方图各项:()1,1,0,00-===∑∑==L k i p n n t ki ki ik 取整扩展:int[(1)0.5]k k t L t =-+映射对应关系:k k t =>四. 实验结果 均值滤波1. 读取图像,并对图像加入椒盐噪声。
结果图一和图二所示。
图一 原始图像图二 加噪图像2. 采用1/9模板对图像卷积采用1/91/91/91/91/91/91/91/91/9x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦模板对图像33⨯区域进行平均,得到均值即为当前像素取值,得到均值滤波结果如图三所示。
图三均值滤波图像中值滤波1.读取图像和加噪过程与均值滤波相同。
2.采用取用中值对图像滤波。
区域取值并进行排序取中值,得到的中值即为当前像素的值。
结对图像33果如图四所示。
图四中值滤波图像直方图均衡1.读取图像读取图像与上相同。
结果如图五所示。
图五原始图像2.统计原始图像灰度直方图和概率分布。
读取每个像素点,得到像素点的灰度直方图分布,并除以总像素点数目,将其转换为概率分布。
得到结果如图六、图七所示。
图六原始图像直方图图七原始图像直方图概率分布3. 累积概率k t对概率分布进行累积。
得到累积概率分布如图八所示。
图八 累积概率分布4. 对累积概率分布取整扩展对累积概率用int[(1)0.5]k k t L t =-+进行扩展。
得到新的灰度分布。
然后将原图像中各个点进行灰度映射,映射到当前灰度分布中去,即可得到直方图均衡图像和新图像的直方图分布。
结果如图九和图十所示。
图九 直方图均衡图像图十均衡图像的直方图五.结果分析均值滤波和中值滤波对比分析:根据以上实验结果进行对比分析,可以得出以下结论:1、均值滤波, 对椒盐噪声的影响不大,因为在削弱噪声的同时整幅图像内容总体也变得模糊,其噪声仍然存在。
2、对于中值滤波,由图可以看出,中值滤波对去除“椒盐”噪声可以起到很好的效果,因为椒盐噪声只在画面中的部分点上随机出现,所以根据中值滤波原理可知,通过数据排序的方法,将图像中未被噪声污染的点代替噪声点的值的概率比较大,因此噪声的抑制效果很好,同时画面的轮廓依然比较清晰。
由此看来,对于椒盐噪声密度较小时,尤其是孤立噪声点,用中值滤波的效果非常好的。
对于高斯噪声。
对图像加入均值为0,方法0.005的高斯噪声。
结果如图十一所示。
图十一图像加入高斯噪声分别进行均值滤波和中值滤波,结果如图十二、图十三所示。
图十二高斯噪声图像均值滤波图十三高斯噪声图像中值滤波对比发现两种滤波方式对于高斯噪声滤波都不太理想。
使用20张高斯噪声污染的图像相加的方法滤波结果如图十四所示。
图十四图像相加去噪对比发现对于高斯噪声,图像相加去噪结果更好。
直方图均衡本文中的直方图均衡化算法,采用灰度映射方法,简单明了,易于实现,均衡化后的各灰度级更加均衡,接近理想值。
同时对于灰度范围小,直方图分布极不均匀的图像,可人为的适当的扩大灰度范围,均衡化后能取得较好的层次感,使图像信息变得更清晰。
此方法在图像增强方面,有很大的实用价值。
六.实验心得本次实验时首次接触图像处理,发现图像处理必须思路清晰,表达明确,而且发现对于像素级的图像处理,数据量很大,程序运行慢,还有优化的空间。
对于图像处理,以矩阵运算为基础,以后要多加练习。
附录实验程序代码如下。
均值滤波和中值滤波clear all;close all;clc;I=imread('D:\My Documents\MATLAB\kecheng\shuzituxiang\2.jpg'); I=I(:,:,1);figure(1)imshow(I);title('原始图像');colormap(gray(256));figure(2);imhist(I);title('原始图像直方图');J=imnoise(I,'salt & pepper',0.02);figure(3);imshow(J);title('加噪图像');colormap(gray(256));figure(4);imhist(J);title('加噪图像直方图');x=double(ones(3)/9); %必须将1/9变为double型模板A=size(J);%% 均值滤波for i=2:A(1)-1for j=2:A(2)-1x1=double(J(i-1:i+1,j-1:j+1));%将数据转换类型y=x.*x1; %均值su=sum(sum(y)); %求和d(i,j)=uint8(su); %转换为整形endendfigure(5);imshow(d);title('均值滤波图像');%% 中值滤波for i=2:A(1)-1for j=2:A(2)-1x2=J(i-1:i+1,j-1:j+1);x2=[x2(1,:) x2(2,:) x2(3,:)];c(i,j)=median(x2);endendfigure(6);imshow(c);title('中值滤波图像');图像相加去除高斯噪声clear all;close all;clc;%% 图像加法实现消除噪声[filename, pathname, filterindex] = uigetfile({'*.jpg';'*.bmp'}, 'Pick a file'); datafile=[pathname,filename];if filterindex==0returnendI=imread(datafile);I=I(:,:,1);figure(1);imshow(I);title('原始图像');%% 图像加噪k=20; %加噪图像数目z=cell(1,k); %构造多幅加噪图像for i=1:kz{i}=imnoise(I,'gaussian',0,0.005);endfigure(2);imshow(z{2});title('加入高斯噪声图像');%% 图像相加取平均J=0;for i=1:kJ=J+double(z{i});endJ=uint8(J/k);figure(3);imshow(J);title('图像相加去噪');直方图均衡clear all;close all;clc;%% 直方图均衡%%严格按照直方图均衡化的步骤来做,一共六步,思路要清晰A=imread('D:\My Documents\MATLAB\kecheng\shuzituxiang\2.jpg');A=A(:,:,1);[m,n]=size(A);B=zeros(m,n);N=m*n; %像素总个数s=zeros(1,256);t=zeros(1,256);%% 原始直方图概率分布for i=1:mfor j=1:ns(A(i,j)+1)=s(A(i,j)+1)+1; %计算各个灰度级像素个数endends=s./N; %各个灰度级的频率%% 累积分布tkt(1)=s(1);for k=2:256t(k)=t(k-1)+s(k); %累积分布函数累积频率endz=t;%% 取整扩展for k=1:256t(k)=floor(255*t(k)+0.5); %tk取整扩展end%% 确定映射关系,将原图像中点的数值变为映射后的数值for i=1:mfor j=1:nB(i,j)=t(A(i,j)+1);endendA=uint8(A);B=uint8(B);figure(1);imshow(A);title('原始图像');figure(2);imhist(A);title('原始图像直方图');figure(3);stem(z,'fill');title('累积直方图');figure(4);imshow(B);title('均衡图像');figure(5);imhist(B);title('均衡图像直方图');figure(6);stem(s,'fill');title('原始图像直方图概率分布');。