虚拟仪器技术(数据采集)
- 格式:ppt
- 大小:1.39 MB
- 文档页数:44
虚拟仪器技术课程设计一、课程目标知识目标:1. 理解虚拟仪器技术的基本概念、原理及其在工程领域的应用。
2. 掌握虚拟仪器软件(如LabVIEW)的基本操作和编程方法。
3. 学会使用虚拟仪器进行数据采集、处理、分析及展示。
技能目标:1. 能够运用虚拟仪器技术设计简单的测试系统,完成信号的采集与处理。
2. 培养学生动手实践能力,提高他们运用虚拟仪器解决实际问题的能力。
3. 培养学生团队协作和沟通能力,能够就虚拟仪器技术进行学术交流。
情感态度价值观目标:1. 培养学生对虚拟仪器技术的兴趣,激发他们学习自然科学和工程技术知识的热情。
2. 培养学生严谨的科学态度,养成良好的实验操作习惯。
3. 增强学生的创新意识,鼓励他们勇于探索、实践,培养他们面对挑战的信心。
课程性质:本课程为高二年级工程技术类选修课程,旨在通过虚拟仪器技术教学,使学生掌握基本工程实践能力。
学生特点:高二年级学生对工程技术有一定的基础,具备基本的物理知识和实验技能,但对虚拟仪器技术了解较少。
教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的积极性,引导他们主动参与教学活动,实现课程目标。
通过本课程的学习,使学生能够将虚拟仪器技术应用于实际工程项目中,提高他们解决实际问题的能力。
后续教学设计和评估将围绕具体的学习成果展开,确保学生达到预期目标。
二、教学内容本课程教学内容依据课程目标,结合教材《虚拟仪器技术》进行选择和组织,主要包括以下几部分:1. 虚拟仪器技术概述- 了解虚拟仪器的定义、发展历程及应用领域。
- 分析虚拟仪器与传统仪器的区别和优势。
2. 虚拟仪器软件LabVIEW基础- 学习LabVIEW软件的安装、界面及基本操作。
- 掌握LabVIEW编程的基本概念,如数据类型、结构、函数和子VI。
3. 数据采集与处理- 学习数据采集卡的基本原理和使用方法。
- 掌握信号处理技术,如滤波、波形分析等。
4. 虚拟仪器应用实例- 分析典型虚拟仪器应用案例,如温度监测、振动测试等。
计算机虚拟仪器技术的概念一、引言计算机虚拟仪器技术是一种基于计算机硬件平台,结合特定软件,实现测量、数据处理、分析、存储及结果显示等功能的技术。
它广泛应用于各种科研、生产、维修等领域,极大地提高了测试和测量的效率及精确度。
二、基于计算机的硬件平台计算机虚拟仪器技术的硬件基础是计算机硬件平台,包括台式机、笔记本、平板等,这些硬件平台为虚拟仪器的实现提供了基础计算能力。
三、图形化用户界面虚拟仪器的用户界面通常采用图形化方式,这种方式直观、易于理解,用户可以通过鼠标、键盘等输入设备对仪器进行操作和控制。
四、软件驱动的仪器虚拟仪器的核心是软件,它负责实现仪器的各种功能。
通过软件,用户可以设定仪器的工作模式、测量范围、数据处理方式等。
五、数据采集与分析虚拟仪器能够实现数据采集与分析。
它可以接收来自传感器或其他设备的数据,进行存储和分析。
通过软件,用户可以对采集到的数据进行处理和分析。
六、可自定义的仪器功能虚拟仪器的另一个重要特性是可自定义。
用户可以根据自己的需求,编写或修改软件,使仪器具备特定的功能。
这使得虚拟仪器具有极高的灵活性。
七、网络化测量与远程控制借助网络技术,虚拟仪器可以实现远程测量和控制。
用户可以在不同的地点对仪器进行操作,或者将测量数据发送到其他设备上进行处理。
八、模块化与扩展性虚拟仪器通常采用模块化的设计方式,这种方式使得它们可以根据需要进行扩展或缩减。
用户可以根据实际需求,添加或删除功能模块。
总结:计算机虚拟仪器技术是一种灵活且功能强大的测量技术。
通过利用计算机硬件平台和特定软件,它能够实现各种测量任务。
同时,由于其可自定义的特性,用户可以根据自己的需求对仪器进行定制。
此外,网络化测量和远程控制功能使其在实际应用中具有更大的便利性。
模块化的设计方式则使得虚拟仪器可以根据需要进行扩展或缩减。
总的来说,计算机虚拟仪器技术是一种广泛应用于各种科研、生产、维修等领域的先进技术。
如何使用LabVIEW进行数据采集和分析LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款由美国国家仪器公司(NI)开发的图形化编程环境和开发平台,主要用于测试、测量和控制领域。
LabVIEW具有直观的用户界面、强大的数据采集和分析功能,被广泛应用于工业自动化、科学研究、仪器仪表等领域。
本文将介绍如何使用LabVIEW进行数据采集和分析的基本步骤。
一、实验准备与硬件连接在使用LabVIEW进行数据采集和分析之前,首先需要准备好实验所需的硬件设备,并将其与计算机连接。
LabVIEW支持多种硬件设备,如传感器、仪器和控制器等。
根据实验需要选择相应的硬件设备,并按照其配套说明书将其正确连接至计算机。
二、创建LabVIEW虚拟仪器LabVIEW以虚拟仪器(Virtual Instrument,简称VI)的形式进行数据采集和分析。
在LabVIEW中,可以通过图形化编程来创建和配置虚拟仪器。
打开LabVIEW软件后,选择新建一个VI,即可开始创建虚拟仪器。
三、配置数据采集设备在LabVIEW中,需要为数据采集设备进行配置,以便准确地采集实验数据。
通过选择合适的数据采集设备和相应的测量通道,并设置采样率、量程等参数,来实现对实验数据的采集。
LabVIEW提供了丰富的数据采集函数和工具箱,使得配置数据采集设备变得更加简单和便捷。
四、编写数据采集程序使用LabVIEW进行数据采集和分析的核心是编写采集程序。
在LabVIEW中,可以通过拖拽、连接各种图形化函数模块,构建数据采集的整个流程。
可以使用LabVIEW提供的控制结构和数据处理函数,对采集的实验数据进行处理和分析。
LabVIEW还支持自定义VI,可以将经常使用的功能模块封装成VI,以便在其他程序中复用。
五、数据可视化和分析通过编写好的数据采集程序,开始实际进行数据采集。
LabVIEW提供了实时查看和记录实验数据的功能,可以将采集到的数据以曲线图、表格等形式进行显示和保存。
现代经济信息虚拟仪器软件Labview和数据采集武 睿 太原理工大学 山西省国新能源发展集团有限公司摘要:Labview是一个在全球范围内都十分有名的虚拟仪器开发系统。
Labview与Fortran、C语言这类传统的编程语言相较而言,具有编写灵活、简单、易于掌握的优点。
本文将阐述Labview的开发环境,以及结合USB9100ms数据采集卡来对Labview如何采集数据进行介绍。
关键词:虚拟仪器软件;Labview;数据采集中图分类号:TP274.2 文献识别码:A 文章编号:1001-828X(2017)019-0330-02Labview属于基于C语言(图形编辑语言)的实验室虚拟仪器集成环境,由美国国家仪器公司于上世纪研制开发而成,拥有包括数据采集、函数数值运算、输入/输出控制、信号生成、信号处理、图像获取、图像处理、图像传输等等一系列十分强大的功能。
Labview使用的图形语言(各种连线、图形符号、图标等)G语言,与编程利用的传统文本语言相比的话,因为界面都是大家非常熟悉的波形图、旋钮、开关等,因此显得更加的直观友好,属于直觉式的图形程序语言。
如Fortran、C语言等传统编程语言,需要工程人员拥有非常丰富的编程经验,才能将其用于虚拟仪器控制,才能将工程人员拥有的与仪器和应用的知识转变成为计算机上的程序代码,才能形成程序测试。
但是对于Labview而言,并不需要工程人员有太多的编程经验,只需要工程人员用直觉的方式来建立前面板方块图程序和人机界面,编程过程就算完成了。
这样一来,那些并没有太多编程经验的工程师们,就能够把更多的精力投注到实验的测试中,而不是繁重的文字编码。
Labview的执行顺序,是按照方块图间数据的传递来决定的,而不是像传统的编程语言那样,必须要逐行地执行,因此工程人员能够利用Labview设计出多个程序可以同时执行的流程图。
一、Labview的开发环境Labview的开发环境可以分为图标/连接端口、框图程序和前面板三个部分。
什么是虚拟仪器技术?虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用。
灵活高效的软件能帮助您创建完全自定义的用户界面,模块化的硬件能方便地提供全方位的系统集成,标准的软硬件平台能满足对同步和定时应用的需求。
这也正是NI近30年来始终引领测试测量行业发展趋势的原因所在。
只有同时拥有高效的软件、模块化I/O硬件和用于集成的软硬件平台这三大组成部分,才能充分发挥虚拟仪器技术性能高、扩展性强、开发时间少,以及出色的集成这四大优势。
虚拟仪器技术的三大组成部分:1.高效的软件软件是虚拟仪器技术中最重要的部份。
使用正确的软件工具并通过调用特定的程序模块,工程师和科学家们可以高效地创建自己的应用以及友好的人机交互界面。
NI公司提供的行业标准的图形化编程软件——NI LabVIEW,不仅能轻松方便地完成与各种软硬件的连接,更能提供强大的数据处理能力,并将分析结果有效地显示给用户。
此外,NI还提供了许多其它交互式的测量工具和系统管理软件工具,例如连接设计与测试的交互式软件SignalExpress、基于ANSI-C语言的LabWindows/CVI、支持微软Visual Studio的Measurement Studio等等,这些软件均可满足客户对高性能应用的需求。
拥有了功能强大的软件,您就可以在仪器中创建智能性和决策功能,从而发挥虚拟仪器技术在测试应用中的强大优势。
2.模块化的I/O硬件面对如今日益复杂的测试测量应用,NI提供了全方位的软硬件解决方案。
无论您是使用PCI, PXI, PCMCIA, USB或者是IEEE 1394总线,NI都能提供相应的模块化硬件产品,产品种类从数据采集及信号调理、模块化仪器、机器视觉、运动控制、仪器控制、分布式I/O到CAN接口等工业通讯,应有尽有。
NI高性能的硬件产品结合灵活的开发软件,可以为负责测试和设计工作的工程师们创建完全自定义的测量系统,满足各种灵活独特的应用需求。
5)虚拟仪器(NI ELVIS)基础实验[实验目的]1.了解虚拟仪器概念2.学习NI ELVIS软面板仪器的使用,并进行实际测量3.了解G语言,LabVIEW编程初步[实验原理]一.虚拟仪器简介1.软件即仪器虚拟仪器(Virtual Instrument,简称VI)是基于计算机的软硬件测试平台。
虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。
20世纪80年代,随着计算机技术的发展,个人电脑可以带有多个扩展槽,就出现了插在计算机里的数据采集卡。
它可以进行一些简单的数据采集,数据的后处理由计算机软件完成,这就是虚拟仪器技术的雏形。
1986年,美国National Instruments公司(简称NI公司)提出了“软件即仪器”的口号,推出了NI-LabVIEW开发和运行程序平台,以直观的流程图编程风格为特点,开启了虚拟仪器的先河。
2.与传统仪器比较虚拟仪器∙使用者定义功能∙软件定义的界面∙网络/互联网的连接传统仪器∙制造商定义功能∙固定的界面∙有限的扩展功能3.LabVIEW图形化开发环境LabVIEW是一种图形化的编程语言和开发环境。
它功能强大且灵活,包含内容丰富的数据采集、分析、显示和存储工具。
LabVIEW用于实现对实际物理量的采集、分析和表达,利用它可以方便快捷地建立自己的虚拟仪器。
以LabVIEW为代表的图形化程序语言,又称为G语言。
使用这种语言编程时,基本上不需要编写程序代码,而是“绘制”程序流程图。
LabVIEW与虚拟仪器有着紧密联系,在LabVIEW中开发的程序都被称为VI(或虚拟仪器),其扩展名为vi。
VI包括三个部分:前面板(Front Panel)、程序框图(Block Diagram)和图标/连接器(Icon and Connector Pane)。
程序前面板用于设置输入数值和观察输出量,用于模拟真实仪表的前面板。
在程序前面板上,输入量称为控制器(Control),输出量称为显示器(Indicator)。
基于LabVIEW的数据采集与处理技术LabVIEW是一种图形化编程环境,被广泛应用于数据采集与处理领域。
本文将介绍基于LabVIEW的数据采集与处理技术,包括其原理、应用和发展趋势。
一、LabVIEW的原理LabVIEW是National Instruments(NI)公司开发的一种用于数据采集、控制、测量和分析的编程工具。
它采用图形化编程语言,即通过连接图形化的“节点”(也称为虚拟仪器或VI)来构建程序。
LabVIEW的程序由一系列的节点组成,每个节点代表一个操作或函数。
用户可以通过拖拽和连接这些节点来实现数据采集和处理。
这种图形化的编程方式使得非专业程序员也能够很容易地使用LabVIEW进行数据采集和处理。
二、LabVIEW的应用1. 数据采集LabVIEW提供了丰富的数据采集模块,可以通过各种方式获取不同类型的数据。
它支持各种传感器和仪器,包括温度传感器、压力传感器、光电传感器等。
通过连接这些传感器和仪器,LabVIEW可以实时采集并显示数据。
2. 数据处理LabVIEW提供了强大的数据处理功能,可以对采集到的数据进行各种处理和分析。
它支持数学运算、滤波、插值、统计分析等。
用户可以根据需要对数据进行处理,从而得到更有用的结果。
3. 控制系统LabVIEW可以用于构建控制系统,实现对实验室设备或生产设备的控制。
它支持PID控制算法、状态机等控制方法,用户可以根据需要设计和调整控制策略。
4. 图形化界面LabVIEW提供了友好的图形化界面设计工具,用户可以通过拖拽和连接各种控件来创建自定义的界面。
这样,用户不仅可以方便地实现数据采集和处理,还可以将结果以直观的方式显示给用户。
三、LabVIEW数据采集与处理技术的发展趋势1. 高性能硬件支持随着计算机硬件的不断发展,LabVIEW可以利用更强大的计算能力进行数据采集和处理。
现在已经出现了一些基于FPGA(现场可编程逻辑门阵列)的硬件,使得LabVIEW可以实现更高的数据采集速率和处理能力。