最新方差分析实例
- 格式:doc
- 大小:85.97 KB
- 文档页数:4
让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异?1、确定类型由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。
2、用方差分析方法对三个总体平均数差异进行综合性地F检验检验步骤如下:第一步,提出假设:第二步,计算F检验统计量的值:因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。
①根据表6。
4的数据计算各种平方和为:总平方和:组间平方和:区组平方和:误差平方和:②计算自由度总自由度:组间自由度:区组自由度 :误差自由度:③计算方差组间方差:区组方差:误差方差:④计算F值第三步,统计决断根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的值为,即P(F 〉10.9)〈0.01,样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。
3、用q检验法对逐对总体平均数差异进行检验检验步骤如下:第一步,提出假设:第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即:以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示:第三步,统计决断为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为:A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3.根据,得到当a=2时,q检验的临界值为;当a=3时,q检验的临界值为;将表(6。
方差分析案例方差分析(Analysis of Variance, ANOVA)是一种统计方法,用于检验三个或更多样本均值之间的差异是否具有统计学意义。
它广泛应用于社会科学、生物科学、工程学等领域。
下面是一个方差分析的案例,展示了如何使用ANOVA来分析数据。
假设我们想要研究不同教学方法对学生考试成绩的影响。
我们选择了三种不同的教学方法:传统教学法、项目式学习和翻转课堂。
每种方法分别应用于三组学生,每组有20名学生。
在教学结束后,我们收集了所有学生的考试成绩。
首先,我们需要收集数据。
对于每种教学方法,我们记录下每名学生的考试成绩。
这些数据将被用来进行方差分析。
接下来,我们使用统计软件进行ANOVA测试。
在软件中,我们将考试成绩作为因变量输入,教学方法作为自变量输入。
软件将计算出F值和对应的P值。
F值是方差分析中的关键统计量,它反映了不同组间(这里是教学方法)的方差与组内(学生成绩)的方差之间的比例。
如果F值显著大于1,并且对应的P值小于我们设定的显著性水平(通常是0.05),那么我们就可以拒绝原假设,即不同教学方法之间存在显著差异。
假设我们的ANOVA结果显示F值为5.3,P值为0.003。
这意味着我们有足够的证据拒绝原假设,认为至少有一种教学方法与其他方法相比在提高学生考试成绩方面有显著差异。
为了进一步探究哪些教学方法之间存在显著差异,我们可能需要进行事后多重比较测试。
常用的事后测试方法包括Tukey HSD(Honest Significant Difference)测试、Bonferroni校正等。
这些测试可以帮助我们确定哪些特定的教学方法组合之间存在显著差异。
最后,我们将分析结果整理成报告,包括数据收集、分析方法、ANOVA 结果、事后测试结果以及结论。
报告中会详细说明不同教学方法对学生考试成绩的具体影响,并提出可能的解释和建议。
通过这个案例,我们可以看到方差分析是一种强大的工具,可以帮助我们理解不同因素如何影响结果,并为决策提供科学依据。
方差分析举例范文方差分析(Analysis of Variance, ANOVA)是一种用于比较两个或以上样本均值是否存在显著差异的统计方法。
它通过分析变量的方差来推断不同处理条件(或不同组)之间的均值是否差异显著。
下面将给出三个不同领域的方差分析举例。
1.生物学实验:假设我们对一种新药的有效性进行测试,研究对象分为三组,分别服用不同剂量的药物A、B、C。
我们想要知道不同剂量的药物是否对指标变量(例如疼痛程度)产生显著影响。
我们将随机选取若干个人,将他们分配到三组中,并测量他们的疼痛程度。
在完成实验后,我们可以使用方差分析来比较每个组的均值差异是否显著。
如果方差分析结果显示剂量组之间的差异是显著的,那么我们可以得出结论:不同剂量的药物会对疼痛程度产生显著影响。
2.教育研究:假设我们正在比较两种不同的教学方法对学生学习成绩的影响。
一个学校将两个班级随机分配到两个教学组,一组采用传统的讲授式教学方法,另一组采用互动式教学方法。
在教学实验结束后,我们可以通过方差分析来比较两组学生的平均成绩是否有显著差异。
如果方差分析结果显示两个组之间的差异是显著的,那么我们可以得出结论:互动式教学方法对学生成绩的影响较传统教学方法更好。
3.工程研究:假设我们正在评估两种不同材料的耐磨性能。
我们可以将两种材料随机分配到两个实验组,并通过对每个组进行多次磨损实验来测量其耐磨性能。
然后,我们可以使用方差分析来比较两组材料的平均耐磨性能是否有显著差异。
如果方差分析的结果表明两种材料之间的差异是显著的,那么我们可以得出结论:这两种材料的耐磨性能是不同的,其中一种材料更加耐磨。
总结:方差分析是一种用于比较多个组之间平均值差异的有力工具,它可以应用于各个领域。
在生物学实验中,方差分析可以用于比较不同处理条件对一些指标变量的影响;在教育研究中,方差分析可以用于比较不同教学方法对学生成绩的影响;在工程研究中,方差分析可以用于比较不同材料性能的差异。
什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。
单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。
单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。
●水平:因素变化的各种状态或因素变化所分的等级或组别。
●单因素试验:考虑的因素只有一个的试验叫单因素试验。
单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。
下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。
现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。
设各总体服从正态分布,且方差相同。
青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。
假定除抗生素这一因素外,其余的一切条件都相同。
这就是单因素试验。
试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。
即考察抗生素这一因素对这些百分比有无显著影响。
这就是一个典型的单因素试验的方差分析问题。
单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。
本节将借用上面的实例来讨论单因素试验的方差分析问题。
在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。
这些结果是一个随机变量。
表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。
方差分析计算实例一、单因素方差分析二、双因素方差分析一、单因素方差分析(一)完全随机试验设计1、重复数相同(1)实例:不同浇水量对某蔬菜产量的影响试验,设置5个浇水量A、B、C、D、E;每个浇水量设置四个小区,小区采用完全随机试验设计;各小区产量见下表(单位:kg)(2)基本参数计算处理数k=5,重复数n=4220.0250.9750.485,11.143χχ==(3)方差同质性检验2220.0250.975,c χχχ≤≤五个处理的方差无显著差异平方和计算:(4)方差分析自由度计算:方差分析表:22222222/()/()(45.2869.5288.55108.48130.12)/4441.95/(45)1089.89t i ij SS T n x nk =−=++++−⨯=∑∑1107.051089.8917.16e T t SS SS SS =−=−=222222()/()16.6115.9531.11441.95/(45)1107.05T ijij SS x x nk =−=+++−⨯=∑∑1514t df k =−=−=(1)5(41)15e df k n =−=−=145119T df nk =−=⨯−=变异来源平方和自由度均方F 值F 0.05处理间1089.894272.47238.213.056误差17.1615 1.14总变异1107.0519F 值大于F 0.05,五个处理蔬菜产量平均值差异显著。
将五个处理小区产量平均值从大到小排列,采用字母标记法表示各均值间差异是否显著,均值间的差值大于LSD ,差异显著,标记不同的字母;均值间的差值小于LSD ,差异不显著,标记相同的字母。
标记字母时,第一个值标a ,用最大值减第二个值,差值若大于LSD 则标b ,差值若小于LSD 则标a ,再以最大值减第三个值,直到出现大于LSD 值,标记b ,再以该值为标准向上比较,若差值大于LSD 就停止比较,若小于LSD 值则在a 后面加上b ,直至出现差值大于LSD 就停止比较;再以最上面标记b 的均值为标准在向下比较;直到所有的平均值都标记字母。
百度文库
1 单因素方差分析
步骤:
1.如图,进入单因素方差分析。
2.将“销售额”选入,“广告形式”选入。
3.将中的“广告形式”换成“地区”。
结果呈现:
表一广告形式对销售额的单因素方差分析结果
表二地区对销售额的单因素方差分析结果
分析:
1.如果仅仅考虑广告形式单个因素对销售额的影响,从“广告形式对销售额的单因素方差
分析结果”可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同广告形式对销售额产生了显著的影响。
2.如果仅仅考虑地区单个因素对销售额的影响,从“地区对销售额的单因素方差分析结果”
可以看出,统计量F对应的概率P-值为0.000,小于显著性水平a=0.05(a=0.01),所以,拒绝原假设,即,认为不同地区对销售额产生了显著的影响。
3. 从上述两表可以看出,“广告形式对销售额的单因素方差分析结果”中的F值为13.483,“地区对销售额的单因素方差分析结果”中的F值为
4.062,而13.483>4.062,所以,如果从单因素考虑,广告形式对销售额的影响较地区有更明显的作用。
方差的实际应用例子
以下是 6 条关于方差实际应用例子:
1. 嘿,你知道吗?在股票投资里方差可重要啦!就好比你选股票,有些股票波动那叫一个大呀,一会儿涨得超高,一会儿又跌得很惨,这波动的大小不就是方差在起作用嘛!你想想看,要是方差小的股票,是不是感觉会稳当一些呢?
2. 哎呀呀,学校的考试成绩也和方差有关系哟!比如说一个班级,成绩特别稳定,大家分数都差不多,那这时方差就小。
但要是有的同学考接近满分,有的同学却不及格,那方差可就大啦!这就好像一条平静的小河和波涛汹涌的大海,这比喻形象吧?
3. 你知道吗,方差在质量控制里也是关键呢!比如生产零件,要是方差小,就说明生产的零件质量都很接近,很稳定。
但要是方差大,那可能就会出现很多不合格产品啦!你说这是不是很重要呢?
4. 哇塞,在运动员的训练中也能看到方差的影子呀!像跑步训练,如果运动员每次的成绩相差很小,方差就小,说明状态稳定。
但如果有时候快得惊人,有时候又慢很多,那方差不就大了嘛!这就像开车,平稳行驶和忽快忽慢差别多大呀!
5. 嘿,农业生产也离不开方差呢!比如说种苹果,一棵树上结的苹果大小都差不多,那方差就小。
但要是有的特别大,有的又特别小,那方差肯定就大咯!你说农民伯伯能不关心这个吗?
6. 你想想看,天气预报里头其实也有方差呢!如果每天的温度都很接近,方差小,天气就比较稳定。
但要是今天热得要命,明天又冷得要死,那方差肯定大啦!这不就像心情,时好时坏和一直平和能一样吗?
总之,方差在生活中的好多地方都起着作用呢!真是想不到吧!。
单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。
为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。
第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。
在治疗开始前,研究人员记录了每个患者的收缩压数据。
第一步是对数据进行描述性统计分析。
研究人员计算了每一组的平均值、标准差和样本量。
结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。
研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。
备择假设是至少有一组的平均收缩压不同。
为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。
组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。
组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。
组间方差的计算方法是对所有组的平均值进行方差分析。
我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。
F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。
根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。
假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。
这意味着至少有一组的平均收缩压与其他组有显著差异。
最后一步是进行事后检验。
由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。
常用的事后检验方法包括Tukey HSD检验、Duncan检验等。
综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。
例6.1 测定东北、内蒙古、河北、安徽、贵州5个地区黄鼬冬季针毛的长度,每个地区随机抽取4个样本,测定的结果列于表6-1。
试比较各地区黄鼬针毛长度的差异显著性。
表6-1 不同地区黄鼬冬季针毛长度(单位:mm)
地区东北内蒙古河北安徽贵州合计
1 32.0 29.
2 25.5 23.
3 22.3
2 32.8 27.4 26.1 25.1 22.5
3 31.2 26.3 25.8 25.1 22.9
4 30.4 26.7 26.7 25.
5 23.7
∑x126.4 109.6 104.1 99.0 91.4 530.5
n 4 4 4 4 4 20
x31.60 27.40 26.03 24.75 22.85 26.53 ∑X23997.44 3007.98 2709.99 2453.16 2089.64 14258.21
例6.2 园艺研究所调查了3个品种草莓的维生素C含量(mg/100g),测定结果列于表6-2。
试分析不同品种之间维生素C含量是否有显著性差异。
表6-2 不同品种草莓维生素C含量(单位:mg/100g)
例6.3 研究三种不同日粮对猪日增重的影响,每种日粮饲喂5头猪,三种日粮分别用TR1、TR2、TR3表示。
相关数据如下表所示:
TR1 TR2 TR3
270 290 290
300 250 340
280 280 330
280 290 300
270 280 300 总和 1400 1390 1560 4350
n 5 5 5 15
y280 278 312 290。
“地域”与“抑郁”朱平辉改编自西南财大网(案例分析者刘玲同学)一、案例简介美国人作了一项调查,研究地理位置与患抑郁症之间的关系。
他们选择了60个65岁以上的健康人组成一个样本,其中20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。
对中选的每个人给出了测量抑郁症的一个标准化检验,搜集到表1中的资料,较高的得分表示较高的抑郁症水平。
研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。
这种身体状况的人也选出60个组成样本,同样20个人居住在佛罗里达,20个人居住在纽约、20个人居住在北卡罗来纳。
这个研究记录央视主持人崔永元对外公开其患有抑郁症后,使人们对这种精神疾病有了更多的关注。
通过对以上两个数据集统计分析,你能从中看出什么结论?你对该疾病有什么认识?二、抑郁症的相关知识抑郁症有两种含义,广义的抑郁症包括情感性精神病、抑郁性神经症、反应性抑郁症、更年期抑郁症等;狭义的则仅指情感性精神病抑郁症。
抑郁症在国外是一种十分常见的精神疾病,据报告,其患病率最高竟占人群的10%左右,而且社会经济情况较好的阶层,患病率越高。
世界卫生组织预测,抑郁症将成为21世纪人类的主要杀手。
全世界患有抑郁症的人数在不断增长,而抑郁症患者中有10—15%面临自杀的危险……引起抑郁症的原因有很多,为了了解地理位置对抑郁症是否有影响,我们做如下的案例分析:三、地理位置与患抑郁症之间是否有关系作为对65岁以上的人长期研究的一部分,在纽约洲北部地区的Wentworth医疗中心的社会学专家和内科医生进行了一项研究,以调查地理位置与患抑郁症之间的关系。
选择了60个相当健康的人组成一个样本,其中20人居住在佛罗里达,20人居住在纽约,20人居住在北卡罗米纳。
对中选的人给出了测量抑郁症的一个标准化实验,搜集到表1中的资料,较高的分表示较高的抑郁症水平。
研究的第二部分考虑地理位置与患有慢性病的65岁以上的人患抑郁症之间的关系,这些慢性病诸如关节炎、高血压、心脏失调等。
正交试验设计实例分析正交试验设计是使用正交表来安排多因素、多水平试表验,并采用统计学方法分析实验结果的一种实验设计方法[1]。
对于多因素、多水平的问题,人们一般希望通过若干次的实验找出各因素的主次关系和最优搭配条件,用正交表合理地安排实验,可以省时、省力、省钱,同时又能得到基本满意的实验效果。
因此,这种方法在改进产品质量、优化工艺条件及研发新产品等诸多方面广泛应用。
但是,很多研究人员在使用该方法时,有些细节往往容易被忽视。
作者以姜黄素的提取为例具体阐述这一方法的使用和注意事项。
1.实例:姜黄素是姜黄中的主要活性成分,在优化其提取工艺时,首先应确定正交试验需要考察的因素和水平。
尤本明等[2]考察了三个因素,因素A(作为溶媒的乙醇浓度)、因素 B(溶媒的量)、因素C(渗漉速度),每个因素取三个水平。
试验设计时,一般还应考虑各因素间的交互作用,也就是因素之间的联合作用,这点不可忽视。
根据以往经验可知,本例中因素之间的交互作用可以忽略,故采用 L9(34)正交表来安排试验(见表1)。
该表共有4列,将因素 A 、B 、C 分别安排在正交表的第2、3、4列上,第1列为空白列。
在试验前,各因素及水平在正交表中的位置必须交待清楚,以确定各次试验的条件,避免不必要的错误。
1 正交试验设计与结果2 .直观分析法:表1中的 K1、K2、K3分别表示在各因素各水平下姜黄素提取量的总和,K分别表示在各因素各水平下姜黄素提取量的平均值。
由于有时会遇到各因素水平数不等的情况,因此,一般用提取量的平均值大小来反映同一个因素的各个不同水平对试验结果(提取量)影响的大小,并以此确定该因素应取的最佳水平。
用同一因素各水平下平均提取量的极差R(极差=平均提取量的最大值-平均提取量的最小值)来反映各因素的水平变动对试验结果(提取量)影响的大小。
极差大就表示该因素的水平变动对试验结果的影响大,极差小就表示该因素的水平变动对试验结果的影响小。
方差分析实例
案例分析一:
方差分析实例
某化工厂化验室检验过程中要确定温度(记为因子A)对检验结果的影响。
现让同一个检验人员从同一批样品中随机抽取三个样品,用同一种测量方法、同一台仪器,在四个温度水平(记为A1、A2、A3、A4)下对三个样品主要成分进行测量,数据如下表,其中,含量的单位为%,温度单位为℃,测定结果的显著性水平α=0.05。
温度和含量的数据分析图含量(%)
从数据图可清晰得知,温度对样品中主要成分的含量的测量结果有着显著的影响,即温度越高,样品含量越大。
为了减少决策风险,对于
该结论还需进行方差分析。
(二)组间方差齐性检验
1、计算A1~A4的极差R1~R4,
2、平均极差R ,
3、根据α=0.05,m=3,查“均值-极差控制图系数表”得D3、D4,
4、计算上临界值:D4*R;下临界值:D3*R
5、验证R1~R4是否在上下临界值直间,即D3R﹤R1,R2,R3,R4﹤D4R,则证明每个水平内样品的测定数据方差是一致的。
(三)计算因子A在每一温度水平下不同样本测定数据的和Ti及总和Tn
(四)依次计算平方和Sr、S A、Se及自由度fr、f A、fe
(五)计算各均方及F比值并列出方差分析表
F=105.685
(六)根据F=105.685,对于给定的显著性水平α=0.05,查F 分布表F1-α(F A,Fe),可得1-α=0.95,F0.95(3,8)=4.07,F﹥F0.95(3,8),因此,温度对含量测定结果的影响是显著的。
方差分析spss实例操作(2013-09-18 13:45:02)转载▼分类:数据挖掘标签:实例含量总胆固醇spss18方差分析方差分析方差分析的应用条件各样本是相互独立的随机样本;ν各组样本均来自正态总体;ν各组的总体方差相等ν各单元格样本含量比较大(ν>30)且各单元格样本含量相同的情况下,方差是否相等对结果影响几乎没有方差分析的基本思想全部数据的总变异分成多个部分(离均差平方和SS)ν均方MS=SS/dfν各部分变异的MS与随机误差的MS做比,形成F统计量ν注意:H0为各组总体均数不全相等ν完全随机设计方差分析ν多组样本均数两两比较ν随机区组设计方差分析ν析因设计方差分析ν例题:ν某人研究北京机关工作人员血脂水平,随机抽取不同年龄组男性受试者各10名,检测他们的总胆固醇(TC)的含量(mmol/L),其结果如下:ν青年组5.00 4.85 4.93 5.18 4.95 4.78 5.18 4.89 5.07 5.21ν中年组5.12 5.13 4.89 5.20 4.99 5.14 5.16 4.98 5.16 5.25ν老年组5.24 5.26 5.23 5.10 5.31 5.23 5.21 4.98 5.15 5.19ν请问:三个年龄组的总胆固醇平均含量之间的差别是否具有统计学意义?ν完全随机设计方差分析库结构ν分组检验正态性1、将数据粘贴到excel分组总胆固醇1 51 4.851 4.931 5.181 4.951 4.781 5.181 4.891 5.071 5.212 5.122 5.132 4.892 5.22 4.992 5.142 5.162 4.982 5.162 5.253 5.243 5.263 5.233 5.13 5.313 5.233 5.213 4.983 5.153 5.192、打开SPSS 18,打开数据,点击【分析】【比较均值】【单因素ANOVA】【因变量列表】选【总胆固醇】【因子】选【分组】点击【两两比较】勾选【LSD】【S-N-K】【Dunnett】【继续】点击【选项】勾选【方差同质性检验】点击【继续】【确定】经检验,F=5.897,P=0.008,在检验水准为0.05的水平下,差异有统计学意义,拒绝H0,接受H1,可以认为三组的TC水平不全相等============================例题:ν研究者欲比较生物蛋白粉饲料、血浆蛋白粉饲料和普通饲料喂养断奶仔猪的增重效果。
让4名学生前后做3份测验卷,得到如下表的分数,运用方差分析法可以推断分析的问题是:3份测验卷测试的效果是否有显著性差异?
1、确定类型
由于4名学生前后做3份试卷,是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本。
2、用方差分析方法对三个总体平均数差异进行综合性地F检验
检验步骤如下:
第一步,提出假设:
第二步,计算F检验统计量的值:
因为是同一组被试前后参加三次考试,4位学生的考试成绩可看成是从同一总体中抽出的4个区组,它们在三个测验上的得分是相关样本,所以可将区组间的个别差异从组内差异中分离出来,剩下的是实验误差,这样就可以选择公式(6.6)组间方差与误差方差的F比值来检验三个测验卷的总体平均数差异的显著性。
①根据表6.4的数据计算各种平方和为:
总平方和:
组间平方和:
区组平方和:
误差平方和:
②计算自由度
总自由度:
组间自由度:
区组自由度:
误差自由度:
③计算方差
组间方差:
区组方差:
误差方差:
④计算F值
第三步,统计决断
根据,α=0.01,查F值表,得到,而实际计算的F检验统计量的
值为,即P(F >10.9)<0.01,
样本统计量的值落在了拒绝域内,所以拒绝零假设,接受备择假设,即三个测验中至少有两个总体平均数不相等。
3、用q检验法对逐对总体平均数差异进行检验
检验步骤如下:
第一步,提出假设:
第二步,因为是多个相关样本,所以选择公式(6.8)计算q检验统计量的值:
在为真的条件下,将一次样本的有关数据及代入上式中,得到A和B两组的平均数之差的q值,即:
以此类推,就可得到每对样本平均数之间差异比较的q值,如下表所示:
第三步,统计决断
为了进行统计决断,在本例中,将A,B,C共3组学生英语单词测验成绩的等级排列为:
A与C之间和B与C之间包含有1,2两个组,a=2;A与B之间包含有1,2,3三个组,a=3。
根据,得到当a=2时,q检验的临界值为
;
当a=3时,q检验的临界值为;将表(6.5)中的q检验统计量的值与q临界值进行比较,得到表(6.6)中的3次测验成绩各对平均数之间的比较结果:表6.6 3次测试各对样本平均数之差q值的比较结果
*表示在α=0.05显著性水平上有差异,**表示在α=0.01显著性水平上有差异)
从表中可以看出,三个测验中每两个之间的总体平均数都不相等。
因为是同一组被试前后参加三次考试,所得到的样本是相关样本,这些样本所属总体的方差基本相等,所以不需要对两个相关样本所属总体的方差进行齐性检验。
通过以上推断分析,我们可以知道:三份测验卷测试的效果有显著性差异,并且每两份测验卷测试的效果之间都有显著性差异。
1、最困难的事就是认识自己。
22.2.222.22.202222:3122:31:47Feb-2222:31
2、自知之明是最难得的知识。
二〇二二年二月二十二日2022年2月22日星期二
3、越是无能的人,越喜欢挑剔别人。
22:312.22.202222:312.22.202222:3122:31:472.22.202222:312.22.2022
4、与肝胆人共事,无字句处读书。
2.22.20222.22.202222:3122:3122:31:4722:31:47
5、三军可夺帅也。
Tuesday, February 22, 2022February 22Tuesday, February 22, 20222/22/2022
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
10时31分10时31分22-Feb-222.22.2022
7、人生就是学校。
22.2.2222.2.2222.2.22。
2022
年2月22日星期二二〇二二年二月二十二日 8、你让爱生命吗,那么不要浪费时间。
22:3122:31:472.22.2022Tuesday, February 22, 2022
亲爱的用户: 烟雨江南,画屏如展。
在那桃花盛开的地方,在这醉
人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。