一次函数每日一练(一),每周一练(二)及答案-精选教育文档
- 格式:doc
- 大小:59.00 KB
- 文档页数:7
一次函数练习一、选择题:1、下列函数中,是正比例函数的是( )A 、y=2π B 、y=2x C 、y=2x D 、y=2π2、在函数y=23x +-,y=22x +,y=x+8中,一次函数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、函数y=(m+1)m x +2是一次函数, m 的值为( )A 、m=±1B 、m=-1C 、m=1D 、m≠-14、已知直线y=2x 与直线y=kx+3互相平行,则k 的值为 ( )A 、k=-2B 、k=2C 、k=±2D 、无法确定k 的值5、一次函数y=kx+b,若k+b=1,则它的图象必经过点 ( )A 、(-1,-1)B 、(-1,1)C 、(1,-1)D 、(1,1)6、下列各组函数中,与y 轴的交点相同的是( )A 、y=5x 与y=2x+3B 、y=-2x+4与y=-2x-4C 、y=2x +3与y=-2x+3 D 、y=4x-1与y=x+1 7、已知函数y=(2m +2)x ,y 随x 增大而( )A 、增大B 、减小C 、与m 有关D 、无法确定8、若一次函数y=(1-2m)x+3的图象经过A (1x ,1y )和B(2x ,2y ),当1x <2x 时,1y <2y ,则m 的取值范围是( )A 、m <0B 、m >0C 、m <12 D 、m >12 9、已知直线y=a c x b b+中,若ab >0,ac <0,那么这条直线不经过( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限10、直线y=-2x+b 与两坐标轴围成的三角形的面积为4,则b 的值为( )A 、4B 、-4C 、±4D 、±2二、填空题:1、一次函数y=2x+6的图象与y 轴相交,则交点坐标为________2、已知一次函数y=kx+b 的图象经过(-1,1)、(2,3)两点,则这个一次函数的关系式为______3、将直线y=3x-1向上平移3个单位,得直线______________4、一次函数的图象经过点P (1,3),且y 随x 的增大而增大,写出一个满足条件的函数关系式______________5、已知点A (1,a )在直线y=-2x+3上,则a=________6、已知点P 在直线y=143x -+上,且点P 到y 轴的距离等于3个单位长度,则点P 的坐标为_________. 7、某个一次函数y=kx+b 的图象位置大致如下图(1)所示,则k 的取值范围为_____,b 的取值范围为________.(图1) (图2)8、如图(2),一次函数y=x+5的图象经过P(a,b)和Q (c,d ),则a(c-d)-b(c-d)的值为_______.9、已知y 是x 的一次函数,下表中列出了部分对应值,则m=_________.10、点A (2,a )在一次函数y=-x+3的图象上,且一次函数的图象与y 轴的交点为B ,则△AOB 的面积为_________.三、解答题:1、直线1y =kx+b 与y 轴的交点和直线2y =2x+3与y 轴的交点相同,直线1y 与x 轴的交点和直线2y 与x 轴的交点关于原点对称,求:直线1y 的关系式.2、已知y=1y +2y ,1y 与x+2成正比,2y 是x+1的2倍,并且当x=0时,y=4,试求函数y 与x 的关系式.3、已知直线y=-x+4与直线y=2x-2相交于点A,且直线y=-x+4与y 轴相交于点B, 直线y=2x-2与x 轴相交于点C ,求四边形ABOC 的面积.4、已知一次函数y=kx+b的自变量x的取值范围是-1≤x≤5,相对应的函数值范围为-6≤y≤0,求此函数的关系式.5、为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。
一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。
13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。
方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。
22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。
一次函数专项训练及答案一、选择题1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .22B .2C .5D .3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -, 当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.5.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x 是反比例函数,不符合题意;(4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.6.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-,∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.7.一次函数y mx n =-+( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( )A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.11.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!12.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.13.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.14.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.15.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( )A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大, 310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.19.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.20.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.。
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
巩固练习一、选择题:时y=8,那么y与x之的函系式( )间数关为并x=1,1.已知y与x+3成正比例,且(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+3经过2.若直线y=kx+b一、二、四象限,直经过则线y=bx+k不( )(A)一象限 (B)二象限 (C)三象限 (D)四象限与两标轴围积3.直线y=-2x+4坐成的三角形的面是( )(A)4 (B)6 (C)8 (D)16间数别为与质x(kg)之的函解析式分4.若甲、乙簧的度两弹长y(cm)所挂物体量y=k1x+a1和y=k2x+a2,如,所挂物体量均图质为时弹长为y1,乙簧2kg,甲簧弹长为y2,则y1与y2的大小系( )关为(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定图画标内有则将数y=bx+a与y=ax+b的象在同一平面直角坐系,5.设b>a,一次函个图个为值4中的一正确的是( )一组a,b的取,使得下列经过则线y=bx+k不第( )象限.经过6.若直线y=kx+b一、二、四象限,直(A)一 (B)二 (C)三 (D)四么这个数7.一次函数y=kx+2点(经过1,1),那一次函( )减(A)y随x的增大而增大 (B)y随x的增大而小图经过D)像不第二象限图经过(C)像原点 (为实数线y=x+2m与y=-x+4的交点不可能在( )8.无论m何,直(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限图线( ).9.要得到的像,可把直个单个单B)向右平移4位(A)向左平移4位 (个单个单D)向下平移4位(C)向上平移4位 (为数y与x成正比例,则m的值为10.若函数y=(m-5)x+(4m+1)x2(m常)中的( )(A)(B)m>5 (C)(D)m=5值围11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取范是( ).(A)(B(C)k>1 (D)k>1或线它与两标轴围积为5,的直可以作这样线12.点过P(-1,3)直,使坐成的三角形面( )条C)2 (条D)1条条B)3 ((A)4 (则数a的取范是( )满y<10,常值围13.当-1≤x≤2,函时数y=ax+6足(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<2为轴P,使△AOP等腰三角形,14.在直角坐系中,已知标A(1,1),在x上确定点则条P共有( )符合件的点(A)1 (个C)3 (个D)4个个B)2 (为数当线y=x-3与标横标数称为设k整.直15.在直角坐系中,坐都是整的点整点,值为时k的可以取( )y=kx+k的交点整点,个C)6个个B)4 ((A)2 (两个实kb≠0),在一次函数y=kx+b 16.若k、b是一元二次方程x2+px-│q│=0的根(中,y随x的增大而小,一次函的像一定( )减则数图经过(A)第1、2、4象限 (B)第1、2、3象限(C)第2、3、4象限 (D)第1、3、4象限二、填空题值围________.时y的取范是1.已知一次函数y=-6x+1,当-3≤x≤1,值2.已知一次函数y=(m-2)x+m-3的像第一,第三,第四象限,图经过则m的取范围________.是3.某一次函的像点(数图经过-1,2),且函数y 的值随x 的增大而小,出一减请你写符合上述件的函系式:个条数关_________.4.已知直线y=-2x+m 不第三象限,经过则m 的取范是值围_________.5.函数y=-3x+2的像上存在点图P ,使得P 到x 的距离等于轴3, 点则P 的坐标为__________.6.点过P (8,2)且直与线y=x+1平行的一次函解析式数为_________.7.与y=-2x+3的像的交点在第图_________象限.8.若一次函数y=kx+b ,当-3≤x≤1,的时对应y 值为1≤y≤9, 一次函的解析式则数为________.三、解答题1.已知一次函数y=ax+b 的象点图经过A (2,0)与B (0,4).(1)求一次函数的解析式,在直角坐系出函的象;(并标内画这个数图2)如果(1)中所求的函数y 的值在-4≤y≤4范,求相的围内应y 的在什范.值么围内2.已知y=p+z ,里这p 是一常,个数z 与x 成正比例,且x=2,时y=1;x=3,时y=-1.(1)出写y 与x 之的函系式;间数关(2)如果x 的取范是值围1≤x≤4,求y 的取范.值围3.小明同自行去郊外春游,下表示他离家的距离学骑车图y (千米)所用的与时间x (小)之系的函象.(时间关数图1)根据象回答:小明到离家最的地方需几小此图达远时时离家多(远2)求小明出半小离家多(发两个时远3) 求小明出多距家发长时间12千米3.已知一次函的象,交数图x 于轴A (-6,0),交正比例函的象于点数图B ,且点B 在第三象限,的坐它横标为-2,△AOB 的面积为6平方位,单 求正比例函和一次函解析式.数4.如,一束光图线从y 上的点轴A (0,1)出,发经过x 上点轴C 反射后点经过B (3,3),求光线从A 点到B 点的路的.经过线长5.已知:如一次函图数的象图与x 、轴y 分交于轴别A 、B 点,点两过C (4,0)作AB 的垂交线AB 于点E ,交y 于点轴D ,求点D 、E 的坐.标个个涨个y,不料甲商品每价元,乙购买x,乙商品13.某中用学预计1500元甲商品尽购买个数预减10,金多用个总额29元.又若甲个涨1元,管甲商品的比定少商品每价并购买数预数5,那甲、乙商品支个么买两商品每只价个涨1元,且甲商品的量只比定少总额付的金是元.关(1)求x、y的系式;与预计购买个数205,但小于(2)若甲商品的的预计购买个数2倍乙商品的的和大于值210,求x,y的.时费8 14.某市了用水,定:每每月用水量不超最低限量为节约规户过am3,只付基本费损费过额损费c元(c≤5);若用水量超过am3时,除了付同上的基本和耗外,超部元和定耗额费分每1m3付b元的超.份份份费某市一家庭今年一月、二月和三月的用水量和支付用如下表所示:用水量交水费(元)(m3)一月份99二月份1519三月2233数a、b、c.根据上表的表格中的据,求答案:1.B 2.B 3.A 4.A两线为1,a+b),5.B 提示:由方程直的交点(横标2≠1,对图C中交点坐是横标负数图A不;而图A中交点坐是,故数a+b,纵标a,小于b的,不等于故图C不;对图D 中交点坐是大于对选B.故图D不;故对线y=bx+k,6.B 提示:∵直线y=kx+b经过于直图经过应选B.像不第二象限,故经过1,1),∴1=k+2,∴y=-x+2,7.B 提示:∵y=kx+2(减B正确.∵k=-1<0,∴y随x的增大而小,故∵y=-x+2不是正比例函,∴其像不原点,故错误数图经过C.图经过D.错误∵k<0,b= 2>0,∴其像第二象限,故图间关8.C 9.D 提示:根据y=kx+b的像之的系可知,图个单的像.将的像向下平移图4位就可得到10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,应选C.11.B 12.C 13.B ,∴①若a+b+c≠0,则;②若a+b+c=0,则,过∴当p=2,时y=px+q第一、二、三象限;过当p=-1,时y=px+p第二、三、四象限,过上所述,综y=px+p一定第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C题=p2+4│q│>0,20.A 提示:依意,△数图经一次函数y=kx+b中,y随x的增大而减的像一定过选A.一、二、四象限,二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.图况虑4.m≥0.提示:应将y=-2x+m的像的可能情考周全.纵标为3或-3轴3,∴点P的坐53).提示:∵点P到x的距离等于时P的坐标为3-3).时当y=-3,当y=3,纵标应纵标绝对值为3,故点P的坐轴3”就是点P的坐的提示:“点P到x的距离等于两种况有情.设数为y=kx+b.6.y=x-6.提示:所求一次函的解析式∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程两数标为∴函的交点坐89.y=2x+7或y=-2x+3 1011.据意,有题,∴.因此,B 、C 城市每天的通次两个间电话话数为T BC三、1.(1)由题∴一函的解析式:这个镒数为y=-2x+4( 函象略).数图 (2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k≠0)常,为数则y=p+kx .将x=2,y=1;x=3,y=-1分代入别y=p+kx ,k=-2,p=5,∴y 与x 之的函系是间数关y=-2x+5;(2)∵1≤x≤4,把x 1=1,x 2=4分代入别y=-2x+5,得y 1=3,y 2=-3.∴当1≤x≤4,时-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)一次函设数为y=kx+b ,表中的据任取取,将数两∴一次函系式数关为y=+.(2)当x=,时y=×+=.∵77≠,∴不配套.4.(1)由象可知小明到离家最的地方需图达远3小;此,他离家时时30千米.(2)直设线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x≤3).当x=,时y=(千米)答:出半小,小明离家发两个时22.5千米.(3)设过E 、F 点的直解析式两线为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x≤6)过A 、B 点的直解析式两线为y=k 3x ,∵B (1,15),∴y=15x .(0≤x≤1),分令别y=12,得),时).时答:小明出小发距家时12千米.5.正比例函设数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,坐横标为-2,设B (-2,y B ),其中y B <0,∵S △AOB =6B │=6,∴y B =-2,把点B (-2,-2)代入正比例函数y=kx , 得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b∴y=x ,即所求.6.延长BC 交x 于轴D ,作DE⊥y ,轴BE⊥x ,交于轴E .先△证AOC≌△DOC ,∴OD=OA= 1,CA=CD ,∴.7.当x≥1,y≥1,时y=-x+3;当x≥1,y<1,时y=x-1;当x<1,y≥1,时y=x+1;当x< 1,y<1,时y=-x+1.由此知,曲成的形是正方形,其线围图积为2.8.∵点A 、B 分是直别线x 和轴y 交点,轴∴A(-3,0),B(0标1,0)由勾股定理得∵点C坐(点标为x,0).设D的坐(时侧x>1,(1)点当D在C点右,即∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,8x2-22x+5=0,经检验x1x2∴x1x2:题 D 点坐标为0).∵意,∴舍去,∴两数为y=kx+b象设图过B、D点的一次函解析式∴所求一次函数为(2)若点D在点C左侧则x<1,可△证ABC∽△ADB,,∴ ②∴8x2-18x-5=0,∴x1=-,x2=,经检验x1=,x2=,都是方程②的根.∵x 2意舍去,∴题x 1D 点坐(标为0),∴象图过B 、D (0)点的一次函解析式两数为上所述,足意的一次函综满题数为9.直线与x 交于点轴A (6,0),与y 交于点轴B (0,-3),∴OA=6,OB=3,∵OA⊥OB ,CD⊥AB ,∴∠ODC=∠OAB ,∴cot∠ODC=cot∠OAB∴.∴点D 的坐(标为0,8),设过CD 的直解析式线为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8∴点E 的坐标为10.把x=0,y=0分代入别∴A 、B 点的坐分(两标别为-3,0),(0,4) .∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ′⊥AB 于Q′(如),图当QQ′=QP ,时⊙Q 直与线AB 相切.由Rt△BQQ′∽Rt△BAO ,得∴当,⊙Q 直与线AB 相切.11.(1)y=200x+74000,10≤x≤30况(2)三方案,依次种为x=28,29,30的情.设费为x元,∵x>7104>400,12.稿∴x-f(x)=x-x(1-20%)20%(1-30%).这笔费8000元.∴(元).答:稿是13.(1)甲、乙商品的价分设预计购买单别为a元和b元,则计划ax+by=1500,①.原是:并减10情形,得:个单涨单涨1元,且甲商品少由甲商品价上元,乙商品价上(a+)(x-10)+(b+1)y=1529,②个价上仍是单涨1元的情形单涨1元,而量比少再由甲商品价上数预计数5,乙商品得:(a+1)(x-5)+(b+1)y=1563.5, ③.并简x+2y=186.-⑤×2化,得题205<2x+y<210及x+2y=186,得(2)依意有:从x=76.数y=55,而得由于y是整,得设为xm3,支付水费为y元.则14.每月用水量从份费13元,题0<c≤5,∴0<8+c≤13.表中可知,第二、三月的水均大于由意知:故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别b=2,2a=c+19,⑤.份过设9>a,再分析一月的用水量是否超最低限量,不妨将x=9代入②,得9=8+2(9-a)+c,即2a=c+17, ⑥.份应选,则8+c=9,则月的付款方式①式与9≤a,一⑥⑤矛盾.故∴c=1代入⑤式得,a=10.发D市的机器台数题设A市、B市、C市往上得综a=10,b=2,c=1. (1)由知,分x,x,18-2x,发E市的机器台分数别为10-x,10-x,2x-10.往于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整).数随x的增加而少的,减由上式可知,W是着时W取到最小值10000元;所以当x=9,时W取到最大值13200元.当x=5,数别为x,y,18-x-y,发D市的机器台分(2)由知,题设A市、B市、C市往数别10-x,10-y,x+y-10,往发E市的机器台分是于是W=200x+800(10-x)+300y+700(10-y)+ 400(19-x-y)+500(x+y-10)=-500x-300y-17200.为数∴W=-500x-300y+17200x,y整).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.时W=9800.所以,W的最小值为9800.当x= 10,y=8,又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.时W=14200,当x=0,y=10,所以,W的最大值为14200.。
一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。
1.已知函数f(x) = ax + b中,a为正数,b为负数。
当x = 2时,f(x) = 5,求a和b的值。
解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。
我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。
解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。
解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。
我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。
解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数试题及答案一、选择题1. 下列哪个选项不是一次函数的表达式?A. y = 3x + 5B. y = x^2 + 1C. y = 2x - 3D. y = -4x答案:B2. 一次函数y = 2x + 1的斜率是:A. 1B. 2C. 3D. -1答案:B3. 如果一次函数y = kx + b的图象经过点(1, 5)和(2, 9),那么k 的值是:A. 2B. 3C. 4D. 5答案:C二、填空题4. 一次函数y = 4x + 3与x轴的交点坐标是________。
答案:(-3/4, 0)5. 已知一次函数y = -x + 2,当x = 0时,y的值为________。
答案:26. 一次函数y = 3x + 7的图象在y轴上的截距是________。
答案:7三、解答题7. 已知一次函数y = kx + b,其中k ≠ 0,且该函数图象经过点A(-1, 6)和点B(2, -3)。
求k和b的值。
解:将点A(-1, 6)代入y = kx + b得:6 = -k + b ①将点B(2, -3)代入y = kx + b得:-3 = 2k + b ②由①②两式联立解得:k = -3,b = 98. 一次函数y = 5x - 4的图象在x轴上的截距是多少?解:令y = 0,解得:5x - 4 = 0x = 4/5因此,图象在x轴上的截距是4/5。
9. 已知一次函数y = 2x + 1,求当y = 0时,x的值。
解:令y = 0,解得:2x + 1 = 0x = -1/2四、应用题10. 某公司生产一种产品,每件产品的成本为c元,该公司计划以每件产品p元的价格出售。
已知该公司的总成本为C万元,总收入为P万元,且C = 100c,P = 150p。
如果该公司希望获得的利润为20万元,求每件产品的成本c。
解:利润 = 总收入 - 总成本20 = 150p - 100c又因为p = c + 利润/件产品,代入上式得:20 = 150(c + 利润/件产品) - 100c解得c = 40注意:以上试题及答案仅供格式排版参考,具体内容需根据实际教学要求进行调整。
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数练习题和答案一、选择题1. 一次函数y=kx+b的图象经过点(-1,2),且k>0,b<0,那么这个函数的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知一次函数y=2x-3,求当x=5时,y的值是多少?A. 7B. 9C. 11D. 133. 一次函数y=3x+1与x轴的交点坐标是:A. (-1/3, 0)B. (0, 1)C. (1/3, 0)D. (1, 0)二、填空题4. 一次函数y=kx+b的斜率为2,且经过点(1,5),求b的值。
b=________5. 已知一次函数y=-4x+6,当y随x的增大而减小,求x的取值范围。
6. 一次函数y=kx+b与y轴的交点坐标为(0,4),且k>0,求b的值。
b=________三、解答题7. 已知一次函数y=kx+b的图象经过点A(-3,6)和点B(1,-2),求k和b的值。
8. 一次函数y=kx+b的图象与x轴相交于点(4,0),与y轴相交于点(0,-1),求这个一次函数的解析式。
9. 已知一次函数y=kx+b的图象经过第二、三、四象限,求k和b的取值范围。
四、应用题10. 某工厂生产一种产品,每生产一件产品的成本为20元,销售一件产品的利润为10元。
如果工厂计划在一个月内生产x件产品,那么工厂的总利润y元可以表示为一次函数。
请写出这个函数的解析式,并求出当生产100件产品时的总利润。
答案:1. D2. A3. C4. b=35. x<1.56. b=47. k=-4, b=98. y=-3/4x-19. k<0, b<010. y=10x,当x=100时,y=1000元【注】:以上练习题和答案仅供参考,实际教学或考试中题目可能会有所不同。
一次函数每日一练(一)
1.若一次函数y=kx+b 的图象经过第一、三、四象限,则
点A(k,b)位于()
A.第一象限B.第二象限
C.第三象限D.第四象限
2.若一次函数y=(m-2)x-1 的图象经过第二、三、四象限,则m
的取值范围是()
A.m>0 B.m<0 C.m>2 D.m<2 3.若一次函数y=kx+b 的图象不经过第三象限,也不经过原点,
则k,b 的取值范围是()
A.k>0 且b>0 B.k>0 且b<0
C.k<0 且b>0 D.k<0 且b<0
4.已知直线y=kx+b,若k+b=-5,kb=6,则该直线经过()
A.第二、四象限B.第一、二、三象限
C.第一、三象限D.第二、三、四象限
5.若a 是非零实数,则直线y=ax-a 一定经过()
A.第一、二象限B.第二、三象限
C.第三、四象限D.第一、四象限
6.已知一次函数y=(m+2)x+1,若函数值y 随x 的增大而增大,
则m 的取值范围是.
7.若一次函数y=kx-1 中y 随x 的增大而减小,则这个一次函数
的图象一定不经过第象限.
8.已知一次函数y=kx+b,若y 随x 的增大而减小,且b>0,则
它的图象大致是()
A.B.C.D.
9.已知一次函数y=kx+k,若y 随x 的增大而增大,则它的图象
大致是()
A.B.C.D.
10.已知一次函数y=kx-2,若y 随x 的增大而减小,则它的图象
大致是()
A.B.C.D.
11.直线y=2x-3 可以由直线y=2x__单位而得到;
直线y=-3x+2 可以由直线y=-3x 单位而得到;
直线y=x+2 可以由直线y=x-3 单位而得到.
1. 8 ⨯1
+
2
每周一练(二)的运算结果应在()
A.1 到2 之间B.2 到3 之间
C.3 到4 之间D.4 到5 之间
2.如图是国际数学家大会会标中的图案,其中四边形ABCD 和
四边形EFGH 都是正方形,若点G 的坐标为(3,2),则点D 的坐标为()
A.(5,3)
B.(3,5)
C.(5,5)
D.(5,4)
3.
若等腰三角形的两边长x,y 满足方程组⎧2x -y = 3 3x + 2 y = 8
,则此等
腰三角形的周长为()
A.3 B.4 C.4 或5 D.5
4.如图所示的计算程序中,y与x 之间的函数关系所对应的图象
应为()
A.B.C.D.
5.如图,在3×3 的正方形网格中有四个格点A,B,C,D,以
其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()
B.B 点C.C 点D.D 点
6.定义运算“*”,规定x*y=ax2+by,其中a,b 为常数,且1*2
=5,2*1=6,则2*3=.
的小数部分是m,则
7. 5 -的整数部分是_;若
8.若点A(m+1,3m-5)到两坐标轴的距离相等,则m的值为.
9.点A(-2,1)关于y 轴对称的点的坐标是,关于原
点对称的点的坐标是.
10.已知线段AB 与x 轴交于点C(2,0),若点A,点B 的纵坐标
分别为5 和-4,则△AOB 的面积为.
11.直线y =mx +n 的位置如图所示,化简:m -n -=.
12.若函数y = (k -1)x +k 2 -1是正比例函数,则一次函数y=kx-k
不过第()象限.
A.一B.二C.三D.四
13. 如图,在 Rt △ABC 中,∠ABC
ABC 绕点 A 按逆时针方向旋转 15°于
点 D .若 AD = 2 A B ,则△ABC C 1第 14 题图 14. 如图,方格纸中的每个小方格都是边长为 1 的正方形,A ,B
两点在小方格的顶点上,在小方格的顶点上确定一点 C ,连接 AB ,AC ,BC ,使△ABC 的面积为 2,则满足条件的点 C 的位置有 个.
15. 解下列方程组
⎧2x + 3y = 22 (1) ⎨x - 4 y = 11
⎧3x - 4 y = 15 (2) ⎨4x + 3y = 10
16.假如郑州市的出租车是这样收费的:起步价所包含的路程为
0~1.5 千米,超过1.5 千米的部分按每千米另收费.
小刘说:“我乘出租车从市政府到郑州汽车站走了4.5 千米,
付车费10.5 元.”
小李说:“我乘出租车从省政府到郑州火车站走了6.5 千米,
付车费14.5 元.”
问:(1)出租车的起步价是多少元?超过1.5 千米后每千米收
费多少元?
(2)小张乘出租车从市政府到郑州东站(高铁站)走了 5.5
千米,应付车费多少元?
17.如图,在四边形ABCD 中,AB=8,BC=1,∠DAB=30°,
∠ABC=60°,四边形ABCD 的面积为5 ,求AD 的长.
D
A B
【参考答案】
1.D
2.D
3. C
4.D
5.D
6. m>-2
7.一
8.A
9. C
10.D
一次函数每日一练(一)
11.向下平移3 个;向上平移2 个;向上平移5 个
每周一练(二)
1. C
2. C
3.A
4.D
5.D
6. B
7. 10
8. 2,3
9. 1 或3
10. (2,1),(2,-1)
11. 9
12.n
13.C 14. 6 + 2
15. 7
16.
17. (1)出租车的起步价是4.5 元,超过1.5 千米后每千米收费2
元
(2)小张应付车费12.5 元
18. 2。