动态规划具体概念+例题
- 格式:ppt
- 大小:365.00 KB
- 文档页数:40
动态规划的具体应用例题3.1 最长不降子序列(1)问题描述设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j)例如3,18,7,14,10,12,23,41,16,24。
若存在i1<i2<i3< … < ie 且有a(i1)<a(i2)< … <a(ie)则称为长度为e的不下降序列。
如上例中3,18,23,24就是一个长度为4的不下降序列,同时也有3,7,10,12,16,24长度为6的不下降序列。
程序要求,当原数列给出之后,求出最长的不下降序列。
(2)算法分析根据动态规划的原理,由后往前进行搜索。
1· 对a(n)来说,由于它是最后一个数,所以当从a(n)开始查找时,只存在长度为1的不下降序列;2· 若从a(n-1)开始查找,则存在下面的两种可能性:①若a(n-1)<a(n)则存在长度为2的不下降序列a(n-1),a(n)。
②若a(n-1)>a(n)则存在长度为1的不下降序列a(n-1)或a(n)。
3· 一般若从a(i)开始,此时最长不下降序列应该按下列方法求出: 在a(i+1),a(i+2),…,a(n)中,找出一个比a(i)大的且最长的不下降序列,作为它的后继。
4.用数组b(i),c(i)分别记录点i到n的最长的不降子序列的长度和点i后继接点的编号(3) 程序如下:(逆推法)program li1;const maxn=100;var a,b,c:array[1..maxn] of integer;fname:string;f:text;n,i,j,max,p:integer;beginreadln(fname);assign(f,fname);reset(f);readln(f,n);+for i:=1 to n dobeginread(f,a[i]);b[n]:=1;c[n]:=0;end;for i:= n-1 downto 1 dobeginmax:=0;p:=0;for j:=i+1 to n doif (a[i]<a[j]) and (b[j]>max) then begin max:=b[j];p:=j end;if p<>0 then begin b[i]:=b[p]+1;c[i]:=p endend;max:=0;p:=0;for i:=1 to n doif b[i]>max then begin max:=b[i];p:=i end;writeln('maxlong=',max);write('result is:');while p<>0 dobegin write(a[p]:5);p:=c[p] end;end.3.2 背包问题背包问题有三种1.部分背包问题一个旅行者有一个最多能用m公斤的背包,现在有n种物品,它们的总重量分别是W1,W2,...,Wn,它们的总价值分别为C1,C2,...,Cn.求旅行者能获得最大总价值。
动态规划运筹学例题动态规划是运筹学中常用的一种优化技术,它利用规划、三角函数和其他数学技术来解决日常生活中的各种问题,比如最优路线问题、最优资源分配问题、最优出行路线问题等。
本文将通过一个例题,来介绍动态规划的基本思想,以及如何利用动态规划来解决问题。
例题一:已知一条路线,由A点到B点,有N个途经的节点,每个节点之间的距离已知。
求从A到B的最短路线。
按照动态规划的思想,首先将该问题分解为若干个子问题,并根据子问题的解来解决原问题,这种分解和解决问题的方式称为动态规划。
对于上面的问题,可以将其分解为N个子问题,分别是从A到第1个节点、从第1个节点到第2个节点、从第2个节点到第3个节点,以此类推,最后一个子问题是从第N-1个节点到B点的最短路程。
将上面的N个子问题中,从第i个节点到B点的最短路程记为d[i],由于从第i个节点到B点可能经过i+1、i+2、……、N-1节点,因此要找到d[i],只需要找到经过i+1、i+2、……、N-1节点的最短路程即可,即求d[i]=Min{d[i+1]+length[i][i+1],d[i+2]+length[i][i+2],…,d[N-1]+length[i][N-1]},其中length[i][j]是第i个节点到第j个节点的距离。
以上就是动态规划的解题步骤,它能将原问题分解成若干个子问题,并找到最优解。
对于本例来说,通过上述步骤,就可以得到从A 到B的最短路程。
这种分解和求解问题的方法是动态规划,可以用来解决许多类似的问题,如:1)最优路线问题;2)旅行推销员问题;3)硬币找零问题。
动态规划的一大特点是,他能很好地将问题分解为多个子问题,并能从子问题的解中求解出最优解。
总之,动态规划是一种很有用的优化技术,它可以有效解决各种运筹学问题。
它不仅可以帮助我们解决许多具体问题,而且还能使我们更好地理解问题及其解法。
动态规划例题动态规划是一种以最优化原理为基础的问题求解方法,通过拆分问题为若干阶段,每个阶段求解一个子问题,再逐步推导出整个问题的最优解。
例如,有一个背包能够承受一定的重量,现有一些物品,每个物品都有自己的重量和价值。
我们希望将物品放入背包中,使得背包的总价值最大。
这个问题可以用动态规划来解决。
首先,我们定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,容量为j的背包中所能放入的物品的最大价值。
那么,对于每一个物品,可以选择放入背包或者不放入背包。
如果选择放入背包,最大价值为dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
如果选择不放入背包,最大价值为dp[i-1][j]。
因此,dp[i][j]的状态转移方程为:dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j])。
基于这个状态转移方程,可以逐步求解从第1个物品到第n个物品的最大价值。
最终,dp[n][W]即为问题的最优解,其中W 表示背包的容量。
举个简单的例子,假设背包的容量为10,有3个物品,它们的重量分别为3、4、5,价值分别为4、5、6。
此时,可以得到如下的dp矩阵:0 0 0 0 0 0 0 0 0 0 00 0 0 4 4 4 4 4 4 4 40 0 0 4 5 5 9 9 9 9 90 0 0 4 5 5 9 10 10 14 14我们可以看到,dp[3][10]的最大价值为14,表示在前3个物品中,容量为10的背包中所能放入的物品的最大价值为14。
通过动态规划,我们可以有效地求解背包问题,得到物品放入背包的最优解。
这个例子只是动态规划的一个简单应用,实际上,动态规划可以解决各种复杂的问题,如最长公共子序列、最大子数组和、最大字段和等。
因此,学习动态规划是非常有意义的。
例1:机器负荷分配问题某公司新购进1000台机床,每台机床都可在高、低两种不同的负荷下进行生产,设在高负荷下生产的产量函数为g(x )=10x (单位:百件),其中x 为投入生产的机床数量,年完好率为a =0.7;在低负荷下生产的产量函数为h(y)=6y (单位:百件),其中y 为投人生产的机床数量,年完好率为b=0.9。
计划连续使用5年,试问每年如何安排机床在高、低负荷下的生产计划,使在五年内生产的产品总产量达到最高。
例2:某企业通过市场调查,估计今后四个时期市场对某种产品的需要量如下表:时期(k) 12 3 4 需要量(d k )2(单位)324假定不论在任何时期,生产每批产品的固定成本费为3(千元),若不生产,则为零;生产单位产品成本费为1(千元);每个时期生产能力所允许的最大生产批量为不超过6个单位,则任何时期生产x 个单位产品的成本费用为:若 0<x ≤6 , 则生产总成本=3十1·x 若 x =0 , 则生产总成本=0又设每个时期末未销售出去的产品,在一个时期内单位产品的库存费用为0.5(千元),同时还假定第1时期开始之初和在第4个时期之末,均无产品库存。
现在我们的问题是;在满足上述给定的条件下,该厂如何安排各个时期的生产与库存,使所花的总成本费用最低?例3:设某企业在第一年初购买一台新设备,该设备在五年内的年运行收益、年运行费用及更换新设备的净费用如下表:(单位:万元)年份(k) 役龄(t) 运行收益()k g t 运行费用()k r t 更新费用()k c t 第一年 0 22 6 18 第二年0 123 216 819 22第三年0122321185710192328第四年01232422191657101520243038第五年01234252320171446914202024303848试为该企业制定一个五年中的设备更新策略,使得企业在五年内总收益达到最大?例4:设有一辆栽重为10吨的卡车,用以装载三种货物,每种货物的单位重量及单件价值如表所示,问各种货物应装多少件,才能既不超过总重量又使总价值最大?货物 1 2 3单位重量 3 4 5单件价值 4 5 6。
动态规划典型案例解析及计算过程梳理动态规划(Dynamic Programming)是一种通过将问题分解为子问题来解决复杂问题的算法策略。
它通常用于优化问题,通过将问题的解决方案划分为相互重叠的子问题来降低计算复杂度。
下面将通过几个典型案例,详细解析动态规划的应用及其计算过程。
1. 斐波那契数列斐波那契数列是一种经典的动态规划问题。
它的定义是:F(n) =F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
我们需要计算第n个斐波那契数。
通过动态规划的思想,可以将该问题划分为子问题,即计算第n-1和第n-2个斐波那契数。
可以使用一个数组来保存已经计算过的斐波那契数,避免重复计算。
具体的计算过程如下:1. 初始化一个长度为n+1的数组fib,将fib[0]设置为0,fib[1]设置为1。
2. 从i=2开始遍历到n,对于每个i,计算fib[i] = fib[i-1] + fib[i-2]。
3. 返回fib[n]作为结果。
通过上述过程,我们可以快速地得到第n个斐波那契数。
这个案例展示了动态规划的重要特性,即将问题分解为子问题进行求解,并利用已经计算过的结果来避免重复计算。
2. 背包问题背包问题是另一个常见的动态规划问题。
问题的定义是:有一组物品,每个物品有自己的重量和价值,在限定的背包容量下,如何选择物品使得背包中的总价值最大化。
通过动态规划的思想,背包问题可以被划分为子问题。
我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
具体的计算过程如下:1. 初始化一个大小为n+1行,m+1列的二维数组dp,其中n为物品数量,m为背包容量。
将所有元素初始化为0。
2. 从i=1开始遍历到n,对于每个i,从j=1开始遍历到m,对于每个j,进行如下判断:- 若当前物品的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择当前物品;- 若当前物品的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi),即选择当前物品或不选择当前物品所能获得的最大价值。
1、单调递增最长子序列描述求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4输入第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串的长度不会超过10000 输出输出字符串的最长递增子序列的长度样例输入3aaaababcabklmncdefg样例输出1372、最长公共子序列描述如题,需要写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。
其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。
输入第一行给出一个整数N(0<N<100)表示待测数据组数接下来每组数据两行,分别为待测的两组字符串。
每个字符串长度不大于1000.输出每组测试数据输出一个整数,表示最长公共子序列长度。
每组结果占一行。
样例输入2asdfadfsd123abcabc123abc样例输出363、括号匹配时间限制:1000 ms | 内存限制:65535 KB描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。
如:[]是匹配的([])[]是匹配的((]是不匹配的([)]是不匹配的输入第一行输入一个正整数N,表示测试数据组数(N<=10)每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符,S的长度不超过100输出对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。
每组测试输出占一行样例输入4[]([])[]((]([)]样例输出324、完全背包描述直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。
1、单调递增最长子序列描述求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4输入第一行一个整数0<n<20,表示有n个字符串要处理随后的n行,每行有一个字符串,该字符串的长度不会超过10000 输出输出字符串的最长递增子序列的长度样例输入3aaaababcabklmncdefg样例输出1372、最长公共子序列描述如题,需要写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。
其定义是,一个序列S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则S 称为已知序列的最长公共子序列。
输入第一行给出一个整数N(0<N<100)表示待测数据组数接下来每组数据两行,分别为待测的两组字符串。
每个字符串长度不大于1000.输出每组测试数据输出一个整数,表示最长公共子序列长度。
每组结果占一行。
样例输入2asdfadfsd123abcabc123abc样例输出363、括号匹配时间限制:1000 ms | 内存限制:65535 KB描述给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。
如:[]是匹配的([])[]是匹配的((]是不匹配的([)]是不匹配的输入第一行输入一个正整数N,表示测试数据组数(N<=10)每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符,S的长度不超过100输出对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。
每组测试输出占一行样例输入4[]([])[]((]([)]样例输出324、完全背包描述直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。
动态规划题目动态规划(Dynamic Programming)是一种常用的求解最优化问题的方法。
它的核心思想是,将问题拆解成若干个子问题,并保存子问题的解,以便后续计算。
通过利用子问题的解,逐步求得原问题的最优解。
一个典型的动态规划问题可以用一个简单的例子来说明。
假设有一段长度为n的绳子,我们希望将它切割成若干段,使得乘积最大。
例如,当n=8时,我们可以切割成长度为2、3和3的三段,此时乘积最大,为18。
这个问题可以用动态规划来解决。
首先,我们定义一个数组dp,其中dp[i]表示长度为i的绳子的乘积最大值。
显然,dp[0]=0,dp[1]=1,dp[2]=2,dp[3]=3。
然后,我们需要考虑长度大于3的情况。
对于长度为i的绳子,我们可以将其切割成两段,长度为j和i-j。
那么,长度为i的绳子的乘积最大值可以表示为dp[j]*dp[i-j]。
然后我们需要遍历所有可能的j的值,找出其中的最大值,作为dp[i]的值。
具体的计算过程如下所示:for i from 4 to n:for j from 1 to i/2:dp[i] = max(dp[i], dp[j]*dp[i-j])最后,返回dp[n]即为所求的最大乘积。
动态规划的核心思想就是将问题拆解成子问题,并保存子问题的解,以便后续计算。
在上述例子中,我们将长度为n的绳子切割成长度为j和i-j的两段,然后计算乘积最大值。
这里的子问题是求解长度为j和长度为i-j的绳子的乘积最大值,因此可以利用dp数组保存子问题的解。
动态规划的时间复杂度和空间复杂度由问题的规模决定。
在上述例子中,我们需要计算长度为n的绳子的最大乘积,需要进行两层循环遍历,因此时间复杂度为O(n^2)。
空间复杂度则由dp数组决定,为O(n)。
动态规划是一种非常常见且有效的求解最优化问题的方法。
通过将问题拆解成若干个子问题,并保存子问题的解,可以大大优化问题的求解过程。
在实际应用中,我们可以通过改变子问题的定义和状态转移方程,来解决不同的问题。
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。