新人教版数学初中七年级下册《6.2立方根》公开课优质课教学设计
- 格式:docx
- 大小:46.58 KB
- 文档页数:4
人教版数学七年级下册6.2《立方根》教学设计3一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,这一节主要介绍了立方根的概念和求法。
通过这一节的学习,学生能够理解立方根的定义,掌握求立方根的方法,并能运用到实际问题中。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、实数等基础知识,对数学运算有一定的掌握。
但是,对于立方根这一概念,学生可能较为陌生,需要通过实例和操作来理解和掌握。
同时,学生可能存在对数学概念理解不深、运算速度慢等问题,需要教师在教学过程中进行针对性的引导和辅导。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求立方根的方法,能够运用立方根解决实际问题。
2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念和求法。
2.难点:理解立方根的概念,掌握求立方根的方法。
五. 教学方法1.情境教学法:通过实例和实际问题,引导学生理解立方根的概念和应用。
2.引导发现法:教师引导学生观察、思考和发现立方根的规律,培养学生的思维能力。
3.实践操作法:让学生通过实际操作,掌握求立方根的方法。
六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。
2.学具准备:练习本、笔、计算器。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如:“一个正方体的体积是27立方米,求这个正方体的棱长。
”让学生思考并回答,引导学生认识到立方根的重要性。
2.呈现(10分钟)教师通过PPT或者黑板,呈现立方根的定义和求法,让学生初步了解立方根的概念。
3.操练(10分钟)教师给出一些简单的立方根运算题,让学生现场解答,并及时给予指导和反馈。
4.巩固(10分钟)教师给出一些有一定难度的立方根运算题,让学生独立完成,并分组讨论,共同解决问题。
《6.2 立方根》教学设计:教学目标:【知识与技能目标】了解立方根和开立方的概念;会用根号表示一个数的立方根,掌握开立方运算。
【过程与方法目标】会用类比的思想求立方根;由立方与立方根的教学,领会数学的转化思想。
【情感态度与价值观目标】通过立方根符号的引入体验数学的简洁美.教学重难点:【教学重点】立方根的概念和求法,用有理数估计一个无理数的大致范围【教学难点】立方根与平方根的区别课前准备:多媒体:PPT 课件、电子白板教学过程:一、复习旧知师:请同学们回忆上节课我们是怎样定义平方根的?它的符号怎么表示? 生:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
符号表示:“a ±”其中0≥a (教师板书)师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的? 生:开立方:求一个数a 的平方根的运算,叫做开平方。
↔平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根还是0;负数没有平方根。
教师引导学生回忆,并回答出平方根的定义、符号表示及性质,对定义及符号进行板书出来,性质利用表格的形式板书出来,有利于跟本节课的新知识进行对比。
二、设计情境,导入新课27m的正方体形状的包装箱,这种包装箱的棱问题1:要制作一种容积为3长应该是多少?你是怎么知道的?x,则3x=27.这就是求一个数,使它的立方等于设这种包装箱的棱长为m27.因为33=27,所以x=3. 即这种包装箱的边长应为3 m.本题是已知一个数x的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生可以类比平方根的概念归纳出立方根的概念。
师:对比平方根的定义,你能归纳出立方根的定义是什么吗?学生谈论思考,教师引导归纳概念:概念归纳:如果一个数的立方等于a,这个数叫做a的立方根(也叫做三=,那么x叫做a的立方根(教师板书)次方根),即如果3x a33=,所以3是27的立方根。
人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
《立方根》
【知识与能力目标】
(1)了解立方根的概念,会用根号表示一个数的立方根,能用立方运算求某些数的立方根
(2)了解开立方与立方互为逆运算,掌握立方根的性质。
【过程与方法目标】
(1)在学了平方根的基础上,要学生能用类比的方法学习立方根的有关知识,领会类比思想。
(2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握研究问题的方法。
【情感态度价值观目标】
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成。
【教学重点】
立方根的概念及性质。
【教学难点】
求某些数的立方根。
(一)创设情境,导入新课
问题:要做一个体积为273
cm 的正方体模型,它的棱长要取多少?
设它的棱长为 3x ,根据题意得 273=x
那么=x ?
如果棱长是2,那么这个长方体的的体积是多少呢?如果是5呢?
之前咱们学习过乘方的问题,今天咱们来学习另一种计算方法,也就是说如果知道立方体的体积,它的棱长是多少呢? 今天咱们来学习《立方根》。
(二)类比交流,得出新知
提问: (1)什么叫一个数的平方根?如何用符号表示数 a( ≥0)的平方根?
(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?
(3)平方和开平方运算有何关系?
答:(1)一般地,如果一个数 x 的平方等于 a ,那么这个数 x 就叫做a 的平方根,也叫做二次方根。
(2)一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0。
(3)平方和开平方互为逆运算。
通过类比的方法,引入立方根概念:一般地,如果一个数 x 的立方等于a ,那么这个数就叫做 a 的立方根,也叫做三次方根。
如:2是8的立方根, 0是0的立方根。
(三)自主探索,合作交流
学生小组交流,根据立方根的定义填空:你能发现正数、0和负数的立方根各有什么特点吗?
因为823
= ,所以8的立方根是 ( );
因为( )3=27 ,所以27的立方根是( );
因为( )3=0 ,所以0的立方根是( );
因为( )3=-8,所以-8的立方根是( );
学生通过交流得出结论:
引出开立方的概念:求一个数 a 的立方根的运算叫做开立方, 其中 a 叫做被开方数。
开立方与立方互为逆运算。
一个数a 的立方根,记为“3a ”,读作“三次根号a ”。
例如3x =8时, x 是8的立方根,
即38=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略。
立方根性质:正数的立方根是正数;0的立方根是0;负数的立方根是负数。
(四)例练应用,巩固新课
例1:求下列各数的立方根:
(1)27 (2)−0.064 (3) 0
解: (1)因为2733= ,所以27 的立方根是3 ,即 3273=;
(2)因为064.0)4.0(3-=- ,所以 −0.064 的立方根是−0.4
,即4.0064.03-=- (3)因为003= ,所以0 的立方根是0 ,即003=;
练习:求下列各式的值 : (1)38- (2)3064.0 (3)315625-
解:(1)283-=- (2)4.0064.03= (3)25156253-=-
(五)反思小结,体验收获
提问:通过本节课的学习你学到了哪些知识?
1. 立方根定义,性质,及表示方法。
2.如何求一个数的立方根。
3.立方根和平方根的区别。
(六)布置作业,分层延伸
必做:教材P52 3、5,
选做:P52,8
略。