新人教版数学初中七年级下册《6.2立方根》公开课优质课教学设计
- 格式:docx
- 大小:46.58 KB
- 文档页数:4
人教版数学七年级下册6.2《立方根》教学设计3一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,这一节主要介绍了立方根的概念和求法。
通过这一节的学习,学生能够理解立方根的定义,掌握求立方根的方法,并能运用到实际问题中。
教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、实数等基础知识,对数学运算有一定的掌握。
但是,对于立方根这一概念,学生可能较为陌生,需要通过实例和操作来理解和掌握。
同时,学生可能存在对数学概念理解不深、运算速度慢等问题,需要教师在教学过程中进行针对性的引导和辅导。
三. 教学目标1.知识与技能:理解立方根的概念,掌握求立方根的方法,能够运用立方根解决实际问题。
2.过程与方法:通过实例和操作,培养学生的观察能力、思考能力和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念和求法。
2.难点:理解立方根的概念,掌握求立方根的方法。
五. 教学方法1.情境教学法:通过实例和实际问题,引导学生理解立方根的概念和应用。
2.引导发现法:教师引导学生观察、思考和发现立方根的规律,培养学生的思维能力。
3.实践操作法:让学生通过实际操作,掌握求立方根的方法。
六. 教学准备1.教具准备:黑板、粉笔、多媒体教学设备。
2.学具准备:练习本、笔、计算器。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如:“一个正方体的体积是27立方米,求这个正方体的棱长。
”让学生思考并回答,引导学生认识到立方根的重要性。
2.呈现(10分钟)教师通过PPT或者黑板,呈现立方根的定义和求法,让学生初步了解立方根的概念。
3.操练(10分钟)教师给出一些简单的立方根运算题,让学生现场解答,并及时给予指导和反馈。
4.巩固(10分钟)教师给出一些有一定难度的立方根运算题,让学生独立完成,并分组讨论,共同解决问题。
《6.2 立方根》教学设计:教学目标:【知识与技能目标】了解立方根和开立方的概念;会用根号表示一个数的立方根,掌握开立方运算。
【过程与方法目标】会用类比的思想求立方根;由立方与立方根的教学,领会数学的转化思想。
【情感态度与价值观目标】通过立方根符号的引入体验数学的简洁美.教学重难点:【教学重点】立方根的概念和求法,用有理数估计一个无理数的大致范围【教学难点】立方根与平方根的区别课前准备:多媒体:PPT 课件、电子白板教学过程:一、复习旧知师:请同学们回忆上节课我们是怎样定义平方根的?它的符号怎么表示? 生:如果a x =2,那么x 叫做a 的平方根(或二次方根)。
符号表示:“a ±”其中0≥a (教师板书)师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的? 生:开立方:求一个数a 的平方根的运算,叫做开平方。
↔平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根还是0;负数没有平方根。
教师引导学生回忆,并回答出平方根的定义、符号表示及性质,对定义及符号进行板书出来,性质利用表格的形式板书出来,有利于跟本节课的新知识进行对比。
二、设计情境,导入新课27m的正方体形状的包装箱,这种包装箱的棱问题1:要制作一种容积为3长应该是多少?你是怎么知道的?x,则3x=27.这就是求一个数,使它的立方等于设这种包装箱的棱长为m27.因为33=27,所以x=3. 即这种包装箱的边长应为3 m.本题是已知一个数x的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生可以类比平方根的概念归纳出立方根的概念。
师:对比平方根的定义,你能归纳出立方根的定义是什么吗?学生谈论思考,教师引导归纳概念:概念归纳:如果一个数的立方等于a,这个数叫做a的立方根(也叫做三=,那么x叫做a的立方根(教师板书)次方根),即如果3x a33=,所以3是27的立方根。
人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。
人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
人教版数学七年级下册6.2《立方根》教学设计4一. 教材分析人教版数学七年级下册6.2《立方根》是学生在学习了有理数的乘方、实数等知识的基础上,进一步探究立方根的概念及运算法则。
本节课的内容主要包括立方根的定义、求一个数的立方根的方法、立方根的性质和运算法则。
教材通过丰富的例题和练习题,帮助学生掌握立方根的知识,并能运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方知识,对实数的概念有了一定的了解。
但是,对于立方根的概念和运算法则,可能还存在一定的困惑。
因此,在教学过程中,需要关注学生的认知基础,通过引导和启发,让学生逐步理解和掌握立方根的知识。
三. 教学目标1.理解立方根的概念,掌握求一个数的立方根的方法。
2.掌握立方根的性质和运算法则。
3.能够运用立方根的知识解决实际问题。
四. 教学重难点1.立方根的概念和求法。
2.立方根的性质和运算法则。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究、积极思考,通过师生互动、生生互动,使学生在实践中掌握立方根的知识。
六. 教学准备1.PPT课件2.教学视频或图片素材七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题:一个正方体的体积是27立方米,求这个正方体的棱长。
让学生思考如何解决这个问题,从而引出立方根的概念。
2.呈现(10分钟)讲解立方根的定义,并通过PPT展示立方根的图形形象。
让学生理解立方根的概念,并掌握求一个数的立方根的方法。
3.操练(10分钟)让学生独立完成教材中的例题和练习题,巩固对立方根的理解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一组练习题,让学生进一步巩固立方根的知识。
教师及时反馈,纠正学生的错误。
5.拓展(10分钟)讲解立方根的性质和运算法则,让学生掌握立方根的运算规律。
6.小结(5分钟)对本节课的内容进行总结,让学生回顾和巩固所学知识。
7.家庭作业(5分钟)布置一道有关立方根的实际问题,让学生课后思考和解答。
人教版义务教育课程标准实验教科书七年级下册《6.2 立方根》教学设计一、教材分析1、地位作用:《立方根》是人教版七年级下册第六章《实数》第二小节的内容。
实数这章内容不多,篇幅不大,但在中学数学中有着比较重要的地位和作用。
通过学习实数之后我们的数学内容将在实数范围内研究问题。
实数不仅是后面学习二次根式、一元二次方程以及解三角形等知识的基础,也为高中数学中的不等式、函数以及解析几何的大部分知识做好准备。
学习立方根的意义在于,一方面它有着广泛的应用,因为空间形体都是三维的,有关体积等的计算经常涉及开立方的问题;另一方面,立方根是奇次方根的特例,就像平方根是偶次方根的特例一样,它对于研究奇次方根的性质有典型的代表意义。
2、教学目标:(1)了解立方根的概念。
(2)会求一些数的立方根。
3、教学重难点教学重点:引导学生类比平方根学习立方根的概念和求法。
教学难点:立方根与平方根的区别与联系。
突破难点的方法:通过类比方法突破难点。
二、教学准备:多媒体课件、导学案、三阶魔方三、教学过程:教学内容与教师活动学生活动设计意图一、创设情景引入课题七年级学生的学习特点是:好奇心强,有较强的学习激情和热情,学习时注意力能够高度集中但持续时间有限。
为了激发学生的学习兴趣,吸引学生的学习注意力,我通过一道数学实际问题引人本节课的新知识。
1、回顾平方根的定义及性质2、用魔方的体积导出立方根从生活中常见的三阶魔方导出立方根,唤起学生的学习兴趣及探索欲望.二、自主探究 合作交流 建构新知 活动一:创设情景,引入立方根一个形如三阶魔方的正方体体积为27,求正方体的棱长;继续引导学生分析本题得到:x 3=27教师发问:这与我们前面学习的哪个知识点类似?联系前面学习的平方根的概念,并联系上面的问题,归纳出立方根的概念;并联系开平方的概念,给出开立方的概念。
学生梳理思路,阐述观点。
教师对学生的回答的立方根的概念做出总结。
本次活动中,教师要关注:学生是否能够联系前面学习的平方根的概念类比得出立方根的概念,及学生对立方根概念了解的程度。
人教版数学七年级下册6.2《立方根》教学设计1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节课主要介绍了立方根的概念、性质和求法。
通过本节课的学习,学生能够理解立方根的定义,掌握立方根的性质,学会运用立方根解决实际问题。
教材中通过丰富的实例和生动的语言,引导学生探究立方根的奥秘,激发学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的逻辑思维能力。
但在学习新知识时,部分学生可能对抽象的概念理解起来较为困难,需要通过具体的实例和实践活动来帮助他们理解和掌握。
此外,学生对于新知识的学习兴趣和积极性较高,但有时可能会因为缺乏自主学习能力而影响学习效果。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求立方根的方法。
2.过程与方法:通过观察、操作、交流等活动,培养学生的动手能力、观察能力和创新能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:立方根的概念、性质和求法。
2.难点:立方根的应用和实际问题的解决。
五. 教学方法1.情境教学法:通过设置生动有趣的情境,激发学生的学习兴趣,引导学生主动探究。
2.启发式教学法:引导学生通过观察、思考、讨论,自主发现规律,培养学生的创新能力。
3.实践活动法:学生进行动手操作,让学生在实践中感受和理解立方根的概念和性质。
六. 教学准备1.教学课件:制作多媒体课件,展示立方根的实例和性质。
2.教学素材:准备一些立方体的教具,如正方体、长方体等。
3.练习题:设计一些有关立方根的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的立方体,如冰淇淋、魔方等,引导学生关注立方体的特点。
提问:“你们知道这些立方体有什么特殊的性质吗?”从而引出本节课的主题——立方根。
2.呈现(10分钟)展示立方根的定义,引导学生观察和思考立方根与立方体的关系。
人教版数学七年级下册6.2《立方根》教案1一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容。
本节主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节的学习,为学生进一步学习实数及其运算打下基础。
二. 学情分析学生在七年级上册已经学习了乘方,对乘方的概念和性质有一定的了解。
但立方根的概念与乘方有所不同,需要学生能够从中找出规律,理解并掌握。
另外,学生可能对求一个数的立方根运算存在困难,因此在教学过程中,需要引导学生掌握运算方法。
三. 教学目标1.理解立方根的概念,掌握立方根的性质。
2.学会求一个数的立方根,能熟练运用立方根解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.立方根的概念和性质。
2.求一个数的立方根的方法。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中感受立方根的意义。
2.讲授法:讲解立方根的性质和求法,引导学生理解和掌握。
3.实践操作法:让学生动手计算,巩固所学知识。
4.问题驱动法:设置问题,引导学生探究,培养学生的解决问题的能力。
六. 教学准备1.PPT课件:制作与教学内容相关的PPT课件,以便进行直观教学。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实例,如冰雪融化、爆米花等,引导学生思考:这些现象与数学中的哪个概念有关?从而引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,让学生理解立方根的概念。
通过PPT课件展示立方根的性质,让学生掌握立方根的性质。
3.操练(10分钟)让学生动手计算一些立方根的例子,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)设置一些有关立方根的问题,让学生独立解答。
教师选取部分学生的答案进行讲评,巩固所学知识。
5.拓展(10分钟)引导学生思考:立方根有哪些应用?让学生举例说明,培养学生的应用意识。
《立方根》
【知识与能力目标】
(1)了解立方根的概念,会用根号表示一个数的立方根,能用立方运算求某些数的立方根
(2)了解开立方与立方互为逆运算,掌握立方根的性质。
【过程与方法目标】
(1)在学了平方根的基础上,要学生能用类比的方法学习立方根的有关知识,领会类比思想。
(2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握研究问题的方法。
【情感态度价值观目标】
当今社会是科学飞速发展、信息千变万化的时代,每一个人都不可能把一生中要接触的知识全部学会,因此让他们会学知识比学会知识更重要,这就要从小培养良好的学习习惯,能自己解决的问题就自己解决,其中类比的学习方法就是一种重要的学习方法,本节课重点训练学生的类比思想的养成。
【教学重点】
立方根的概念及性质。
【教学难点】
求某些数的立方根。
(一)创设情境,导入新课
问题:要做一个体积为273
cm 的正方体模型,它的棱长要取多少?
设它的棱长为 3x ,根据题意得 273=x
那么=x ?
如果棱长是2,那么这个长方体的的体积是多少呢?如果是5呢?
之前咱们学习过乘方的问题,今天咱们来学习另一种计算方法,也就是说如果知道立方体的体积,它的棱长是多少呢? 今天咱们来学习《立方根》。
(二)类比交流,得出新知
提问: (1)什么叫一个数的平方根?如何用符号表示数 a( ≥0)的平方根?
(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?
(3)平方和开平方运算有何关系?
答:(1)一般地,如果一个数 x 的平方等于 a ,那么这个数 x 就叫做a 的平方根,也叫做二次方根。
(2)一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0。
(3)平方和开平方互为逆运算。
通过类比的方法,引入立方根概念:一般地,如果一个数 x 的立方等于a ,那么这个数就叫做 a 的立方根,也叫做三次方根。
如:2是8的立方根, 0是0的立方根。
(三)自主探索,合作交流
学生小组交流,根据立方根的定义填空:你能发现正数、0和负数的立方根各有什么特点吗?
因为823
= ,所以8的立方根是 ( );
因为( )3=27 ,所以27的立方根是( );
因为( )3=0 ,所以0的立方根是( );
因为( )3=-8,所以-8的立方根是( );
学生通过交流得出结论:
引出开立方的概念:求一个数 a 的立方根的运算叫做开立方, 其中 a 叫做被开方数。
开立方与立方互为逆运算。
一个数a 的立方根,记为“3a ”,读作“三次根号a ”。
例如3x =8时, x 是8的立方根,
即38=x ;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略。
立方根性质:正数的立方根是正数;0的立方根是0;负数的立方根是负数。
(四)例练应用,巩固新课
例1:求下列各数的立方根:
(1)27 (2)−0.064 (3) 0
解: (1)因为2733= ,所以27 的立方根是3 ,即 3273=;
(2)因为064.0)4.0(3-=- ,所以 −0.064 的立方根是−0.4
,即4.0064.03-=- (3)因为003= ,所以0 的立方根是0 ,即003=;
练习:求下列各式的值 : (1)38- (2)3064.0 (3)315625-
解:(1)283-=- (2)4.0064.03= (3)25156253-=-
(五)反思小结,体验收获
提问:通过本节课的学习你学到了哪些知识?
1. 立方根定义,性质,及表示方法。
2.如何求一个数的立方根。
3.立方根和平方根的区别。
(六)布置作业,分层延伸
必做:教材P52 3、5,
选做:P52,8
略。