第二章固体物料分
- 格式:pptx
- 大小:3.52 MB
- 文档页数:40
第二章固体废物性质分析1、简述调研生活垃圾物理组成数据的技术意义。
答:物理组成对由可之别的不同组分混合构成的固体废物有意义,适用于描述生活垃圾、加工工业废物(工业垃圾)和电子设备类废物的性状,尤其对生活垃圾处理的意义最为显著。
我国习惯按有机垃圾、无机垃圾和废品三大类来描述生活垃圾的物理组成。
其中,有机垃圾组分主要受生活习俗影响,无机垃圾受燃料结构和气候等影响,废品类垃圾则与消费水平关联度较大。
2、简述废物的粒径与含水率对其压缩性能和容积密度的影响。
答:废物的容积密度指的是一定体积空间中所能容纳废物的质量,通常以kg/m³为单位。
废物的容积密度与废物的粒径和含水率有关,粒径小且潮湿的废物容积密度较高。
废物的可压缩性一般定义为一定质量废物在压缩前后的体积变化率。
废物的粒径越大越干燥,可压缩性越好。
3、试分析田间持水量与极限含水率在概念和测试方法上的区别。
答:田间持水量是在不会因重力作用而产生失水的条件下,一定量的样品所能持有的水分量。
其测试方法为:取混合样品按装样要求(压实度)堆积于下部可观察滴水情况的容器中,先用水饱和整个样品,然后进行重力排水(同时应控制会发失水),排水平衡后测定样品的含水率。
极限含水率是当废物颗粒的内部空隙,包括溶胀性的空隙,全部被水所饱和后废物的含水率。
其测试方法为:将废物样品在清水中浸没一段时间后取出,在水分饱和的空气中沥干一段时间,以沥出样品表面的滞留水分,然后将样品按含水率定义方法测定其含水率。
4、试辨别水分、可燃分、不可燃分、挥发分、固定碳和灰分的异同,并简述其测试方法。
答:参考课本25,26页。
5、为什么要测试固体废物的浸出特性?固体废物浸出测试方法如何分类?答:测定固体废物的浸出特性可以用于(1)分析废物中水或其他溶液可溶的污染物量,判断固体废物在不同环境条件下的污染物释放潜力;(2)废物中有机污染物的全量分析;(3)提供废物生物监测的样品,保证样品组分的生物可利用性。
第三章植物化学成分的提取所谓提取,就是用适当的溶剂或适当的方法将植物的化学成分从植物中抽提出来的过程。
任何一种溶剂或任何一种方法提取得到的提取液和提取物,是包含多种化学成分的混合物称为总提取物,尚待进一步分离和精制。
那么,传统的提取方法有哪些呢:溶剂提取法、水蒸气蒸馏法、超临界流体提取法、升华法等。
本节重点掌握:溶剂提取法的原理,化学成分的极性、常用溶剂、极性大小顺序及提取溶剂的选择;常见的提取方法及应用范围。
重点介绍溶剂提取法。
第一节传统的提取方法一、溶剂提取法溶剂提取法的提取原理:根据植物中各成分在溶剂中的溶解度的差异,选用对活性成分溶解度大,对不需要溶出的成分溶解度小的溶剂,而将有效成分从药材组织内溶解出来的方法。
这是植物化学成分提取最常用的方法。
当溶剂加到经适当粉碎的药材中时,溶剂由于溶剂由于扩散、渗透作用逐渐通过细胞壁透入到细胞内,溶解了可溶性物质,而造成细胞内外的浓度差,于是细胞内的浓溶液不断向外扩散,溶剂又不断进入药材组织细胞中,如此多次往返,直至细胞内外溶液浓度达到动态平衡时,将此饱和溶液滤出,继续多次加入新溶剂,就可以把所需要的成分近于完全溶出或大部溶出。
化学成分在某种溶剂中的溶解度大小遵循“相似相溶”的规律:即亲脂性的化学成分易溶于亲脂性的溶剂,难溶于亲水性的溶剂;反之,亲水性的化学合成分易溶于亲水性的溶剂,难溶于亲脂性的溶剂。
这种亲脂性和亲水性的强弱直接与化学成分或溶剂的分子结构相关,我们可通过其极性的大小来估计它的亲脂性或亲水性。
这也是选择提取溶剂最重要的依据。
那么,影响化学成分极性的因素有哪些呢?一般来说:(1)分子大、碳数多,极性小、亲脂性强;分子小、碳数少,极性大、亲水性强。
(2)在化合物基本母核相同或相近情况下,化合物极性大小主要取决于取代基极性大小,取代基的极性越大或数目越多,则整个分子的极性越大,亲水性越强,而亲脂性越弱;其分子非极性部分越大,则极性越小,亲脂性越强,而亲水性就越弱。
第二章粉碎第一节粉碎的基本概念一、粉碎的涵义固体物料在外力作用下,克服分子间的内聚力,使固体物料外观尺寸由大变小,物料的比表面积由小变大的过程,称之为粉碎。
将固体物料粉碎的方法有多种,通常采用机械方法。
物料的粉碎作业通常是在破碎机和粉磨机内进行的,所以,按物料粉碎的粗细程度,又划分为破碎和磨碎两个过程。
为了明确起见,通常按以下方法加以划分:粗碎—将物料破碎到100mm左右破碎中碎—将物料破碎到30mm左右细碎—将物料破碎到3mm左右粉碎粗磨—将物料粉磨到左右粉磨细磨—将物料粉磨到60m左右超细磨—将物料粉磨到5m或更小粉碎过程的实质与以下因素有关,即克服物料表面质点的表面张力和克服物料内部质点间的内聚力。
从硅酸盐物理化学分散系的基本概念出发,不难看出,当初碎时,破碎后物料的颗粒仍很大,所以,颗粒表面及表面能都较小,到目前为止,用一般的机械方法,将物料破碎到1微米以下是困难的,质点越小,表面能越高,所以就要消耗更多的确能量去克服表面能。
另外,在粉磨时,由于微粒的运动加快,质点间的碰撞机率增大,还可能产生聚结和聚沉现象。
因此,必须正确地组织粉碎过程,根据最终产物的粒度来选择粉碎方法和设备。
二、粉碎的目的和意义粉碎的目的在于减小固体物料的尺寸,使之变成颗粒体(或称粉体)。
其意义在于:1.有利于不同组分的分离,选矿及除去原料中的杂质;2.粉碎使固体物料颗粒化,将具有某些流体性质,而具有良好的流动性,因而有利于物料的输送及给料控制;3.减少固体颗粒尺寸,提高分散度,因而使之容易和流体或气体作用,有利于均匀混合,促进制品的均质化;4.把固体物料加工成为多种粒级的颗粒料,采用多级颗粒级配,可以获得紧密堆积,因而有利于提高制品的密度,而且粉碎加工可破坏封闭气孔,也有利于提高制品的密度;5.颗粒尺寸愈小,其比表面积也就愈大,表面能也愈大,因而可促进物理化学反应速度,促进陶瓷和耐火材料的烧结,提高水泥的水化活性,加速玻璃配合料的熔化速度。