化工原理上册课后习题答案陈敏恒版.doc
- 格式:doc
- 大小:3.29 MB
- 文档页数:93
第一章流体流动1、什么是连续性假定?质点的含义是什么?有什么条件?连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点?拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降? 粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
4、静压强有什么特性?①静止流体中,任意界面上只受到大小相等、方向相反、垂直于作用面的压力; ②作用于某一点不同方向上的静压强在数值上是相等的;③压强各向传递。
7、为什么高烟囱比低烟囱拔烟效果好?由静力学方程可以导出)g -H(p 热冷ρρ=∆,所以H 增加,压差增加,拔风量大。
8、什么叫均匀分布?什么叫均匀流段?均匀分布指速度分布大小均匀;均匀流段指速度方向平行、无迁移加速度。
9、伯努利方程的应用条件有哪些?重力场下、不可压缩、理想流体作定态流动,流体微元与其它微元或环境没有能量交换时,同一流线上的流体间能量的关系。
12、层流与湍流的本质区别是什么?区别是否存在流体速度u 、压强p 的脉动性,即是否存在流体质点的脉动性。
13、雷诺数的物理意义是什么?物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程?其应用条件有哪些?232d lu μϕ=∆应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
15、何谓水力光滑管?何谓完全湍流粗糙管?当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
化工原理陈敏恒第三版上册答案【篇一:化工原理答案第三版思考题陈敏恒】lass=txt> 传质是体系中由于物质浓度不均匀而发生的质量转移过程。
3.在传质理论中有代表性的三个模型分别为双膜理论、溶质渗透理论、表面更新理论。
5. 根据双膜理论两相间的传质阻力主要集中在相界面两侧的液膜和气膜中,增加气液两相主体的湍流程度,传质速率将增大。
8、操作中精馏塔,保持f,q,xf,d 不变,(1)若采用回流比r 小于最小回流比rmin ,则xd 减小,xw 增大(2)若r 增大,则xd 增大, xw 减小,l/v 增大。
9、连续精馏塔操作时,增大塔釜蒸汽用量,而回流量及进料状态f,xf,q 不变,则l/v 变小,xd 变小,xw 变小。
10、精馏塔设计时采用的参数f,q,xf,d,xd,r 均为定值,若降低塔顶回流液的温度,则塔内实际下降液体量增大,塔内实际上升蒸汽量增大,精馏段液汽比增大,所需理论板数减小。
11、某精馏塔的设计任务:原料为f,xf ,要求塔顶为xd ,塔底为xw ,设计时若已定的塔釜上升蒸汽量v’不变,加料热状况由原来的饱和蒸汽改为饱和液体加料,则所需理论板数nt 增加,精馏段上升蒸汽量v 减少,精馏段下降液体量l 减少,提馏段下降液体量l ’不变。
(增加、不变、减少)12、操作中的精馏塔,保持f,q ,xd,xw,v ’不,变,增大xf, ,则:d变大,r 变小,l/v 变小(变大、变小、不变、不确定)1.何种情况下一般选择萃取分离而不选用蒸馏分离?萃取原理: 原理利用某溶质在互不相溶的溶剂中的溶解度利用某溶质在互不相溶的溶剂中的溶解度互不相溶的溶剂中的不同,用一种溶剂(溶解度大的)不同,用一种溶剂(溶解度大的)把溶质从另一种溶剂(溶解度小的)中提取出来,从另一种溶剂(溶解度小的)中提取出来,再用分液将它们分离开来。
分液将它们分离开来再用分液将它们分离开来。
萃取适用于微溶的物质跟溶剂分离,蒸馏原理:利用互溶的液体混合物中各组分的沸点不同,利用互溶的液体混合物中各组分的沸点不同,给液体混合物加热,使其中的某一组分变成蒸气再给液体混合物加热,冷凝成液体,从而达到分离提纯的目的。
化工原理第三版上册陈敏恒答案【篇一:化工原理答案第三版思考题陈敏恒】问题1. 什么是连续性假定? 质点的含义是什么? 有什么条件?答1.假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
质点是含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
问题2. 描述流体运动的拉格朗日法和欧拉法有什么不同点?答2.前者描述同一质点在不同时刻的状态;后者描述空间任意定点的状态。
问题3. 粘性的物理本质是什么? 为什么温度上升, 气体粘度上升, 而液体粘度下降? 答3.分子间的引力和分子的热运动。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主;温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
问题4. 静压强有什么特性?答4.静压强的特性:①静止流体中任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于任意点所有不同方位的静压强在数值上相等;③压强各向传递。
(1)试画出容器内部受力示意图(用箭头的长短和方向表示受力大小和方向);(2)试估计容器底部内侧、外侧所受的压力分别为多少?哪一侧的压力大?为什么?答5.1)图略,受力箭头垂直于壁面、上小下大。
外部压强p=f/a=10/0.008=1.25kpa内部压强4.91kpa。
题5附图题6附图因为容器内壁给了流体向下的力,使内部压强大于外部压强。
问题6. 图示两密闭容器内盛有同种液体,各接一u形压差计,读数分别为r1、r2,两压差计间用一橡皮管相连接,现将容器a连同u 形压差计一起向下移动一段距离,试问读数r1与r2有何变化?(说明理由)答6.容器a的液体势能下降,使它与容器b的液体势能差减小,从而r2减小。
r1不变,因为该u形管两边同时降低,势能差不变。
问题7. 为什么高烟囱比低烟囱拔烟效果好?答8.前者指速度分布大小均匀;后者指速度方向平行、无迁移加速度。
化工原理习题及解答(华南理工大学化工原理教研组编)2004年6月流体力学与传热第一章 流体流动1.1 解:混合气体的平均分子量Mn 为Mn=M 2co y 2co + M 2o y 2o + M 2N y 2N + M O H 2y O H 2=44×0.085+32×0.075+28×0.76+18×0.08=28.86kg/kmol该混合气体在500℃,1atm 时的密度为ρ=po T p To Mm **4.22**=4.2286.28×273273=0.455kg/m ³ 1.2 解:设备上真空表的绝对压强为绝对压强=大气压―真空度=740―100=640mmHg=640×760100133.15⨯=8.53×104N/m²设备内的表压强为 表压强=―真空度=―100mmHg =―(100×760100133.15⨯)=―1.33×104N/m² 或表压强=―(100×1.33×102)=―1.33×104N/m²1.3 解:设通过孔盖中心的0—0水平面上液体的静压强为p ,则p 便是罐内液体作用于孔盖上的平均压强。
根据流体静力学基本方程知p=p a +ρg h作用在孔盖外侧的是大气压强p a ,故孔盖内外两侧所受压强差为Δp =p ―p a = p a +ρgh ―=a p ρghΔp=960×9.81(9.6―0.8)=8.29×104N/m²作用在孔盖上的静压力为 =p Δp ×24d π=8.29×104241076.376.04⨯=⨯⨯πN每个螺钉能承受的力为N 321004.6014.04807.9400⨯=⨯⨯⨯π螺钉的个数=3.76×10341004.6⨯=6.23个1.4 解:U 管压差计连接管中是气体。
化工原理第三版(陈敏恒)上、下册课后思考题答案(精心整理版)第一章流体流动1、什么是连续性假定?质点的含义是什么?有什么条件?连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点?拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降?粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
4、静压强有什么特性?①静止流体中,任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于某一点不同方向上的静压强在数值上是相等的;③压强各向传递。
7、为什么高烟囱比低烟囱拔烟效果好?由静力学方程可以导出,所以H增加,压差增加,拔风量大。
8、什么叫均匀分布?什么叫均匀流段?均匀分布指速度分布大小均匀;均匀流段指速度方向平行、无迁移加速度。
9、伯努利方程的应用条件有哪些?重力场下、不可压缩、理想流体作定态流动,流体微元与其它微元或环境没有能量交换时,同一流线上的流体间能量的关系。
12、层流与湍流的本质区别是什么?区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
13、雷诺数的物理意义是什么?物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程?其应用条件有哪些?应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
15、何谓水力光滑管?何谓完全湍流粗糙管?当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
第一章流体流动1、什么是连续性假定?质点的含义是什么?有什么条件?连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点?拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降? 粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
4、静压强有什么特性?①静止流体中,任意界面上只受到大小相等、方向相反、垂直于作用面的压力; ②作用于某一点不同方向上的静压强在数值上是相等的;③压强各向传递。
7、为什么高烟囱比低烟囱拔烟效果好?由静力学方程可以导出)g -H(p 热冷ρρ=∆,所以H 增加,压差增加,拔风量大。
8、什么叫均匀分布?什么叫均匀流段?均匀分布指速度分布大小均匀;均匀流段指速度方向平行、无迁移加速度。
9、伯努利方程的应用条件有哪些?重力场下、不可压缩、理想流体作定态流动,流体微元与其它微元或环境没有能量交换时,同一流线上的流体间能量的关系。
12、层流与湍流的本质区别是什么?区别是否存在流体速度u 、压强p 的脉动性,即是否存在流体质点的脉动性。
13、雷诺数的物理意义是什么?物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程?其应用条件有哪些?232d lu μϕ=∆应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
15、何谓水力光滑管?何谓完全湍流粗糙管?当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
化工原理第三版(陈敏恒)上、下册课后思考题答案(精心整理版)化工原理第三版(陈敏恒)上、下册课后思考题答案(精心整理版)第一章流体流动1、什么是连续性假定?质点的含义是什么?有什么条件?连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点?拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么?为什么温度上升,气体粘度上升,而液体粘度下降?粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程?其应用条件有哪些?232d luμ?=?应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
15、何谓水力光滑管?何谓完全湍流粗糙管?当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
在Re 很大,λ与Re 无关的区域,称为完全湍流粗糙管。
16、非圆形管的水力当量直径是如何定义的?能否按42ed u π计算流量? 当量直径定义为∏=?=A 44d浸润周边管道截面积e 。
不能按该式42ed u π计算流量。
17、在满流的条件下,水在垂直直管中向下流动,对同一瞬时沿管长不同位子的速度而言,是否会因重力加速度而使下部的速度大于上部的速度?因为质量守恒,直管内不同轴向位子的速度是一样的,不会因为重力而加快,重力只体现在压强的变化上。
20、是否在任何管路中,流量增大阻力损失就增大;流量减小阻力损失就减小?为什么?不一定,具体要看管路状况是否变化。
化工原理习题解答
教材:高等学校教学用书《化工原理》作者:陈敏恒丛德滋方图南等
出版社:化学工业出版社
1985 年 9 月第一版
圆角矩形: 丁文捷藏书
目录
第一章流体流动 1
第二章流体输送机械 29
第三章液体的搅拌 38
第四章流体通过颗粒层的流动 41 第五章颗粒的沉降和流态化 51
第六章传热 59
第七章蒸发 94
第八章吸收 101
第九章精馏 119
第十章气液传质设备 143
第十一章萃取 148
第十二章热、质同时传递的过程 157 第十三章固体干燥 162
空气-水系统的焓-湿度图
空气-水系统的湿度-温度图。
化工原理上册课后习题答案流体力学与传热第一章 流体流动1.1 解:混合气体的平均分子量Mn 为Mn=M 2co y 2co + M 2o y 2o + M 2N y 2N + M O H 2y O H 2 =44×0.085+32×0.075+28×0.76+18×0.08 =28.86kg/kmol该混合气体在500℃,1atm 时的密度为 ρ=po T p To Mm **4.22**=4.2286.28×273273=0.455kg/m ³1.2 解:设备上真空表的绝对压强为 绝对压强=大气压―真空度 =740―100=640mmHg=640×760100133.15⨯=8.53×104N/m²设备内的表压强为表压强=―真空度=―100mmHg=―(100×760100133.15⨯)=―1.33×104N/m²或表压强=―(100×1.33×102)=―1.33×104N/m²1.3 解:设通过孔盖中心的0—0水平面上液体的静压强为p ,则p 便是罐内液体作用于孔盖上的平均压强。
根据流体静力学基本方程知 p=p a +ρg h作用在孔盖外侧的是大气压强p a ,故孔盖内外两侧所受压强差为Δp =p ―p a = p a +ρgh ―=a p ρghΔp=960×9.81(9.6―0.8)=8.29×104N/m²作用在孔盖上的静压力为=pΔp ×24d π=8.29×104241076.376.04⨯=⨯⨯πN每个螺钉能承受的力为N 321004.6014.04807.9400⨯=⨯⨯⨯π螺钉的个数=3.76×10341004.6⨯=6.23个1.4解:U 管压差计连接管中是气体。
第3章液体的搅拌(一)习题旋转液体的自由液面3-1如图3-1所示。
搅拌器带动槽内全部液体以等角速度ω旋转,搅拌槽为敞口,中心处液面高度为。
试证:.图3-1(1)半径为r处的液面高度满足下式(2)设槽内液体静置时的液面高度为H,则解:(1)搅拌器带动槽内液体以等角速度ω旋转,液体中任一质点m(x,y,z)处的离心惯性力:F=mrω²式中M为质点质量,ω为角速度,r22()。
x+y 单位质量离心力F/m在x轴、y轴方向的分量为:X=rω²cosα=xω²Y=rω²sinα=yω²沿远方向的质量力分量为Z=-g将单位质量力带入等压面微分方程式有dp=ρ(xω²dx+yω²dy-gdz)=0积分有1/2x²ω²+1/2y²ω²-gz=01/2r²ω²-gz=C在自由表面上当r=0,z=0可得积分常数C=0,故自由液面方程为z=ω²r²/2g半径为r处的液面高度为:z=z0+ω²r²/2g(2)槽内液体在搅拌器的带动下液面呈抛物体状V抛=πω2R4/4g①液体体积不变πR2H-V抛=πR2z0②联立①、②可得z0=H-ω2R2/4g搅拌功率3-2某开启式平直叶涡轮搅拌装置,D/d=3,h1/d=1,d/B=5(各符号命名见图3-2)。
搅拌槽内设有挡板,搅拌器有6个叶片,直径为150mm,转速为300r/min,液体密度为970kg/m3,黏度为1.2mPa·s,试估算搅拌器的功率。
若上述搅拌装置中搅拌液体的黏度增加了10倍,密度基本不变,此时搅拌器的功率有何变化?图3-2典型的搅拌器各部比例涡轮叶片数Z=6,4块挡板D/d=3;h/d=3;B/d=1/5;l/d=1/4;h1/d=1;b/d=3/10。
解:(1)已知ρ=970㎏/m3,n=300r/min,μ=1.2mPa·S,d=150mmRe=ρnd2/μ=90937.5>104此时液体为湍流状态,由曲线3-9曲线2查得K=4.2P=Kρn3d5=38.7W(2)当μ=12mPa·S时,其他条件不变Re=ρnd2/μ=9093.75由教材图3-9曲线2查得K=4.0P=Kρn3d5=36.8W搅拌器放大3-3在小规模生产时搅拌某液体所用的搅拌釜容积为10L,采用直径为75mm 开启平直叶涡轮搅拌器,在转速为1500r/min 时获得良好的搅拌效果。
解题思路:1. 已知:ΔZ=10m, P 2(表)=0.06MPa ,无缝钢管Φ57×3.5mm,L=50m,ρ=1200kg/m 3,μ=2mpa ・S,ε=0.3mm求:(1) 管路方程(2) q v =30m 3/h 时的H e ,P e解题思路:(1) ∵在阻力平方区 ∴λ=f(ε/d)ε/d, 查图得λ管路特性方程25228)(v e q d g g P z H πλ+ρ+∆=l表(2) q v =30m 3/h 时,25228)(v e q d g g P z H πλ+ρ+∆=l表g q H P v e e ρ⋅⋅=2. 已知:D=0.4m, H=0.2m, n=1000r/min, ρ=1000kg/m 3,求:(1) 顶盖P=f(r)Rr r Rr r g u g ====0202)2(ρP解题思路:离心力场中静力学方程为C 2r gz P 22==−+常数ρωρ ∴2r gz P C 20200ρω−ρ+= 由小孔处条件知0P (表)=0,0z =0, 0r =0∴C=0gz r 21P 22ρ−ρω=∴ z= z 0 =0,(2) ∵02r gz P 22==ρω−ρ+常数 ∴P 2)(22r gz P ρωρ=+=gu g r g 22222==∴ωρP R r r R r r g u g =====ρ∴0202P3. 已知:q v =71m 3/h, P 1 (真)=0.029MPa ,P 2 (表)=0.31MPa ,d 1=d 2,Δz 12=0,ρ=1000kg/m 3,P 轴=10.4kW求:H e ,η解题思路:(1)由泵吸入端(截面)至泵出口端(2截面)列机械能衡算式g 2u z g P He g2u z g P 22222111++ρ=+++ρ得 ∵高度差不计,且d 1=d 2, u 1=u 2,gP P g P P He ρ+=ρ−=∴(真)表)1212( ()轴轴P g q H P P v e e ρ==η24. 已知:吸入管Φ70×3mm, L AB =15m, 压出管Φ60×3mm, L CD =80m, λ=0.03, Δz=12m, He=30-6×105q v 2,求:q V , q‘v解题思路:(1)从江面至高位槽液面排机械能衡算式得管路特性方程 H=Δz+ΣH f =Δz+2522512)88(v CDAB q g d L g d L ππλ+将管路方程与泵的特性方程联立,可得q V(2)江面下降3m ,Δz =15,两方程重新联立5. 已知:ΔP /ρg ,d ,l,ε,μ,ρ,He=A-Bq v 2求:计算q v 的框图 解题思路:∵ −=⋅+∆=22258vv Bq A He g q d Lg H πλρP 2152)]8/()[(gd LB g A q v πλρ+∆−=∴P框图如下:是输 出 q v6. 已知:离心水泵的特性曲线数据如下:q v l /min 0 1200 2400 3600 4800 6000 H e m 34.5 34 33 31.5 28 26 管路Δz=5m,L=360m,d=120mm,λ=0.02,两槽敞口求:q v ,P e解题思路:对于管路:有2v 52q gd L 8z g P H πλ+∆+ρ∆= 两槽敞口 ∴ΔP=0 将数据列表:流量q v m 3/s 0 0.02 0.04 泵 H e m34.5 34 33 管路H m5 14.6 43.21作图求得交点:q v ,H e∴Pe=q v H e ρg7.已知:泵特性方程H e =20-2q v 2(H e -m ,q v -m 3/min ),单泵q v =1m 3/min ,两敞口容器z 12=10m求:q v =1.5m 3/min 时,两泵串联还是并联。
化工原理习题答案(上册)第一章 流体流动1 P A (绝)= 1.28×105 N/m 2P A (表)= 2.66×104N/m 22 W = 6.15吨3 F = 1.42×104NP = 7.77×104Pa4 H = 0.39m5 △P = 2041×105N/m 26 P = 1.028×105Pa △h = 0.157m7 P (绝)= 18kPa H = 8.36m8 H = R P A > P B9 略10 P = P a exp[-Mgh/RT]11 u = 11.0m/s ; G = 266.7kg/m 2sq m = 2.28kg/s12 R = 340mm13 q v = 2284m 3/h14 τ= 1463s15 H f = 0.26J/N16 会汽化 17 )()(222212121A A P P A u −−=ρ )()(222212112A A P P A u −−=ρ 18 F = 4.02×103N19 略20 u 2 = 3.62m/s ; R = 0.41m21 F = 151N22 v = 5.5×10-6m 2/s 23 max u u−=0.817 a = 1.0624 略25 P (真)= 95kPa ; P (真)变大26 Z = 12.4m27 P (表)= 3.00×105N/m 228 q v = 3.39m 3/h P 1变小 P 2变大29 q v = 1.81m 3/h30 H = 43.8m31 τ= 2104s32 H e = 38.1J/N33 q v =0.052m 3/s=186m 3/h34 q v1 = 9.7m 3/h ; q v2 = 4.31m 3/hq v3 = 5.39m 3/h ; q ,v3 = 5.39m 3/h35 q vB /q vC = 1.31 ; q vB /q vC =1.05 ;能量损失36 P 1(绝)=5.35×105Pa37 = 13.0m/s−u 38 q v = 7.9m3/h39 q VCO2(上限)=3248l/h 40 dydu = 500 l/s ; τ=3×104Pa F = 3×102N P = 150w41 h e = 60.3J/kg42 τy = 18.84Pa μ∞ = 4.55Pa ・s43 τy = 39.7Pa44 略第二章 流体输送机械1 H e = 15+4.5×105q V 2H e = 45.6J/N P e = 4.5KW2 P = ρω2r 2/2 ; Φ/ρg = u 2/2g = 22.4J/N3 H e = 34.6J/N ; η = 64﹪4 略5 q V = 0.035m 3/s ; P e = 11.5KW6 串联7 q V = 0.178m 3/min ; q V , = 0.222m 3/min8 会汽蚀9 安装不适宜,泵下移或设备上移10 IS80-65-160 或 IS100-65-31511 ηV = 96.6﹪12 不适用13 P = 33.6KW ; T 2 = 101.0℃14 q V = 87.5m 3/h ; 选W 2第三章 流体的搅拌1 略2 P = 38.7w ; P’ = 36.8w3 d/d 1 = 4.64 ; n/n 1 = 0.359 ; N/N 1 = 100第四章 流体通过颗粒层的流动1 △φ = 222.7N/m 22 △φ/L = 1084Pa/m3 V = 2.42m 34 K = 5.26×10-4m2/s ; q e = 0.05m3/m25 A = 15.3m2 ; n = 2台6 略7 △V0 = 1.5L8 △V = 13L9 q = 58.4l/m2 ; τw = 6.4min10 τ = 166s ; τw = 124s11 K = 3.05×10-5m2/sV e = 5.06×10-2m3 ; V = 0.25m312 n’ = 4.5rpm ; L’/L = 2/3第五章颗粒的沉降和流态化1 u t = 7.86×10-4m/s ; u t’ = 0.07m/s2 d P = 88.8μm3 τ = 8.43×10-3s ; s = 6.75×10-5m4 d pmax = 3.6μm5 d pmin = 64.7μm ; ηP = 60﹪6 可完全分开7 ζRe2<488 η0 = 0.925 ; x出1 = 0.53x出2 = 0.27 ; x出3 = 0.20x出4 = 0 ; W出 = 59.9kg/day9 ε固 = 0.42 ; ε流 = 0.71 ; ΔФ = 3.14×104N/m210 略11 D扩 = 2.77m12 略第六章传热1 δ1 = 0.22m ; δ2 = 0.1m2 t1 = 800℃3 t1 = 405℃4 δ = 50mm5 (λ’-λ)/ λ = -19.7﹪6 略7 Q,/Q = 1.64 λ小的放内层8 a = 330W/m2*℃9 a = 252.5W/ m2*℃10 q = 3.69kw/m211 q1/q2 =112 w = 3.72×10-3kg/s ; w’= 7.51×10-3kg/s13 T g = 312℃14 T w = 746K15 τ = 3.3hr16 εA = 0.48 ; εB = 0.4017 略18 热阻分率0.3﹪ K’= 49.0W/m2・℃ ; K,, = 82.1W/m2・℃19 w = 3.47×10-5kg/m・s ; t w = 38.7℃20 δ= 82mm21 a1 =1.29×104W/m2・℃ ; a,2 = 3.05×103W/m2・℃ ; R = 7.58*10-5m2・℃/W22 δ= 10mm ; Q max = 11.3KW23 R = 6.3×10-3m2・℃/W24 n = 31 ; L = 1.65m25 L = 9.53m26 q m = 4.0kg/s ; A = 7.14m227 q m2 = 10.9kg/s ; n = 36 ; L = 2.06m ; q,m1 = 2.24kg/s28 q m = 0.048kg/s29 t2 = 76.5℃ ; t2 = 17.9℃30 t,2 = 98.2℃ ; 提高水蒸气压强 T’= 112.1℃31 q m1 = 1.24kg/s32 T,2 = 78.7℃ ; t,2 = 61.3℃33 T = 64.6℃ ; t2a = 123.1℃ ; t2b = 56.9℃34 t2 = 119℃35 τ = 5.58hr36 单壳层Δt m = 40.3℃ ; 双壳层Δt m’= 43.9℃37 a = 781W/m2・℃38 L = 1.08m ; t2’= 73.2℃39 N P = 2 ; N T = 114 ; L实 = 1.2L计 = 3.0m ; D = 460mm第七章蒸发1 W = 1500kg/h ; w1 = 12.8﹪ ; w2 = 18.8﹪2 Δt = 12.0℃3 A = 64.7m2 ; W/D = 0.8394 W = 0.417kg/s ; K = 1.88×103W/m2・℃ ; w’= 2.4﹪5 t1 = 108.6℃ ; t2 = 90.9℃ ; t3 = 66℃6 A1 = A2 = 9.55m2。
化工原理习题及解答(华南理工大学化工原理教研组编)2004年6月流体力学与传热第一章 流体流动1.1 解:混合气体的平均分子量Mn 为Mn=M 2co y 2co + M 2o y 2o + M 2N y 2N + M O H 2y O H 2=44×0.085+32×0.075+28×0.76+18×0.08=28.86kg/kmol该混合气体在500℃,1atm 时的密度为ρ=po T p To Mm **4.22**=4.2286.28×273273=0.455kg/m ³ 1.2 解:设备上真空表的绝对压强为绝对压强=大气压―真空度=740―100=640mmHg=640×760100133.15⨯=8.53×104N/m²设备内的表压强为 表压强=―真空度=―100mmHg =―(100×760100133.15⨯)=―1.33×104N/m² 或表压强=―(100×1.33×102)=―1.33×104N/m²1.3 解:设通过孔盖中心的0—0水平面上液体的静压强为p ,则p 便是罐内液体作用于孔盖上的平均压强。
根据流体静力学基本方程知p=p a +ρg h作用在孔盖外侧的是大气压强p a ,故孔盖内外两侧所受压强差为Δp =p ―p a = p a +ρgh ―=a p ρghΔp=960×9.81(9.6―0.8)=8.29×104N/m²作用在孔盖上的静压力为 =p Δp ×24d π=8.29×104241076.376.04⨯=⨯⨯πN每个螺钉能承受的力为N 321004.6014.04807.9400⨯=⨯⨯⨯π螺钉的个数=3.76×10341004.6⨯=6.23个1.4 解:U 管压差计连接管中是气体。
若以Hg O H g ρρρ,,2分别表示气体,水和水银的密度,因为gρ《Hg ρ,故由气体高度所产生 的压强差可以忽略。
由此可认为DB c A p p p p ≈≈及 由静力学基本方程式知c A p p ≈=222gR gR Hg O H ρρ+=1000×9.81×0.05+13600×9.81×0.05=7161N/m²1gR p p p Hg A D B ρ+=≈=7161+13600×9.81×0.4=6.05×104N/m(表压)1.5 解:1)1,2,3三处压强不相等,因为这三处虽在静止流体的同一水平面上,但不是连通着的 同一种流体。
2)4,5,6三处压强相等,因为这三处是静止的,连通这的同一种流体内,并在同一水平面上。
3)54p p =即 112222)(gh h h g p gh p p Hg O H B O H A ρρ+-+=+ 12)(gh p p O H Hg A B ρρ--=∴=101330―(13600―1000)×9.81×0.1=88970N/m² 或 B p =12360N/m ²(真空度)又由于64p p =即 222gh p gh p Hg C O H A ρρ+=+所以=c p 22)(gh p O H Hg A ρρ--=101330―(13600―1000)×9.81×0.2=76610N/m ²或=c p 24720N/m ²(真空度)1.6 解:在串联U 管的界面上选2,3,4为基准面,利用流体静力学基本原理从基准面2开始,写出各基准面压强的计算式,将所得的各式联解,即可求出锅炉上方水蒸气的压强0p 。
)(2122h h g p p p Hg a -+='=ρ 或 )(212h h g p p Hg a -=-ρ)(23233h h g p p p O H a --='=ρ 或 )(23223h h g p p O H --=-ρ)(4344h h g p p p Hg a -+='=ρ或 )(4334h h g p p Hg -=-ρ )(45240h h g p p O H --=ρ 或 )(45240h h g p p o H --=-ρ将以上右式各式相加,并整理得)]()[()]()[(4523243210h h h h g h h h h g p p O H Hg a -+---+-+=ρρ将已知值代入上式得7607450=p ×101330+13600×9.81[(2.3―1.2)+(2.5―1.4)] ―1000×9.81[(2.5―1.2)+(3―1.4)]=364400N/m ²或0p =364400/9.807×104=3.72kgf/cm ²1.7 解:当管路内气体压强等于大气压强时,两扩大室的液面平齐。
则两扩大室液面差Δh 与微差压差计读数R 的关系为R d h D 2244ππ=∆当压差计读数R=300mm 时,两扩大室液面差为Δh=R m D d 003.0)606(3.0)(22== 以21,ρρ分别表示水与油的密度,根据流体静力学基本原理推导出h g gR p p a ∆+-=-221)(ρρρ即管路中气体中的表压强p 为p=(998―920)×9.81×0.3+920×9.81×0.003=257N/m ²(表压)1.8 解:1)空气的质量流量从本教材附录三查得标准状况下空气的密度为1.293kg/m ³。
操作压强5451095.210807.92100133.1760740⨯=⨯⨯+⨯⨯=p N/m ² 操作条件下空气的密度为ρ=ρ'=''p T p T 1.293×355/18.3100133.1)50273(1095.2273m kg =⨯+⨯⨯空气的质量流量为 s kg uA w s /09.118.302.0412192=⨯⨯⨯⨯==πρ2)操作条件下空气的体积流量]s m w V s s /343.018.3/09.1/3===ρ3)标准状况下空气的体积流量为 s m w V s s /843.0293.1/09.1/3=='='ρ1.9 解:以下标1表示压强为1atm 的情况,下标2表示压强为5atm 的情况。
在两种情况下 s s s w w w ==21T T T ==21u u u ==21 由于 222111ρρA u A u w s ==21122124P T p T d A ρρπ==所以2121212)(p p d d ==ρρ 即 mm p p d d 0313.05107.02112=== 1.10 解:以高位槽液面为上游截面1—1’,连接管出口内侧为下游截面2—2’,并以截面1—1’为基准水平面。
在两截面间列柏努利方程式,即∑+++=++f h p u gZ p u gZ ρρ2222121122 式中 01=Z s m A V u p u s /62.1033.0436005/(002211=⨯⨯==≈≈π表压)表压)(/980710807.91.0242m N p =⨯⨯=kg J h f /30=∑将上列数值代入柏努利方程式,并解得m Z 37.481.9/)308509807262.1(22-=++-= 高位槽内的液面应比塔的进料口高4.37m 。
1.11 解:1)A ——A’截面处水的流速以高位槽液面为上游截面1——1’,管路出口内侧为下游截面2——2’,并以地面为基准面。
在两截面间列柏努利方程式,即∑+++=++f h p u gZ p u gZ ρρ2222121122 式中 m Z 81= m Z 22=2222115.65.60u u h p p u f ===≈∑将上列数值代入柏努利方程式,并解得s m u /9.27/681.92=⨯=由于输水管的直径相同,且水的密度可视为常数,所以A ——A ’截面处的流速s m u A /9.2=2)水的流量 23360036000.1 2.982/4h V Au m h π==⨯⨯⨯=1.12 解:上游截面A ——A ’,下游截面B ——B ’,通过管子中心线作基准水平面。
在两接间列柏努利方程式,即 ∑+++=++AB f B B B A A A h p u gZ p u gZ ,2222ρρ 式中 ∑====kg J hs m u Z Z AB f A B A /5.1/5.20,根据连续性方程式,对于不可压缩流体,则 2244B B A A d u d u ππ= 所以s m d d u u B AA B /23.1)4733(5.2)(22===两截面的压强差为ρ)2(,22∑--=-AB f B A A B h u u p p=(222/5.8681000)5.1223.15.2m N =⨯-- 即A B p p -=868.5/9.798=88.6mmH2O 两截面玻璃管的水面差为88.6mm 。
由于 A B p p +=6.88所以 A B p p >B 处玻璃管的水面比A 处玻璃管的水面高。
1.13 解:水在管内流速与流量贮槽水面为截面1——1’,真空表连接处为截面2——2’,并以截面1——1’为基准水平面。
在两截面间列柏努利方程,即∑+++=++1,2222121122f h p u gZ p u gZ ρρ 式中01=Z m Z 5.12=2(0221,1≈==∑u u h p f 表压)表压)(/1047.2100133.17601852452m N p ⨯-=⨯⨯-= 将上列数值代入柏努利方程式,并解得水在管内的流速为s m u /25.2)5.181.910001047.2(4=⨯-⨯= 水的流量为s kg uA w s /92.71000071.0422=⨯⨯⨯==πρ2)泵的有效功率贮槽水面为上游截面1——1’,排水管与喷头连接处为下游截面3——3’,仍以截面1——1’为基准水平面。
在两截面间列柏努利方程,即∑∑++++=+++2,1,2222121122f f e h h p u gZ W p u gZ ρρ 式中(表压)00111=≈=p u Z 表压)(/10807.9/21424222m N p s m u m Z ⨯===2222,1,12102u u u h h f f =+=+∑∑将上列数值代入柏努利方程式,并解得kg J W e /4.28525.12100010807.91481.924=⨯+⨯+⨯= 泵的有效功率为kW W w W N s e e 26.2226092.74.285==⨯==2.14解:本题属于不稳定流动,槽内液面下降1m 时所需要的时间,可通过微分时间内的物料衡式与瞬间柏努利方程式求解。