整式化简求值专项训练
- 格式:doc
- 大小:89.00 KB
- 文档页数:8
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.3.(2022秋•秦淮区期末)先化简,再求值:7a 2b +(﹣4a 2b +5ab 2)﹣(2a 2b ﹣3ab 2),其中a =﹣1,b =2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x 2﹣2y 2)﹣4(x 2y +xy 2)+4(x 2y 2+y 2),其中x =﹣1,y =2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y +12|=0,求2(xy 2+x 2y )﹣[2xy 2﹣3(1﹣x 2y )]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.35.(2022秋•和平区校级期中)先化简再求值:若(a +3)2+|b ﹣2|=0,求3ab 2﹣{2a 2b ﹣[5ab 2﹣(6ab 2﹣2a 2b )]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A =6a 2+2ab +7,B =2a 2﹣3ab ﹣1.(1)计算:2A ﹣(A +3B );(2)当a ,b 互为倒数时,求2A ﹣(A +3B )的值.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
整式化简求值:先化简再求值1.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a2.)45(2)45(332-+---+-x x x x ,其中2-=x3.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y4.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c5.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值6.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣137.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.8.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 9.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中10.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.11.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1.12.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5.13.先化简,再求值:32x﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2.14.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2.15.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 16.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.17.先化简,再求值:(32a﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13.18.化简求值:2111(428)(1),422x x x x -+---=-其中 19.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a =20.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 21.先化简再求值:2(2xy+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y的值,其中x=﹣2,y=2.22.先化简,再求值.4xy ﹣[2(2x+xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=23.先化简,再求值:22x +(﹣2x +3xy+22y )﹣( 2x ﹣xy+22y ),其中 x=12,y=3.24.先化简后求值:5(32xy ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.25.先化简,再求值:22223()3x x x x ++-,其中x=-1226.(52x﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.27.先化简再求值:(22x﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y =28.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣129.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 30.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
整式化简求值:先化简再求值1.令狐采学2.)3(2)2132()83(3232--+-+-a a a a a a ,其中4-=a3.)45(2)45(332-+---+-x x x x ,其中2-=x4.求)3123()31(22122y x y x x +-+--的值,其中2-=x 32=y5.22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦其中1-=a 3-=b 1=c 6.化简求值:若a=﹣3,b=4,c=﹣17,求{}222278[(2)]a bc a cb bca ab a bc --+-的值7.先化简后求值:2233[22()]2x y xy xy x y xy ---+,其中x=3,y=﹣138.化简求代数式:22(25)2(35)a a a a ---+的值,其中a=﹣1.9.先化简,再求值:2222115()(3),,23a b ab ab a b a b --+==其中 10.求代数式的值:2212(34)3(4)3,3xy x xy x x y +-+=-=,其中11.先化简,再求值:2(3a ﹣1)﹣3(2﹣5a ),其中a=﹣2.12.先化简,再求值:22212()[3()2]2xy x x xy y xy ----++,其中x=2,y=﹣1.13.先化简,再求值:222(341)3(23)1x x x x x -+---,其中x=﹣5.14.先化简,再求值:32x﹣[7x ﹣(4x ﹣3)﹣22x ];其中x=2.15.先化简,再求值:(﹣2x +5x+4)+(5x ﹣4+22x ),其中x=﹣2.16.先化简,再求值:3(x ﹣1)﹣(x ﹣5),其中x=2. 17.先化简,再求值:3(2x+1)+2(3﹣x ),其中x=﹣1.18.先化简,再求值:(32a﹣ab+7)﹣(5ab ﹣42a +7),其中a=2,b=13.19.化简求值:2111(428)(1),422x x x x -+---=-其中 20.先化简,再求值:(1)(52a +2a+1)﹣4(3﹣8a+22a )+(32a ﹣a ),其中13a =21.先化简再求值:222232(33)(53),35x x x x -+--+=-其中 22.先化简再求值:2(2xy+x 2y )﹣2(2x y ﹣x )﹣2x 2y ﹣2y的值,其中x=﹣2,y=2.23.先化简,再求值.4xy ﹣[2(2x+xy ﹣22y )﹣3(2x ﹣2xy+y2)],其中11,22x y =-=24.先化简,再求值:22x +(﹣2x +3xy+22y )﹣(2x ﹣xy+22y ),其中 x=12,y=3.25.先化简后求值:5(32xy ﹣x 2y )﹣(x 2y +32x y ),其中x=-12,y=2.26.先化简,再求值:22223()3x x x x ++-,其中x=-1227.(52x﹣32y )﹣3(2x ﹣2y )﹣(﹣2y ),其中x=5,y=﹣3.28.先化简再求值:(22x﹣5xy )﹣3(2x ﹣2y )+2x ﹣32y ,其中x=﹣3,13y =29.先化简再求值:(﹣2x +5x )﹣(x ﹣3)﹣4x ,其中x=﹣130.先化简,再求值:23)2(3)(2222==-+--y x x y y x x ,,其中, 31.223(2)[322()]x xy x y xy y ---++,其中1,32x y =-=-。
整式的化简求值(整式的乘除)-整体代入法专题练习一、选择题1、如果代数式3x2-4x的值为6,那么6x2-8x-9的值为().A. 12B. 3C. 32D. -3答案:B解答:6x2-8x-9=2(3x2-4x)-9=2×6-9=3.2、已知a2-3=2a,那么代数式(a-2)2+2(a+1)的值为().A. -9B. -1C. 1D. 9答案:D解答:原式=a2-4a+4+2a+2=a2-2a+6∵a2-3=2a,∴a2-2a=3,∴原式=3+6=9.选D.3、若代数式x2-13x的值为6,则3x2-x+4的值为().A. 22B. 10C. 7D. 无法确定答案:A解答:∵x2-13x=6,∴3x2-x+4=3(x2-13x)+4=3×6+4=18+4=22.选A.4、如果3a2+5a-1=0,那么代数式5a(3a+2)-(3a+2)(3a-2)的值是().A. 6B. 2C. -2D. -6答案:A解答:5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2·1+4=6.5、已知a-b=1,则代数式-2a+2b-3的值是().A. -1B. 1C. -5D. 5答案:C解答:-2a+2b-3=-2(a-b)-3=-2×1-3=-5,选C.6、已知代数式3x2-4x的值为9,则6x2-8x-6的值为().A. 3B. 24C. 18D. 12答案:D解答:∵3x2-4x=9,∴6x2-8x=18,∴6x2-8x-6=12,选D.7、如果a2+4a-4=0,那么代数式(a-2)2+4(2a-3)+1的值为().A. 13B. -11C. 3D. -3答案:D解答:由a2+4a-4=0可得:a2+4a=4,原式=a2-4a+4+8a-12+1=a2+4a-7=4-7=-3.选D.8、已知2x-3y+1=0且m-6x+9y=4,则m的值为().A. 7B. 3C. 1D. 5答案:C解答:∵2x-3y+1=0,∴2x-3y=-1,又∵m-6x+9y=4,∴m-3(2x-3y)=4,∴m+3=4,∴m=1.9、已知a+b=3,ab=1,则a2b+ab2的值为().A. 3B. 2C. -3D. 1答案:A解答:a2b+ab2=ab(a+b)=1×3=3.选A.10、如果x2+x=3,那么代数式(x+1)(x-1)+x(x+2)的值是().A. 2B. 3C. 5D. 6答案:C解答:原式=x2-1+x2+2x=2x2+2x-1.∵x2+x=3,∴2x2+2x-1=2(x2+x)-1=2×3-1=5.选C.11、若a+b=1,则a2-b2+2b的值为().A. 4B. 3C. 1D. 0答案:C解答:∵a+b=1,∴a2-b2+2b=(a+b)(a-b)+2b=1×(a-b)+2b=a+b=1.12、如果a2-2a-1=0,那么代数式(a-3)(a+1)的值是().A. 2B. -2C. 4D. -4答案:B解答:(a-3)(a+1)=a2-2a-3,∵a2-2a=1,∴原式=-2.选B.13、若-a2b=2,则-ab(a5b2-a3b+2a)的值为().A. 0B. 8C. 12D. 16答案:D解答:-ab(a5b2-a3b+2a)=-a6b3+a4b2-2a2b=-(a2b)3+(a2b)2-2a2b,∵-a2b=2,∴a2b=-2.∴原式=-(-2)3+(-2)2-2×(-2)=8+4+4=16.14、若x+y=1,x3+y3=13,则x5+y5的值是().A. 1181B.3181C.11243D.31243答案:A解答:由题目条件易得(x+y)2=1,x2-xy+y2=13,由此可得xy=29,x2+y2=59,∴x5+y5=(x2+y2)(x3+y3)-x2y2(x+y)=542781=1181.15、已知代数式x+2y的值是3,则代数式2x+4y+1的值是().A. 1B. 4C. 7D. 不能确定答案:C解答:∵x+2y=3,∴2x+4y+1=2(x+2y)+1,=2×3+1,=6+1,=7.选C.二、填空题16、已知a-b=2,则多项式3a-3b-2的值是______.答案:4解答:3a-3b-2=3(a-b)-2=4.17、当a=3,a-b=-1时,a2-ab的值是______.答案:-3解答:a2-ab=a(a-b)=-a=-3.18、已知t满足方程14+5(t-12017)=12,则3+20(12017-t)的值为______.答案:2解答:∵t满足方程14+5(t-12017)=12,∴t-12017=120,∴12017-t=-120,∴3+20(12017-t)=3+20×(-120)=3+(-1)=2.19、已知x,则代数式x2-4x+3的值是______.答案:4解答:∵x,∴x∴x2-4x+3=(x-2)2-1=5-1=4.20、如果x-y,那么代数式(x+2)2-4x+y(y-2x)的值是______.答案:6解答:(x+2)2-4x+y(y-2x)=x2+4+4x-4x+y2-2xy=x2+y2-2xy+4=(x-y)2+4=2+4=6.21、若代数式2x2-4x-5的值为7,则x2-2x-2的值为______.答案:4解答:∵2x2-4x-5=7,∴2x2-4x=12,∴x2-2x=6,∴x2-2x-2=6-2=4.22、若3x3-kx2+4被3x-1除后余3,则k的值为______.答案:10解答:3x3-kx2+4-3=3x3-kx2+1,令3x3-kx2+1=0,故x=13为该方程的解,代入解得,k=10.23、已知x2+2x=3,则代数式(x+1)2-(x+2)(x-2)+x2的值为______.答案:8解答:原式=x2+2x+1-(x2-4)+x2=x2+2x+5=3+5=8.三、解答题24、已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.答案:9.解答:原式=x2-4x+4+x2-9=2x2-4x-5.∵x2-2x-7=0,∴x2-2x=7.∴原式=2(x2-2x)-5=2×7-5=9.25、已知x2+4x-5=0,求代数式2(x+1)(x-1)-(x-2)2的值.答案:-1.解答:原式=2(x2-1)-(x2-4x+4)=2x2-2-x2+4x-4=x2+4x-6.∵x2+4x-5=0,∴x2+4x=5.∴原式=x2+4x-6=-1.26、若实数a满足a2-2a-1=0,计算4(a+1)(a-1)-2a(a+2)的值.答案:-2.解答:原式=4a2-4-2a2-4a=2a2-4a-4.∵a2-2a=1,∴原式=2-4=-2.27、已知x2-2x=3,求2x(x+2)-8x+7的值.答案:13.解答:2x(x+2)-8x+7=2x2+4x-8x+7=2x2-4x+7=2(x2-2x)+7,∵x2-2x=3,∴原式=2×3+7=13.28、化简求值:已知a2+7a+6=0,求(3a-2)(a-3)-(2a-1)2的值.答案:11.解答:(3a-2)(a-3)-(2a-1)2=3a2-9a-2a+6-(4a2-4a+1)=3a2-9a-2a+6-4a2+4a-1=-a2-7a+5.由a2+7a+6=0得,a2+7a=-6把a2+7a=-6代入,原式=-(a2+7a)+5=6+5=11.29、已知m2-5m-14=0,求(m-1)(2m-1)-(m+1)2+1的值.答案:原代数式的值为15.解答:(m-1)(2m-1)-(m+1)2+1=2m2-m-2m+1-(m2+2m+1)+1=2m2-m-2m+1-m2-2m-1+1=m2-5m+1.当m2-5m=14时,原式=(m2-5m)+1=14+1=15.∴原代数式的值为15.30、已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.答案:-6.解答:∵xy=-3,x+y=2,∴x2y+xy2=xy(x+y)=-3×2=-6.31、关于x的三次多项式a(x4-x3+7x)+b(38x3-x)+x4-5,当x取2时多项式的值为-8,求当x取-2时该多项式的值.答案:-2.解答:原式=(a+1)x4+(38b-a)x3+(7a-b)x-5,原式是关于x的三次多项式,即a+1=0,∴a=-1.原式=(38b+1)x3+(7-b)x-5当x=2时,原式=(38b+1)×8+2(7-b)-5=-8,(38b+1)×8+2(7-b)=-3,当x=-2时,原式=(38b+1)×(-8)+(7-b)×(-2)-5=3-5=-2.。
专题05 整式的化简求值(30题) 专项训练1.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.2.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.3.(2022·陕西·七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.4.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.5.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.6.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.7.(2022·黑龙江牡丹江·七年级期末)先化简,再求值:3xy -12(6xy -12x 2y 2)+2(3xy -5x 2y 2),其中21||(2)02x y -++=8.(2022·河北保定·七年级期末)化简求值 222221382(33)(3)3535x x xy y x xy y -+-+++,其中1,22x y =-=9.(2022·江西赣州·七年级期末)先化简再求值:22222(3)2(3)3a b ab ab a b ab ---+,其中2a =-,3b =-.【答案】29a b ,108-.【分析】根据整式的混合运算法则将式子化简,再将a ,b 的值代入计算即可.【详解】解:原式=222223263a b ab ab a b ab --++,=29a b .当2a =-,3b =-时,29(2)(3)108´-´-=-.【点睛】本题考查整式的化简求值,解题的关键是熟练掌握整式的混合运算法则.10.(2022·四川乐山·七年级期末)先化简,再求值.已知:()()222352mn n mn m mn éù----+ëû,其中1m =,2n =-.【答案】﹣9mn++6n 2+5m 2,47【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6n 2﹣5(mn ﹣m 2)﹣2mn =﹣2mn +6n 2﹣5mn +5m 2﹣2mn =﹣9mn++6n 2+5m 2当m =1,n =﹣2时,原式=()()229126251=18245=47-´´-+´-+´++.【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.解题的关键是熟练掌握整式的乘法、去括号、合并同类项法则.11.(2022·吉林松原·七年级期末)先化简,再求值:222(3)(2)()a b a b b a ---+-,其中2a =-,12b =-.【答案】22a b +,3【分析】先去括号,再合并同类项即可化简,然后把a 、b 值代入化简式计算即可.12.(2022·云南文山·七年级期末)先化简,再求值:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2),其中x =﹣1,y =2【答案】3x 2+y 2,7【分析】先去括号,然后合并同类项,即把式子进行化简,然后代入数值即可求解.【详解】解:2x 2+y 2+(2y 2﹣3x 2)﹣2(y 2﹣2x 2)=2x 2+y 2+2y 2﹣3x 2﹣2y 2+4x 2=3x 2+y 2当x =﹣1,y =2时,原式=()223127´-+=.【点睛】本题主要考查了整式的加减的化简求值,正确去括号,合并同类项是解题的关键.13.(2022·黑龙江大庆·七年级期末)(1)化简:5(43)(92)a a b a b --+++;(2)先化简,再求值:()()323232242x y x y x ---+,其中3x =,2y =-.【答案】(1)b -;(2)3x -,27-【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项,最后将3x =代入计算即可得到答案.【详解】解:(1)()()54392a a b a b --+++54392a a b a b=---++b =-;(2)()()323232242x y x y x---+323232442x y x y x =--+-3x =-,当3x =时,原式3327=-=-.【点睛】本题考查整式的加减法则,解题的关键是熟练掌握去括号和合并同类项的法则.14.(2022·广西贵港·七年级期末)先化简,再求值:已知(2b −1)2+3|a +2|=0,求2(a 2b +ab 2)−(2ab 2−1+a 2b )−2的值.15.(2022·湖南衡阳·七年级期末)先化简,再求值:6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b ),其中a =2,b =﹣3.【答案】23ab -,-54【分析】先去括号,再合并同类项,然后把a =2,b =﹣3代入化简后的结果,即可求解.【详解】解∶ 6(2a 2b ﹣ab 2)﹣3(﹣ab 2+4a 2b )()2222126312a b ab ab a b =---+ 2222126312a b ab ab a b =-+-23ab =-当a =2,b =﹣3时,原式()232354=-´´-=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.16.(2022·海南·七年级期末)先化简,再求值:()()222234+---x y xy x y xy x y ,其中x =1,y =−1.【答案】255x y xy -+,0【分析】先去括号,再合并同类项进行化简,然后将x 、y 的值代入即可.【详解】解:()()222234+---x y xy x y xy x y22222334x y xy x y xy x y =+-+-,255x y xy =-+.当x =1,y =−1时,原式()()2511511550=-´´-+´´-=-=.【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17.(2022·河南三门峡·七年级期末)先化简,再求值:5x 2﹣(3y 2+5x 2)+(4y 2+7xy ),其中x =2,y =﹣1.(2)化简:33611106m n m n --+-+-(3)先化简,再求值:2222213242x y x y xy x y xy æöæö--+--ç÷ç÷,其中2x =-,14y =.19.(2022·河北保定·七年级期末)先化简,再求值:()()22222325x y xy xy x y ---+,其中1,33x y =-=.20.(2022·四川宜宾·七年级期末)先化简,再求值.22222(23)21,y x x y y éù+---+ëû其中22, 1.7x y ==-【答案】221y y ++,2【分析】先去括号,合并同类项对原式进行化简,再代入x 和y 的值计算即可.【详解】原式=222222321y x x y y éù+-+-+ëû=22321y y y +-+=221y y ++原式=2-1+1 =2.【点睛】本题考查整式的加减运算和化简求值,解题的关键是正确去括号和合并同类项.21.(2022·辽宁本溪·七年级期末)先化简,再求值:()()()322322232x y x y x y x -----+,其中3x =-,2y =-.【答案】2223y x y --+,8-【分析】利用去括号、合并同类项化简后,再代入求值即可.【详解】解:原式322324232x y x y x y x =--+-+-2223y x y=--+当3x =-,2y =-时,原式()()()22223328=-´--´-+´-=-.【点睛】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.22.(2022·河北石家庄·七年级期末)计算与化简(1)计算:()223232a b ab a b ab ---+ (2)先化简,再求值:()()2254542x x x x -+++-+,其中2x =-.【答案】(1)25a b ab - (2)291x x ++,-13【分析】(1)根据整式的加减运算法则进行去括号、合并同类项即可;(2)先根据整式的加减运算法则进行去括号、合并同类项,再将2x =-代入化简的结果进行计算即可.(1)解:原式22364a b ab a b ab =--++25a b ab=-(2)解:原式2254542x x x x =-+++-+291x x =++当2x =-时,原式()()2292113=-+´-+=-.【点睛】本题考查了整式的加减运算以及化简求值,熟练掌握运算法则并仔细计算是解题的关键.23.(2022·安徽芜湖·七年级期末)先化简,再求值:2﹣3(a 2﹣2a )+2(﹣3a 2+a +1),其中a =﹣2.【答案】﹣9a 2+8a +4,-48【分析】先去括号,再合并同类项,最后把a 的值代入计算即可.【详解】解:原式=2﹣3a 2+6a ﹣6a 2+2a +2=﹣9a 2+8a +4,当a =﹣2时,原式=﹣9×(﹣2)2+8×(﹣2)+4=﹣9×4﹣16+4=﹣48.【点睛】本题考查了整式的加减运算与求值,属于常考题型,熟练掌握整式的加减运算法则是解题关键.24.(2022·浙江金华·七年级期末)先化简再求值:()()226922x xy x xy --+++,其中2x =-,15y =.25.(2022·广东惠州·七年级期末)已知22(1)0a b ++-=,化简计算:()221129433a ab a ab ---()题的关键.26.(2022·湖北荆州·七年级期末)先化简,再求值:()223242xy x xy xy x æö+---+ç÷,其中4x =-,3y =.27.(2022·四川成都·七年级期末)(1)计算:﹣12022+8×(12-)3+2×|﹣6+2|;(2)先化简,再求值:2(﹣3x 2y ﹣2xy 252+)﹣5(﹣xy 2﹣2x 2y +1)﹣xy 2,其中20|1|2x y ++()﹣=.当x =-1,y =2时,原式=4×1×2=8.【点睛】本题考查了整式的加减-化简求值,有理数的混合运算,偶次方和绝对值的非负性,准确熟练地进行计算是解题的关键.28.(2022·四川成都·七年级期末)先化简,再求值:2a 212-(ab +a 2)52-ab ,其中a =2,b =﹣4.29.(2022·云南红河·七年级期末)先化简,再求值:()()22225342x x x x x ---++,其中12x =-.30.(2022·辽宁大连·七年级期末)若()22120a b -++=,试求多项式:()22212322a b a a b æö-+-+ç÷的值.。
整式化简求值专项训练1.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3x =-,2y =-2.先化简,再求值:()222222245a b a b a b ab ab ⎡⎤---+-⎣⎦,其中2a =-,12b =3先化简,再求值:22113122323m m n m n ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,其中2m =,3n =-.4先化简,再求值:2(5a 2-6ab +9b 2)-3(4a 2-2ab +3b 2),其中a =-1,b =-23.5.先化简,再求值:3(2x 2-xy )-2(3x 2-2xy ),其中x =-2,y =-3;6.先化简,再求值:2x 2+3x +5+[4x 2-(5x 2-x +1)],其中x =3.7.先化简,再求值:()()()2332x y x y x y x +-+-⎤⎦÷⎡⎣,其中2x =,12y =-.8.先化简,再求值:22211()2(2)(361)33x x x x x x x --++-+-,其中x=-3.9.先化简,再求值:22222(3)22(2)x xy y x xy y -+--+,其中x =1,y =32-10关于,x y 的多项式22224mx nxy x xy x y +++-++不含二次项,求6212m n --的值.11.已知整式2122A x xy y =++-,2221B x xy x =-+-,求:2A B -12.已知A =3x 2-x +2,B =x +1,C =14x 2-49,求3A +2B -36C 的值,其中x =-6.13.先化简,再求值:()()222234x y xyz x y xyz x y +---,已知x 、y 满足:2302|()|y x ++-=,z 是最大的负整数,14.已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--的值.15.先化简,再求值.3x 2y-[2xy-2(xy-32x 2y)-xy],其中3x -+(y+13)2=016.先化简,再求值:()()222253431a b ab ab a b ---++,其中a 、b 满足2(2)|3|0a b ++-=.17.先化简,再求值:3(﹣5xy +x 2)﹣[5x 2﹣4(3xy ﹣x 2)﹣xy ],其中x ,y 满足|x ﹣2|+|y +3|=0.18.已知x +y =﹣2,xy =﹣1,求代数式﹣6(x +y )+(x ﹣2y )+(xy +3y )的值.19.已知A =x 2﹣3xy ﹣y ,B =﹣x 2+xy ﹣3y .(1)求A ﹣B ;(2)当x =﹣2,y =﹣1时,求5A ﹣(2A ﹣6B )的值.20.先化简,再求值:4a 2﹣4ab +2b 2﹣2(a 2﹣ab +3b 2),其中a 2+ab =5,b 2+ab =3.21.已知3a =,225b =,且0a b +<,求-a b 的值.22.先化简,再求值:()2237432x x x x ⎡⎤----⎣⎦,其中12x =-.23.已知a ,b ,x ,y 满足3a b x y +=+=,7ax by +=,求()()2222a b xy ab x y +++的值.24.已知210x x +-=,求322002200120032007x x x +--的值.25.先化简,再求值:()()()22225x y x y x y xy +--+-,其中x=2024,y=—1.26.先化简,再求值:14(﹣4x 2+2x ﹣8)﹣(12x ﹣2),其中x =12.27.先化简,再求值:已知a 2﹣a ﹣4=0,求a 2﹣2(a 2﹣a+3)﹣12(a 2﹣a ﹣4)﹣a 的值.28.先化简,再求值:2222223276543x y xy xy y xy xy ⎡⎤⎛⎫--+-- ⎪⎢⎥⎝⎭⎣⎦,其中x=2,y=-1.29.如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,求代数式3232122(3)4a b a b ---的值.30.先化简,再求值:7a 2b +(-4a 2b +5ab 2)-2(2a 2b -3ab 2),其中(a -2)2+|b +12|=0.31.先化简,再求值:()2222153a b 2ab 2ab a b 2⎛⎫--- ⎪⎝⎭,其中:1a 2=-,1b 3=.32.先化简再求值:(2a 2-2b 2)-3(a 2b 2+a 2)+3(a 2b 2+b 2),其中,a=-1,b=233.先化简再求值:3W −[−4B +B²−(6W −5B²)]+8B ,其中a 是最大的负整数,b 的相反数是-3.34.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.35.先化简,再求值:(3a 2+2ab-2b 2)-(-a 2+2b 2+2ab)+(2a 2-3ab-b 2),其中a=-12,b=15.36.先化简,再求值:2263(31)(93)x x x x -+---+,其中13x =-.37.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--,当2x =,15y =-时,求2B A -的值.38.关于x ,y 的多项式6mx 2+4nxy +2x +2xy -x 2+y +4不含二次项,求多项式2m 2n +10m -4n +2-2m 2n -4m +2n 的值.39.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.40.先化简,再求值:5(3a 2b-ab 2)-3(ab 2+5a 2b ),其中a=13,b=-12;41.已知代数式2x 2+ax-y+6-2bx 2+3x-5y-1的值与x 的取值无关,请求出代数式13a 3-2b 2-19a 2+3b 2的值.42.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0.求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值.43.先化简再求值:(5x+y )﹣2(3x ﹣4y ),其中X=1,y=3.44.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.45.先化简,再求值:3(2x 2y -xy 2)-(5x 2y +2xy 2),其中|x +5|+(y -2)2=0.46.求多项式[[8X −6W −3−W +X +2B +5]+−5X −−3W −6B 的值,其中m=1,n=2,有一位同学把m=1抄成了m=2,把n=2抄成了n=1,但是结果也是正确的,为什么?47.若2(24)40a b -++=,求多项式22222232(42)3(2)2a b ab a b ab ab a b ⎛⎫+---- ⎪⎝⎭的值.48.先化简再求值:已知:()()32223232y xy x y xy y -+---,其中1x =,2y =-.49.先化简,再求值:-2(xy -y 2-[5y 2-(3xy +x 2)+2xy ],其中x =-2,y =12.50.先化简,再求值:﹣3(x 2﹣2x )+2(231x -2x-22),其中x=451.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值.52.若“ω”是新规定的某种运算符号,设aωb=3a ﹣2b ,(1)计算:(x2+y )ω(x2﹣y )(2)若x=﹣2,y=2,求出(x2+y )ω(x2﹣y )的值.53.已知|a ﹣2|+(b +1)2=0,求5ab 2﹣|2a 2b ﹣(4ab 2﹣2a 2b )|的值.54.先化简,再求值:351112()()33x y x y --+-+,其中x =﹣23,y =﹣1.55.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.56.先化简,再求值:2(a 2b+ab 2)-2(a 2b-1)-3(ab 2+1),其中a=-2,b=2.57.先化简,再求值:22222222(22)[(33)(33)]x y xy x y x y x y xy ---++-,其中1,2x y =-=58.先化简,再求值:当x =-52,y =25时,求22xy y ++()()22232x xy y x xy ----的值;59.已知:关于x 、y 的多项式2x ax y b +-+与多项式2363bx x y -+-的和的值与字母x 的取值无关,求代数式22222133(2)42()22a ab b a a ab b ⎡⎤-+--+-⎢⎥⎣⎦的值.60.小明同学在写作业时,不小心将一滴墨水滴在卷子上,遮住了数轴上134-和94之间的数据(如图),设遮住的最大整数是a ,最小整数是b .(1)求23b a -的值.(2)若211132m a a =--,211423n b b =-++,求()()2222352mn m m mn m mn ⎡⎤-----+⎣⎦的值.61.若=W −B +2s =B²+4−8+9,若多项式2A+B 的值与字母x 的取值无关,求多项式32W −5B +W −5B +3+1的值.62.已知化简式子X +B²−1−2B³−W +的结果中不含a²和a³项.(1)求m,n 的值;(2)先化简,再求值:22−B +1−32−2mn+4).63.(中考新考法·过程纠错)小琪在学了整式化简求值后,给同桌小马出了这样一道题“已知W−W=23,求出整式6B+W−W−W−W+6B的值.”下面是小马做这道题的过程:解:6B+W−W−W−W+6B=6B+W−W−W+W−6B①=2W−W②=2×23③=46④(1)上述过程中步骤①的依据是;(2)老师告诉小马的解题过程有误,请指出是从第步开始出现了错误,错误的原因是,请在右边方框中写出正确的解题过程;(3)请根据平时的学习经验就整式化简的注意事项提出一条建议。
专题3.7 整式的化简求值专项训练(基础题50道)1.(2020秋•海曙区期末)先化简,再求值:3(a2﹣2ab)﹣[a2﹣3b+3(ab+b)],其中a=﹣3,.2.(2020秋•瑞安市期末)先化简,再求值:(6m﹣9mn)﹣(n2﹣6mn),其中m=1,n=﹣3.3.(2020秋•宁波期末)先化简,再求值:3a2b+2(aba2b)﹣[2ab2﹣(3ab2﹣ab)],其中a=2,b.4.(2020秋•南宁期末)先化简,再求值:(2x2﹣2y2)﹣3(xy3+x2)+3(xy3+y2),其中x=﹣1,y=2.5.(2021秋•信宜市月考)先化简,在求值:5(a2﹣4ab)﹣2(a2﹣8ab+1),其中.6.(2021春•临沧期末)先化简,再求值:2(xy2+5x2y)﹣3(3xy2﹣x2y)﹣xy2,其中x=﹣1,y.7.(2021春•香坊区校级期末)先化简,再求值:,其中x=﹣3.8.(2021春•雨花区校级期末)先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b =﹣1.9.(2021春•民权县期末)先化简,再求值(4a2b﹣3ab)+(﹣5a2b+2ab)﹣(2ba2﹣1),其中a=2,b.10.(2021春•香坊区期末)先化简再求值:(2x3﹣2y2)﹣3(x3y2+x3)+2(y2+y2x3),其中x=﹣1,y =2.11.(2021春•开福区期中)化简求值:2a2b+2ab2﹣1﹣[3(a2b﹣1)+ab2+2],其中a=﹣1,b=2.12.(2020秋•瑶海区期末)先化简,再求值:5a2b﹣2(a2b﹣2ab2+1)+3(﹣2ab2+a2b),其中a=﹣2,b=1.13.(2020秋•东台市期末)先化简,再求值:2xy﹣[(5xy﹣16x2y2)﹣2(xy﹣4x2y2)],其中x,y=4.14.(2020秋•徐州期末)先化简,再求值:2(3x2y﹣xy2)﹣(﹣xy2+3x2y).其中x=2,y=﹣1.15.(2020秋•马尾区期末)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣3,b.16.(2020秋•九江期末)先化简,再求值:﹣3(2x2﹣xy)+4(x2+xy﹣6),其中x,y.17.(2020秋•南浔区期末)先化简,再求值:﹣2(2x2﹣xy)﹣3(x2﹣xy),其中x=﹣1,y=1.18.(2020秋•紫阳县期末)先化简,再求值:2x2y﹣2[6xy﹣2(4xy﹣2)﹣2x2y]+8,其中x,y=2.19.(2020秋•云南期末)先化简,再求(﹣ab+2a2+5)﹣2(﹣ab﹣3+a2)的值,其中a=﹣1,b=﹣5.20.(2021•九龙坡区校级开学)先化简,再求值:(3x2﹣2xy)﹣[x2﹣2(x2﹣xy)],其中,x,y=2.21.(2021•金华开学)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=2.22.(2021春•鹿城区校级月考)先化简,再求值:(4a2b﹣5ab2)﹣4(a2bab2+1),其中a=2,b=﹣1.23.(2020秋•锦江区校级期末)先化简,再求值:3(﹣2xy+x2)﹣[3x2﹣2(5xy﹣2x2)],其中x=﹣2,y =3.24.(2020秋•巩义市期末)先化简,再求值:,其中x=1,y=﹣2.25.(2020秋•兴庆区期末)先化简,再求值:3x2y﹣[2xy2﹣2(xyx2y)+xy],其中x=3,y.26.(2020秋•怀柔区期末)先化简下式,再求值:(a3b﹣ab)+ab3ba3b.其中a=2,b=1.27.(2020秋•南海区期末)先化简,再求值:2(3a2b+ab2)﹣2(ab2+4a2b﹣1),其中a.28.(2020秋•莲湖区期末)先化简,再求值:(4x2y﹣2xy2)﹣(5xy2﹣3x2y),其中x=﹣1,y=2.29.(2020秋•西城区期末)先化简,再求值:(3ab2﹣a2b)﹣a2b﹣2(2ab2﹣a2b),其中a=1,b=﹣2.30.(2020秋•达孜区期末)先化简,再求值3x﹣2y﹣[﹣4x+(y+3x)]﹣(2x﹣3y),其中x=﹣1,y.31.(2020秋•广州期末)先化简,再求值:5(3m2n﹣mn2)﹣(mn2+3m2n)﹣4(3m2n﹣mn2),其中m =﹣3,n.32.(2020秋•昌图县期末)先化简,再求值:2x﹣3(xy2)+2(x+y2),其中x=3,y=﹣2.33.(2020秋•宽城区期末)先化简,再求值:,其中,.34.(2020秋•武都区期末)先化简,再求值:﹣2x2[3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.35.(2020秋•福田区校级期末)先化简,再求值:m﹣3(mn2)+(mn2),其中m,n=﹣1.36.(2020秋•镇原县期末)先化简,再求值:5ab﹣2[3ab﹣(4ab2ab)]﹣5ab2,其中a,b=2.37.(2020秋•黄陵县期末)先化简,再求值:4x2y﹣2[7xy﹣2(4xy﹣2)﹣2x2y]+8,其中x,y=2.38.(2020秋•大冶市期末)先化简再求值:5x2﹣[2xy﹣3(xy﹣5)+6x2].其中x=﹣2,y.39.(2020秋•南开区期末)先化简,再求值:2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=2,b.40.(2020秋•罗庄区期末)先化简,再求值:﹣2xy+(5xy﹣3x2+1)﹣3(2xy﹣x2),其中x,y.41.(2020秋•喀喇沁旗期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y.42.(2021•长沙模拟)先化简,再求值:,其中x=﹣2,y.43.(2020秋•大东区期末)先化简再求值:(2a3﹣a2b)﹣(a3﹣ab2)2b,其中a,b=﹣2.44.(2020秋•前郭县期末)化简求值:3x2y﹣[2xy2﹣2(xyx2y)+xy]+3xy2,其中x=3,y.45.(2020秋•南关区期末)先化简,再求值:x﹣(2xy2)+(xy2),其中x,y.46.(2020秋•偃师市月考)先化简,再求值:2(2x2+x)﹣3(x2x﹣y)﹣(x+2y),其中x=﹣1,y=﹣2.47.(2020秋•开福区校级月考)先化简后求值:(x3﹣3y)(x+y)(2x3﹣3x+3y),其中x=﹣2,y=3.48.(2020秋•南岸区校级月考)先化简,再求值:(﹣3xy+x2)﹣[x2﹣3(2xy﹣x2)+7xy],其中x=﹣3,y.49.(2020秋•石狮市校级期中)化简求值:已知a+b=9,ab=20,求(﹣15a+3ab)(2ab﹣10a)﹣4(ab+3b)的值.50.(2019秋•青羊区校级期末)先化简,再求值.已知﹣7x3m y5与x6y1﹣n是同类项,求3m2n﹣[2mn2﹣2(mnm2n)]+3mn2值.。
专题3整式的化简求值专项训练50题考试时间:100分钟;满分:100分姓名:___________班级:___________考号:___________ 1.(2020秋•北碚区校级期末)先化简,再求值:若多项式x2﹣2mx+3与13x2+2x﹣1的差与x的取值无关,求多项式4mn﹣[3m﹣2m2﹣6(12−23mn+16n2)]的值.2.(2020秋•高邮市期末)有这样一道题:“求(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=12021,y=﹣1”.小明同学把“x=12021”错抄成了“x=−12021”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.3.(2020秋•铜梁区校级期末)有一道数学题:“求(x2+2y2)+3(x2+y2)﹣4x2,其中x=13,y=2.”粗心的小李在做此题时,把“x=13”错抄成了“x=3”,但他的计算结果却是正确的,请你通过计算说明为什么?4.(2020秋•恩施市期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.5.(2020秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.6.(2020秋•宛城区校级月考)课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣3(﹣a2﹣2a2b+a2b)﹣(10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案是3.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你相信吗?请你说明其中的道理.7.(2020秋•青羊区校级月考)已知关于x,y的式子(2x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2)的值与字母x的取值无关,求式子(m+2n)﹣(2m﹣n)的值.8.(2020秋•海珠区校级期中)已知:A=3x2+mx−13y+4,B=6x﹣3y+1﹣3nx2,当x≠0且y≠0时,若3A−13B的值等于一个常数,求m,n的值,及这个常数.9.(2020秋•富县校级期中)已知:A=2x2+6x﹣3,B=1﹣3x﹣x2,C=4x2﹣5x﹣1,当x=−32时,求代数式A﹣3B+2C的值.10.(2020秋•未央区校级期中)有这样一道题,当a=1,b=﹣1时,求多项式:3a3b3−12a2b+b ﹣(4a3b3−14a2b﹣b2)﹣2b2+3+(a3b3+14a2b)的值”,马小虎做题时把a=1错抄成a =﹣1,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.11.(2020秋•成都期末)已知A=a﹣2ab+b2,B=a+2ab+b2.(1)求14(B﹣A)的值;(2)若3A﹣2B的值与a的取值无关,求b的值.12.(2020秋•夏津县期末)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a x﹣2b2与13ab y是同类项,求2B﹣A的值.13.(2020秋•北碚区期末)已知代数式A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.(1)当x=y=﹣1时,求2A+4B的值;(2)若2A+4B的值与x的取值无关,求y的值.14.(2020秋•淅川县期末)已知M=4x2+10x+2y2,N=2x2﹣2y+y2,求:(1)M﹣2N;(2)当5x+2y=2时,求M﹣2N的值.15.(2020秋•南关区校级期末)已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.16.(2020秋•青山湖区月考)已知:A=2ab﹣a,B=﹣ab+2a+b.(1)计算:5A﹣2B;(2)若5A﹣2B的值与字母b的取值无关,求a的值.17.(2020秋•义马市期中)已知A=x2+3xy﹣12,B=2x2﹣xy+y.(1)当x=y=﹣2时,求2A﹣B的值;(2)若2A﹣B的值与y的取值无关,求x的值.18.(2020秋•萧山区月考)已知A=ax2﹣3x+by﹣1,B=3﹣y﹣x+232,且无论x,y为何值时,A﹣3B的值始终不变.(1)分别求a、b的值;(2)求b a的值.19.(2020秋•江汉区月考)先化简再求值,A=2x2−12x+3,B=x2+mx+12.(1)当m=﹣1,求5(A﹣B)﹣3(﹣2B+A);(2)若A﹣2B的值与x无关,求m2﹣[﹣2m2﹣(2m+6)﹣3m].20.(2021秋•株洲期末)已知:A=x2+3y2﹣2xy,B=2xy+2x2+y2.(1)求3A﹣B;(2)若x=1,=−12.求(4A+2B)﹣(A+3B)的值.21.(2020秋•广州期中)已知M=2x2+ax﹣5y+b,N=bx2−32x−52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.22.(2020秋•江城区期中)已知多项式A=2x2+mx−12y+3,B=3x﹣2y+1﹣nx2.(1)已知A﹣B的值与字母x的取值无关,求字母m、n的值?(2)在(1)的条件下,求2A+3B的值?23.(2020秋•庐江县期中)数学课上,张老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,小阳同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一致认为小阳说法是正确的.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x,y取任何值,多项式2x2+ax﹣5y+b ﹣2(bx2−32x−52y﹣3)的值都不变,求系数a,b的值”.请你解决这个问题.24.(2020秋•双流区校级期中)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.25.(2020秋•温县期中)已知代数式A=x2+12xy﹣2y2,B=32x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.(1)求2(A﹣B)−12C.(2)当x=2.y=﹣1时,求出2(A﹣B)−12C的值.26.(2020秋•解放区校级期中)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.(1)求﹣A﹣2B的值;(2)若﹣A﹣2B的值与x的值无关,求y的值.27.(2020秋•丰城市校级期中)(1)已知,A=2x2+3xy﹣2x﹣1,B=﹣x2﹣xy+1,若3A+6B 的值与x的取值无关,求y的值.(2)定义新运算“@”与“⊕”:a@b=r2,a⊕b=K2.若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A和B的大小.28.(2020秋•江汉区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1.(1)计算4A﹣(3A+2B);(2)若a=1和a=0时(1)中式子的值相等,求12b﹣2(b−13b2)+(−32b+13b2)的值.29.(2020秋•沙坪坝区校级期中)若A=2x2+xy+3y2,B=x2﹣xy+2y2.(1)若(1+x)2与|2x﹣y+2|为相反数,求2A﹣3(2B﹣A)的值;(2)若x2+y2=4,xy=﹣2,求A﹣B的值.30.(2020秋•滨海新区期中)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+12B+23.(1)当x=﹣1,y=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与x的取值无关,求y的值.31.(2020秋•二七区校级期中)已知A=a2+2ab+b2,B=a2﹣2ab+b2.(1)当a=1,b=﹣2时,求14(B﹣A)的值;(2)如果2A﹣3B+C=0,那么C的表达式是什么?32.(2020秋•潮南区期中)已知多项式A=4x2+my﹣12与多项式B=nx2﹣2y+1.(1)当m=1,n=5时,计算A+B的值;(2)如果A与2B的差中不含x和y,求mn的值.33.(2020秋•高邮市期中)已知A=x2﹣2xy,B=y2+3xy.(1)若A﹣2B+C=0,试求C;(2)在(1)的条件下若A=5,求2A+4B﹣2C的值.34.(2020秋•洪山区期中)已知A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2.(1)求3A﹣2(A+2B)的值;(2)当x取任意数,B+12A的值都是一个定值时,求313A+613B﹣27y3的值.35.(2020秋•平阴县期中)张老师让同学们计算“当a=0.25,b=﹣0.37时,求代数式(13+2a2b+b3)﹣2(a2b−13)﹣b3的值”.解完这道题后,小明同学说“a=0.25,b=﹣0.37是多余的条件”.师生讨论后一致认为这种说法是正确的,老师和同学们对小明敢于提出自己的见解投去了赞赏的目光.(1)请你说明小明正确的理由.(2)受此启发,老师又出示了一道题目:无论x、y取何值,多项式﹣3x2y+mx+nx2y﹣x+3的值都不变.则m=,n=.36.(2020秋•锦江区校级期中)(1)如图:化简|b﹣a|+|a+c|﹣|a+b+c|.(2)已知:ax2+2xy﹣y﹣3x2+bxy+x是关于x,y的多项式,如果该多项式不含二次项,求代数式3ab2﹣{2a2b+[4ab2−13(6a2b﹣9a2)]}﹣(−14a2b﹣3a2)的值.37.(2020秋•武侯区校级期中)已知关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y ﹣1)的值与字母x的取值无关.(1)求a和b值.(2)设A=a2﹣2ab﹣b2,B=3a2﹣ab﹣b2,求3[2A﹣(A﹣B)]﹣4B的值.38.(2021秋•卧龙区期末)数学课上,老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,张恒同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一直认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x取任何值,多项式﹣3x2+mx+nx2﹣x+3的值都不变,求系数m、n的值”.请你解决这个问题.39.(2020秋•张店区期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是中学教学课题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣5(a﹣b)2+7(a﹣b)2的结果是.(2)已知x2﹣2y=1,求3x2﹣6y﹣5的值.(3)拓展探索:已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.40.(2020秋•天河区期末)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简2A﹣3B;(2)当x+y=67,xy=﹣1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.41.(2020秋•讷河市期末)已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)求A﹣2B;(2)当x=﹣1,y=3时,求A﹣2B的值;(3)若A﹣2B的值与x的取值无关,求y的值.42.(2020秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?43.(2020•路北区三模)已知A=x2﹣mx+2,B=nx2+2x﹣1.(1)求2A﹣B,并将结果整理成关于x的整式;(2)若2A﹣B的结果与x无关,求m、n的值;(3)在(2)基础上,求﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.44.(2020秋•偃师市月考)我们知道,4x﹣2x+x=(4﹣2+1)x=3x.类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把(a﹣b)2看成一个整体,则合并4(a﹣b)2﹣8(a﹣b)2+3(a﹣b)2的结果是.(2)已知x2﹣2y=4,求8y﹣4x2+3的值.(3)已知a﹣2b=4,2b﹣c=﹣7,c﹣d=11,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.45.(2020秋•船山区校级月考)一个多项式的次数为m,项数为n,我们称这个多项式为m次多项式或者m次n项式,例如:5x3y2﹣2x2y+3xy为五次三项式,2x2﹣2y2+3xy+2x 为二次四项式.(1)﹣3xy+2x2y2﹣4x3y3+3为次项式.(2)若关于x、y的多项式A=ax2﹣3xy+2x,B=bxy﹣4x2+2y,已知2A﹣3B中不含二次项,求a+b的值.(3)已知关于x的二次多项式,a(x3﹣x2+3x)+b(2x2+x)+x3﹣5在x=2时,值是﹣17,求当x=﹣2时,该多项式的值.46.(2020秋•海州区校级期中)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2+a=1,则2a2+2a+2020=.(2)已知a﹣b=﹣3,求5(a﹣b)﹣7a+7b+11的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+92ab+3b2的值.47.(2020秋•海珠区校级期中)已知A=3x2+y2﹣2xy,B=xy﹣y2+2x2,求:(1)2A﹣3B;(2)若|2x﹣3|=1,y2=16,|x﹣y|=y﹣x,求2A﹣3B的值.(3)若x=4,y=﹣8时,代数式ax3+12by+5=18,那么x=﹣128,y=﹣1时,求代数式3ax﹣24by3+10的值.48.(2020秋•宁明县期中)在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8,仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2020=;(2)已知a﹣b=﹣2,求3(a﹣b)﹣5a+5b+6的值;(3)已知a2+2ab=3,ab﹣b2=﹣4,求a2+32ab+12b2的值,49.(2020秋•温江区校级期中)已知代数式2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1的值与字母x 的取值无关.(1)求出a、b的值.(2)若A=2a2﹣ab+2b2,B=a2﹣ab+b2,求(2A﹣B)﹣3(A﹣B)的值.(3)若P=4x2y﹣5x2y b﹣(m﹣5)x a y3与Q=﹣5x n y4+6xy﹣3x﹣7的次数相同,且最高项的系数也相同,求5m﹣2n的值.50.(2021秋•东城区期末)一般情况下,对于数a和b,2+4≠r2+4(“≠”不等号),但是对于某些特殊的数a和b,2+4=r2+4.我们把这些特殊的数a和b,称为“理想数对”,记作<a,b>.例如当a=1,b=﹣4时,有12+−44=1+(−4)2+4,那么<1,﹣4>就是“理想数对”.(1)<3,﹣12>,<﹣2,4>可以称为“理想数对”的是;(2)如果<2,x>是“理想数对”,那么x=;(3)若<m,n>是“理想数对”,求3[(9−4p−8(−76p]−4−12的值.11。
整式化简求值练习题一、选择题(每题2分,共10分)1. 已知 \( a = 2 \),\( b = 3 \),求 \( 2a - b \) 的值。
A. 1B. 2C. 3D. 42. 计算 \( (x + y)^2 \) 展开后不含 \( x^2 \) 的项。
A. \( 2xy \)B. \( y^2 \)C. \( 2x^2 \)D. \( 0 \)3. 若 \( m - n = 5 \),求 \( m^2 - n^2 \) 的值。
A. 25B. 20C. 10D. 54. 计算 \( \frac{1}{2}x^3 - \frac{1}{3}x^2 + \frac{1}{6}x \) 的同类项。
A. \( \frac{1}{6}x \)B. \( -\frac{1}{3}x^2 \)C. 无同类项D. \( \frac{1}{2}x^3 \)5. 已知 \( a^2 - 4a + 4 = 0 \),求 \( a^2 - 4 \) 的值。
A. 0B. 4C. 8D. -4二、填空题(每题3分,共15分)6. 将 \( 3x^2y - xy^2 + 5xy \) 合并同类项,结果为______。
7. 已知 \( 2x - 3y = 7 \),求 \( 4x - 6y + 3y - 2x \) 的值。
8. 计算 \( (2x - 1)(3x + 2) \) 展开后,\( x^2 \) 的系数。
9. 若 \( 5x + 3 = 2x - 7 \),求 \( 5x - 2x \) 的值。
10. 已知 \( (x + 2)(x - 3) = x^2 + kx - 6 \),求 \( k \) 的值。
三、简答题(每题5分,共30分)11. 计算并化简 \( (x + 3)(x - 5) \)。
12. 已知 \( 3x^2 - 2x + 1 = 4 \),求 \( 9x^4 - 12x^3 + 11x^2- 2x \) 的值。
整式的化简求值专题一、选择题1、下列去括号正确的是( )A.a+(b-c+d)=a+b+c+d B.a-(b+c-d)=a-b-c+d C.a-(b-c-d)=a-b-c+d D.a+(b-c-d)=a-b+c+d2、计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-23、长方形一边长为3x+2y,另一边长比它短x-y,则这个长方形的周长为( ) A.4x+y B.8x+2y C.10x+10y D.12x+8y4、如果m是三次多项式,n是三次多项式,那么m+n一定是()A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式二、填空题1、16.计算2a-(-1+2a)=___2.多项式______与m2+m-2的和是m2-2m3.化简:5(x-2y)-4(x-2y)=_________4.计算:2(a-b)+3b= _________三、先化简,再代入求值1.化简求值:3x2y-[2x2y-3(2xy-x2y)-xy],其中x=-1,y=-2.2.当a=2,b=-2时,求(2a2b+2ab2)-[2(a2b-1)+3ab2+2]的值.3.已知A=2a2+3ab-2a-1,B=-a2+ab+1,当a=-1,b=2时,求4A-(3A-2B)的值.4.若3amb2与-5ab n是同类项,求5(3m2n-mn2)-4(-mn2+3m2n)的值.5.已知多项式(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与x无关,求多项式3(a2-ab+b2)-(3a2+ab+b2)的值.6.若多项式(x2-2xy)-(2y2-axy+5)中不含xy项,且单项式-3xayb是五次单项式,求多项式4(a2-b2)-3(a2-2b2)的值.7.已知xy=2,x+y=3,求(3xy+10y)+[5x-(2xy+2y-3x)]的值.8、5x2+4-3x2-5x-2x2-5+6x,其中x=-3.9、(3a2b-2ab2)-2(ab2-2a2b),其中a=2,b=-1.10、2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.11、2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.12、2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.13、若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.14、已知||m +n -2+(mn +3)2=0,求2(m +n)-2[mn +(m +n)]-3[2(m +n)-3mn]的值.整式的化简求值专题参考答案一、选择题1、下列去括号正确的是( B )A.a+(b-c+d)=a+b+c+d B.a-(b+c-d)=a-b-c+dC.a-(b-c-d)=a-b-c+d D.a+(b-c-d)=a-b+c+d2、计算:a-2(1-3a)的结果为( A )A.7a-2 B.-2-5a C.4a-2 D.2a-23、长方形一边长为3x+2y,另一边长比它短x-y,则这个长方形的周长为(C ) A.4x+y B.8x+2y C.10x+10y D.12x+8y4、如果m是三次多项式,n是三次多项式,那么m+n一定是( B )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的整式二、填空题1、16.计算2a-(-1+2a)=___答案:12.多项式______与m2+m-2的和是m2-2m3.化简:5(x-2y)-4(x-2y)=_________答案:x-2y4.计算:2(a-b)+3b= _________答案:2a+b三、解答题1.解:原式=3x2y-2x2y+6xy-3x2y+xy=-2x2y+7xy,当x=-1,y=-2时,原式=-2×(-1)2×(-2)+7×(-1)×(-2)=4+14=182.解:原式=2a 2b +2ab 2-(2a 2b -2+3ab 2+2)=2a 2b +2ab 2-2a 2b -3ab 2=-ab 2.当a =2,b =-2时,原式=-2×(-2)2=-83.解:4A -(3A -2B)=A +2B =2a 2+3ab -2a -1+2(-a 2+ab +1)=2a 2+3ab -2a -1-2a 2+2ab +2=5ab -2a +1,当a =-1,b =2时,原式=5×(-1)×2-2×(-1)+1=-10+2+1=-74.解:由3amb 2与-5ab n 是同类项得m =1,n =2,原式=15m 2n -5mn 2+4mn 2-12m 2n =3m 2n -mn 2,当m =1,n =2时,原式=3×1×2-1×22=25.解:(2x 2+ax -y +6)-(2bx 2-3x +5y -1)=(2-2b)x 2+(a +3)x -6y +7,由结果与x 取值无关,得a =-3,b =1.3(a 2-ab +b 2)-(3a 2+ab +b 2)=-4ab +2b 2=-4×(-3)×1+2×12=146.解:由题意得a =2,b =3.4(a 2-b 2)-3(a 2-2b 2)=a 2+2b 2=227.解:原式=3xy +10y +5x -2xy -2y +3x =xy +8x +8y =xy +8(x +y)=2+8×3=268、解:原式=(5-3-2)x 2+(-5+6)x +(4-5)=x -1.当x =-3时,原式=-3-1=-4.9、解:原式=3a 2b -2ab 2-2ab 2+4a 2b =7a 2b -4ab 2.当a =2,b =-1时,原式=-28-8=-36.10、解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.11.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.12.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y =-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-513.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.14.解:由已知条件知m +n =2,mn =-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn =-6(m+n)+7mn=-12-21=-33.。
专题06 整式的化简与求值 专项训练40题1.(2022·山东青岛·七年级阶段练习)先化简,再求值:()3222231322362b a a ab a b æö---+-ç÷èø,其中2a =,1b =-.2.(2022·内蒙古赤峰·七年级期末)先化简,再求值:()()22222322x y xy x y x xy y +----,其中x ,y 的值满足()2220x y ++-=3.(2022·山东威海·期末)计算:(1)()()222433224ab b ab b +--+-; (2)()2323132424424433xy x xy x æö-+---+ç÷èø.(3)先化简,再求值:13(2)3(2)2a ab a b --+-+,其中4a =-,12b =.4.(2022·湖南常德·七年级期中)先化简,再求值:221123(4)22ab ab a b a ---êúêú,其中122a b =-=,5.(2021·黑龙江哈尔滨·七年级期末)先化简,再求值:()224222éù---+ëûx y xy xy x y xy ,其中x 与y 互为倒数.【答案】4xy -;4-【分析】根据x 与y 互为倒数,可得1xy =,原式去括号合并同类项后得到最简结果,再把1xy =代入计算即可求出值.【详解】解:原式()224222=--++x y xy xy x y xy 2244242=-+--x y xy xy x y xy 4xy=-∵x 与y 互为倒数,∴1xy =,∴原式4414=-=-´=-xy .【点睛】本题考查整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.6.(2021·湖北咸宁·七年级期中)先化简后求值:2223322()2x y xy yx x y éù---êú,其中15,5x y ==-.7.(2022·贵州铜仁·七年级期末)先化简,再求值:()222242x xy y x xy y -+--+,其中11,2x y =-=-.8.(2022·山东烟台·期末)先化简,再求值:()()22333244b a ab b a ab éùéù----+-ëûëû,其中a =-4,14b =.9.(2022·黑龙江大庆·期中)先化简再求值:22113122223a a b a b æöæö-----ç÷ç÷,其中2a =-,32b =.10.(2022·内蒙古鄂尔多斯·七年级期末)先化简,再求值:(1)3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2),其中a =2,b =1;(2)若a 2+2b 2=5,求多项式(3a 2﹣2ab +b 2)﹣(a 2﹣2ab ﹣3b 2)的值.【答案】(1)a 2b +ab 2,-2 (2)10【分析】(1)先合并同类项,再代入计算即可;(2)原式去括号合并整理后,把已知等式代入计算即可求出值.(1)解:3(2a 2b ﹣ab 2)﹣(5a 2b ﹣4ab 2)=6a 2b ﹣3ab 2﹣5a 2b +4ab 2=a 2b +ab 2,当a =2,b =﹣1时,原式=22×(﹣1)+2×(﹣1)2=﹣2;(2)解:当a 2+2b 2=5时,原式=3a 2﹣2ab +b 2﹣a 2+2ab +3b 2=2a 2+4b 2=2(a 2+2b 2),=2×5=10.【点睛】本题考查了整式加减的化简求值,正确的化简代数式是解题的关键.11.(2022·河南安阳·七年级期末)先化简,再求值:3(a ﹣ab )12-(6a ﹣b )12-b ,其中a =1,b =﹣2.12.(2022·黑龙江·哈尔滨市第十七中学校七年级阶段练习)先化简,再求值:()()2254452x x x x -++---,其中2x =-.【答案】291,13x x ++-【分析】原式先去括号,再合并得到最简结果,最后把2x =-代入求值即可.【详解】解:()()2254452x x x x-++---=2254452x x x x -++-++291x x =++当2x =-时,原式=2(2)9(2)1-+´-+13=-【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.13.(2022·江苏南京·七年级期中)已知2(1)|2|0x y +++=,求代数式322332311543222xy x y xy y x xy x y --+--的值.14.(2022·陕西咸阳·七年级开学考试)化简:()()22222332133a b ab a b ab --+-+,若12b =-,请给a 取一个非零有理数代入化简后的式子中求值.15.(2022·浙江绍兴·七年级期中)先化简,再求值:2(2)()a a b a b -++,其中3a =-,5b =【答案】222a b +,43【分析】由单项式乘以多项式法则,结合完全平方公式进行化简,再代入数值计算即可.【详解】解:原式=22222a ab a ab b -+++= 222a b +当3a =-,5b =时,原式=()2223543´-+=.【点睛】本题考查整式加减的化简求值,涉及完全平方公式,掌握相关知识是解题关键.16.(2021·河南洛阳·七年级期中)化简求值:22225[(52)2(3)]a a a a a a -+---,其中12a =.17.(2021·四川广元·七年级期末)先化简,再求值:已知|a +1|+(b ﹣2)2=0,求代数式3a 2b ﹣[2ab 2﹣2(a 2b +3ab 2)]﹣4ab 2的值.【答案】25a b ;10【分析】根据整式的加减化简代数式,然后根据非负数的性质求得,a b 的值,代入化简后的代数式进行计算即可求解.【详解】解:原式()2222232264a b ab a b ab ab=----=2222232264a b ab a b ab ab -+-+25a b =;∵|a +1|+(b ﹣2)2=0,∴1,2a b =-=,∴原式=()251210´-´=.【点睛】本题考查了整式加减化简求值,非负数的性质,正确的去括号是解题的关键.18.(2021·河南周口·七年级期中)先化简,再求值:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2),其中x ,y 满足(x +1)2+|y ﹣2|=0.【答案】x 2﹣3y 2,-11【分析】先根据整式的加减混合运算法则化简原式,再根据平方式和绝对值的非负性求出x 、y ,代入化简式子中求解即可.【详解】解:﹣xy +3x 2﹣(2xy ﹣x 2)﹣3(x 2﹣xy +y 2)=﹣xy +3x 2﹣2xy +x 2﹣3x 2+3xy -3y 2=x 2﹣3y 2,∵x ,y 满足(x +1)2+|y ﹣2|=0,且(x +1)2≥0,|y ﹣2|≥0,∴x +1=0,y -2=0,解得:x =-1,y =2,∴原式=(-1)2-3×22=1-12=-11.【点睛】本题考查整式加减中的化简求值、平方式和绝对值的非负性,熟记整式加减混合运算法则是解答的关键.19.(2022·黑龙江·哈尔滨市虹桥初级中学校七年级期中)先化简,求值2222223723323535x x xy y x xy y æöæö-+-+++ç÷ç÷,其中12x =-,2y =-.【点睛】本题主要考查了整式的化简求值,掌握整式加减运算法则是解题的关键.20.(2022·黑龙江·哈尔滨市第十七中学校期中)先化简再求值:()()3322x xyz x xyz xyz --++,其中1x =,2y =,3z =-.【答案】2xyz -,12【分析】先去括号,再合并同类项,然后把x 、y 的值代入计算即可.【详解】(2x ³-xyz )-2(x ³+xyz )+xyz =2x ³-xyz -2x ³-2xyz +xyz =-2xyz当x =1,y =2,z =-3时,原式=-2×1×2×(-3)=12.【点睛】本题主要考查了整式的化简求值,熟练掌握去括号法则是解题的关键.21.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()2222x xy y x xy --+-+,其中3,2x y ==-.【答案】22x y -,5【分析】先去括号,然后再进行整式的加减运算,最后代值求解即可.【详解】解:原式=2222x xy y x xy ---+=22x y -;把3,2x y ==-代入得:原式=945-=.【点睛】本题主要考查整式的化简求值,熟练掌握整式的运算是解题的关键.22.(2022·黑龙江·哈尔滨工业大学附属中学校期中)先化简,再求值:22137(43)2x x x x éù----êú,其中1x =-.23.(2022·陕西·紫阳县师训教研中心七年级期末)先化简,再求值:()()222222122+----a b ab a b ab ab ,其中2a =-,12b =.24.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.25.(2022·河北承德·七年级期末)(1)计算:()()322231--´-+;2111941836æöæö-+¸-ç÷ç÷èøèø.(2)先化简,再求值:()221532x xy x xy æö+--ç÷èø,其中x 、y 的取值如图所示.整式的加减运算.26.(2022·江苏南京·七年级期末)先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.【答案】223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b -+-=223a b ab -当a =-2,b =3时,原式=()()2232323´-´--´=34329´´+´=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(2022·全国·七年级课时练习)(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-;(2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.28.(2022·新疆昌吉·七年级期末)先化简下式,再求值:222345256x x x x x +----+,其中2x =-.【答案】1x -,-3【分析】先合并同类项化简,再把2x =-代入,即可求解.【详解】解∶ 222345256x x x x x+----+()()()222325645x x x x x --+-++-=1x =-当2x =-时,原式213=--=-【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.29.(2022·湖南岳阳·七年级期末)先化简,再求值.()()22224235x xy y x xy y -+--+,其中1x =-,12y =-.30.(2022·湖南湘西·七年级期末)先化简,再求值:()()2222221x x x x +----,其中12x =-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.31.(2022·山东滨州·七年级期末)(1)计算:23100422(1)593æö-¸´-+-´ç÷èø;(2)先化简再求值:22113122323a a b a b æöæö--+-+ç÷ç÷,其中22,3a b =-=.32.(2022·安徽滁州·七年级期末)已知4x =-,2y =,求代数式()()2222332x y xy x y xy ---的值.【答案】25xy ;-80【分析】先化简整式,再代入求值即可.【详解】原式2222336x y xy x y xy =--+25xy =,当4x =-,2y =时,原式()254280=´-´=-.【点睛】本题考查整式化简求值,熟练掌握整加减运算法则是解题的关键.33.(2022·河南南阳·七年级期末)先化简,再求值:()22463421x y xy xy x y éù----+ëû.其中,2x =-,12y =.【答案】2565+-x y xy ,-1【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求值。
整式化简求值专项训练1.先化简,再求值:$(4a^2-3a)-2(a^2+a^{-1})-(-2+a^2-4a)$,其中$a=-2$。
化简得:$4a^2-3a-2a^2-2a^{-1}+2-a^2+4a$,合并同类项得:$a^2+1$。
代入$a=-2$,得到答案为$5$。
2.先化简,再求值:$7x+8-6$,其中$x=$。
化简得:$7x+2$。
代入$x=$,得到答案为$2$。
3.先化简,再求值:$-a^2b+(3ab^2-a^2b)-2(2ab^2-a^2b)$,其中$a=-1$,$b=-2$。
化简得:$-3a^2b+4ab^2$。
代入$a=-1$,$b=-2$,得到答案为$24$。
4.求代数式$3(x^2-2xy)-[3x^2-2y+2(xy+y)]$的值。
化简得:$x^2-5xy-2y$。
代入$x=-2$,得到答案为$18$。
5.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。
化简得:$11ab-13.5$。
代入$a=-5$,$b=$,得到答案为$67.5$。
6.先化简,再求值:$2(a^2+3ab-4.5)-(3a^2-4ab-9)$,其中$a=3$,$b=$。
化简得:$7ab-0.5$。
代入$a=3$,$b=$,得到答案为$20.5$。
7.求$3x^2+x+3(x^2-x)-(6x^2+x)$的值,其中$x=-6$。
化简得:$-9x^2+2x$。
代入$x=-6$,得到答案为$330$。
8.已知$A=2a^2-a$,$B=-5a+1$。
1)化简:$3A-2B+2$。
化简得:$6a^2+5a+1$。
2)求$3A-2B+2$的值。
代入$A$和$B$,得到答案为$-33$。
9.先化简,再求值:$2(a^2+3ab-4.5)-(a^2-6ab-9)$,其中$a=-5$,$b=$。
化简得:$11ab-13.5$。
代入$a=-5$,$b=$,得到答案为$67.5$。
七年级上册数学计算题化简求值一、整式化简求值类(1 - 10题)1. 先化简,再求值:(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2),其中x = -2,y = 1。
- 解析:- 首先对原式进行化简:- 展开式子得:2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。
- 合并同类项:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2-y^2。
- 然后将x = -2,y = 1代入化简后的式子:- 当x=-2,y = 1时,-x^2-y^2=-(-2)^2-1^2=-4 - 1=-5。
2. 化简求值:3a+( - 8a + 2)-(3 - 4a),其中a=(1)/(2)。
- 解析:- 化简式子:- 去括号得:3a-8a + 2-3 + 4a。
- 合并同类项:(3a-8a+4a)+(2 - 3)=-a-1。
- 当a=(1)/(2)时,代入得:-a - 1=-(1)/(2)-1=-(3)/(2)。
3. 先化简,再求值:(5a^2+2a - 1)-4(3 - 8a + 2a^2),其中a=-1。
- 解析:- 化简过程:- 去括号:5a^2+2a-1 - 12 + 32a-8a^2。
- 合并同类项:(5a^2-8a^2)+(2a + 32a)+(-1-12)=-3a^2+34a-13。
- 当a = -1时:- 代入得:-3×(-1)^2+34×(-1)-13=-3-34 - 13=-50。
4. 化简求值:2(x^2y+xy)-3(x^2y - xy)-4x^2y,其中x = 1,y=-1。
- 解析:- 化简式子:- 展开式子得:2x^2y+2xy-3x^2y + 3xy-4x^2y。
- 合并同类项:(2x^2y-3x^2y-4x^2y)+(2xy + 3xy)=-5x^2y+5xy。
- 当x = 1,y=-1时:- 代入得:-5×1^2×(-1)+5×1×(-1)=5 - 5 = 0。
整式的加减化简求值专项练习100题1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x3﹣xyz)﹣2(x3﹣y3+xyz)﹣(xyz+2y3),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.222260.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.91.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.92.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x= 93.已知ab2=-6,求-ab(a2b5-ab3-b)的值.94.已知a+b=1,a(a 2+2b)+b(-3a+b 2)=0.5,求ab 的值.95.96.已知(x-1)(x+1)(x-2)(x-4)≡(x 2-3x)2+a(x 2-3x)+b ,求a ,b 的值.97.多项式x 4+mx 2+3x+4中含有一个因式x 2-x+4,试求m 的值,并求另一个因式.98.若x 3-6x 2+11x-6≡(x-1)(x 2+mx+n),求m ,n 的值.99、计算,当a 6 = 64时, 该式的值100.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x。
1、先化简,再求值:3x + 2(x2- 2x + 1) - 3(x2- 3x + 2),其中x = -12、化简求值:2(a2- ab) - 3(a2- 2ab),当a = 1,b = -23、先化简,再计算:(2x2- 5xy + 3y2) - (x2- 4xy + 2y2),其中x =2,y = 14.化简并求值:4(m - 2n) + 3(2m + n) - 5(m + n),当m = 3,n = -11、先化简,后求值:5(a + b) - 2(2a - 3b) + 3(a - 4b),其中a = 2,b = -12、化简求值:6(x - y)2 - 3(x - y) + 2(y - x)2 - (x - y),当x = 5,y = 33、先化简,再求值:2(x2 - xy) - 3(x2- 2xy),其中x = -1,y = 24、化简计算:3(a - 2b) - 2(2a + b) + 5(a + 3b),当a = 1,b = 01、先化简,再求值:(4x2- 3xy + 5y2) - (2x2 + 2xy - 3y2),其中x =-2,y =12、化简求值:5(m - 2n) - 3(2m - 5n) + 2(m + 3n),当m = 4,n = -23、先化简,后求值:6(a - b) + 2(3a + b) - 4(a + 2b),其中a = 3,b = -14、化简求值:7(x + y2) - 4(x + y) + 3(y2 + x) - 2(x + y),当x = 1,y = -11、先化简,再求值:3(x2- 2xy) - 2(x2- 3xy),其中x = 0,y = -12、化简计算:4(a + 3b) - 3(2a - b) + 6(a - 4b),当a = -1,b = 23、先化简,再求值:(5x2- 4xy + 3y2) - (3x2- 3xy + 2y2),其中x = 1,y = -24、化简求值:8(m - 3n) - 5(3m + 2n) + 4(m + 5n),当m = 5,n = -11、先化简,后求值:9(a - 2b) - 6(2a + b) + 3(a + 4b),其中a = 2,b = -22、化简求值:10(x - y)2- 7(x - y) + 5(x - y)2- 3(x - y),当x = 7,y = 53、先化简,再求值:4(x2- xy) - 5(x2- 2xy),其中x = -2,y = 34、化简计算:6(a - 4b) - 4(2a + 3b) + 8(a + 2b),当a = 0,b = 15.先化简,再求值:(7x2- 6xy + 5y2) - (5x2- 5xy + 4y2),其中x = 3,y = -11、化简求值:3(m - 5n) - 2(5m - 3n) + 6(m + 2n),当m = -1,n = 22、先化简,后求值:8(a - b) + 5(2a + b) - 7(a + 3b),其中a = 4,b = -13、化简求值:9(x + y)2- 6(x + y) + 7(y + x)2- 4(x + y),当x = -2,y = 14、先化简,再求值:5(x2 - 3xy) - 4(x2- 4xy),其中x = 1,y = -35、化简求值:10(m - 4n) - 7(4m + 3n) + 5(m + 6n),当m = 6,n = -21、先化简,后求值:7(a - 3b) - 4(3a + b) + 2(a + 5b),其中a = 5,b = -22、化简求值:11(x2- y) - 8(x - y) + 9(y - x2) - 5(x - y),当x = 8,y = 63、先化简,再求值:6(x2- 2xy) - 5(x2- 3xy),其中x = -3,y = 24、化简计算:8(a + 2b) - 6(2a - b) + 9(a - 3b),当a = 1,b = -35、先化简,再求值:(9x2- 8xy + 7y2) - (7x2- 7xy + 6y2),其中x = -1,y = 01、化简求值:4(m - 6n) - 3(6m + 2n) + 7(m + 4n),当m = 2,n = -12、先化简,后求值:5(a - 4b) + 3(4a + b) - 6(a + 2b),其中a = 0,b = -13、化简求值:6(x + y)2 - 5(x + y) + 8(y + x)2 - 3(x + y),当x = 3,y = -24、先化简,再求值:7(x2- 4xy) - 6(x2- 5xy),其中x = 2,y = -45、化简求值:12(m - 5n) - 9(5m + 3n) + 6(m + 7n),当m = 7,n = -31、先化简,后求值:10(a - 5b) - 7(5a + b) + 5(a + 3b),其中a = -1,b = -22、化简求值:13(x - y)2- 10(x - y) + 11(y - x)2- 7(x - y),当x = 9,y = 73、先化简,再求值:8(x2- 3xy) - 7(x2- 4xy),其中x = -4,y = 14、化简计算:9(a + 4b) - 7(4a - b) + 10(a - 2b),当a = 2,b = -45、先化简,再求值:(11x2 - 10xy + 9y2) - (9x2- 9xy + 8y2),其中x = 0,y = -11、化简求值:5(m - 8n) - 4(8m + 2n) + 9(m + 6n),当m = -3,n = 12、先化简,后求值:6(a - 6b) + 4(6a + b) - 8(a + 3b),其中a = 1,b = -23、化简求值:7(x + y)2 - 6(x + y) + 10(y + x)2 - 5(x + y),当x = -1,y = 04、先化简,再求值:9(x2- 5xy) - 8(x2- 6xy),其中x = 3,y = -55、化简求值:14(m - 7n) - 11(7m + 3n) + 8(m + 9n),当m = 8,n = -4七年级化简求值打卡练习1、先化简,后求值:12(a - 7b) - 9(7a + b) + 6(a + 5b),其中a = -2,b = -32、化简求值:15(x - y)2- 12(x - y) + 13(y - x)2- 9(x - y),当x = 10,y = 83、先化简,再求值:10(x2- 4xy) - 9(x2- 5xy),其中x = -5,y = 24、. 化简计算:11(a + 5b) - 9(5a - b) + 12(a - 3b),当a = -1,b = -5。
整式化简求值专项训练1.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.2.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.3.化简求值:(5x2y+5xy﹣7x)﹣(4x2y+10xy﹣14x),其中x=1,y=﹣2.4.先化简后求值:,其中x=﹣2,y=﹣.5.先化简,再求值:2x2y﹣[5xy2+2(x2y﹣3xy2+1)],其中x,y满足(x﹣2)2+|y+1|=0.6.先化简,再求值:8ab﹣4[4ab﹣(ab2+ab)]﹣4ab2,其中a=,b=﹣.7.化简求值,其中x=2,y=﹣0.5.8.先化简下式,再求值:2(x﹣2y)﹣(3x﹣6y)+2x,其中x=﹣4,y=3.9.先化简,再求值:,其中a=﹣1,b=﹣2.10.化简求值:已知A=﹣a2+2ab+2b2,B=2a2﹣2ab﹣b2,当a=﹣,b=1时,求2A+B 的值.11.先化简,再求值:已知|x+3|+(y﹣)2=0,求代数式﹣2x2﹣2[3y2﹣2(x2﹣y2)+6]的值.12.先化简下列多项式,再求值:5ab﹣2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣1,b=.12.先化简再求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b﹣|=0.13.先化简,再求值:已知(a﹣1)2+|b+2|=0,求代数式(6a2﹣2ab)﹣2(3a2+4ab)的值.15.先化简,再求值:已知a,b满足(a﹣2b)2+|b+1|=0,求3a2b﹣[2ab2+3(ab2+a2b﹣2)]的值.整式化简求值专项训练参考答案与试题解析一.解答题(共15小题)1.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.【解答】解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.2.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.【解答】先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.3.化简求值:(5x2y+5xy﹣7x)﹣(4x2y+10xy﹣14x),其中x=1,y=﹣2.【解答】解:原式=5x2y+5xy﹣7x﹣2x2y﹣5xy+7x=(5﹣2)x2y+(5﹣5)xy+(﹣7+7)x=3x2y,当x=1,y=﹣2时,原式=3×12×(﹣2)=﹣6.4.先化简后求值:,其中x=﹣2,y=﹣.【解答】解:原式=x﹣2x+y2+x+y2=﹣x+y2,当x=﹣2,y=﹣时,原式=﹣(﹣2)+(﹣)2=.5.先化简,再求值:2x2y﹣[5xy2+2(x2y﹣3xy2+1)],其中x,y满足(x﹣2)2+|y+1|=0.【解答】解:原式=2x2y﹣[5xy2+2x2y﹣6xy2+2]=2x2y﹣5xy2﹣2x2y+6xy2﹣2=xy2﹣2,由(x﹣2)2+|y+1|=0,得到x=2,y=﹣1,则原式=2×(﹣1)2﹣2=2﹣2=0.6.先化简,再求值:8ab﹣4[4ab﹣(ab2+ab)]﹣4ab2,其中a=,b=﹣.【解答】解:8ab﹣4[4ab﹣(ab2+ab)]﹣4ab2=8ab﹣4[4ab﹣ab2﹣ab]﹣4ab2=8ab﹣16ab+22ab2+2ab﹣4ab2=﹣6ab+18ab2,当a=,b=﹣时,原式=﹣6ab+18ab2=﹣6×+18××(﹣)2=2+4=6.7.化简求值,其中x=2,y=﹣0.5.【解答】解:原式=4x﹣6y﹣2﹣3x﹣2y+2=x﹣8y,当x=2,y=﹣0.5时,原式=2+4=6.8.先化简下式,再求值:2(x﹣2y)﹣(3x﹣6y)+2x,其中x=﹣4,y=3.【解答】解:原式=2x﹣4y﹣x+2y+2x=3x﹣2y,当x=﹣4,y=3时,原式=﹣12﹣6=﹣18.9.先化简,再求值:,其中a=﹣1,b=﹣2.【解答】解:原式=4a2+2a﹣3a2﹣a+3b﹣a﹣2b=a2+b,当a=﹣1,b=﹣2时,原式=(﹣1)2+(﹣2)=﹣1.10.化简求值:已知A=﹣a2+2ab+2b2,B=2a2﹣2ab﹣b2,当a=﹣,b=1时,求2A+B 的值.【解答】解:2A+B=2(﹣a2+2ab+2b2)+(2a2﹣2ab﹣b2)=﹣2a2+4ab+4b2+2a2﹣2ab﹣b2=2ab+3b2,当a=,b=1时,原式=﹣1+3=2.11.先化简,再求值:已知|x+3|+(y﹣)2=0,求代数式﹣2x2﹣2[3y2﹣2(x2﹣y2)+6]的值.【解答】解:因为|x+3|≥0且(y﹣)2≥0,|x+3|+(y﹣)2=0,所以|x+3|=0且(y﹣)2=0,所以x+3=0且y﹣=0,所以x=﹣3且y=,﹣2x2﹣2[3y2﹣2(x2﹣y2)+6]=﹣2x2﹣2[3y2﹣2x2+2y2+6]=﹣2x2﹣2[5y2﹣2x2+6]=﹣2x2﹣10y2+4x2﹣12=2x2﹣10y2﹣12=2×(﹣3)2﹣10×()2﹣12=3.5.12.先化简下列多项式,再求值:5ab﹣2[3ab﹣(4ab2+ab)]﹣5ab2,其中a=﹣1,b=.【解答】解:5ab﹣2[3ab﹣(4ab2+ab)]﹣5ab2=5ab﹣=5ab﹣6ab+8ab2+ab﹣5ab2=3ab2;把a=﹣1,b=代入上式得:=.13.先化简再求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b ﹣|=0.【解答】解:原式=3a2b﹣2ab2+2(ab﹣a2b)﹣ab+3ab2=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=(3a2b﹣3a2b)+(﹣2ab2+3ab2)+(2ab﹣ab)=ab2+ab,∵(a+4)2+|b﹣|=0,∴a+4=0,b﹣=0,解得:a=﹣4,b=,原式=﹣4×()2+(﹣4)×=﹣1﹣2=﹣3.14.先化简,再求值:已知(a﹣1)2+|b+2|=0,求代数式(6a2﹣2ab)﹣2(3a2+4ab)的值.【解答】解:(6a2﹣2ab)﹣2(3a2+4ab﹣b2)=6a2﹣2ab﹣6a2﹣8ab+b2=﹣10ab+b2,∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,即a=1,b=﹣2,∴原式=20+1=21.15.先化简,再求值:已知a,b满足(a﹣2b)2+|b+1|=0,求3a2b﹣[2ab2+3(ab2+a2b﹣2)]的值.【解答】解:原式=3a2b﹣2ab2﹣3ab2﹣3a2b+6=﹣5ab2+6,∵(a﹣2b)2+|b+1|=0,∴a﹣2b=0,b+1=0,解得:a=﹣2,b=﹣1,则原式=10+6=16.。
整式化简求值
1.先化简,再求值:(4a2﹣3a)﹣2(a2+a﹣1)﹣(﹣2+a2﹣4a),其中a=﹣2.2.先化简,再求值.7x+8﹣6,其中x=.
3.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.
4.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.5.先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.6.先化简,再求值:2(a2+3ab﹣4.5)﹣(3a2﹣4ab﹣9),其中a=3,b=﹣.7.求3x2+x+3(x2﹣x)﹣(6x2+x)的值,其中x=﹣6.
8.已知A=2a2﹣a,B=﹣5a+1.
(1)化简:3A﹣2B+2;
(2)当时,求3A﹣2B+2的值.
9.先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.10.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.11.先化简,再求值
3(ab2+ab)﹣2(ab2﹣3ab)﹣9ab,其中a=2,b=﹣1.
12.求多项式的值,其中x=5,y=﹣8.
13.已知:有理数a、b在数轴上表示如图所示,先化简下式后,再求值:3ab ﹣[2a2﹣(b2﹣3ab)﹣a2].
14.先化简,再求值:2(xy+xy)﹣3(xy﹣xy)﹣5xy.其中x=﹣1,y=2.15.化简求值:x2﹣(﹣x2+3xy)﹣2(x2﹣2xy),其中x=﹣2,y=3.
16.化简求值:2(2x﹣3y)﹣(3x+4y﹣1),其中x=2,y=﹣.
17.先化简,再求值:﹣4(a2﹣4ab+1)+2(2a2﹣9ab),其中a=,b=﹣6.
18.化简并求值:2(2a﹣3b)﹣(3a+2b+1),其中a=2,b=﹣.
19.先化简再求值:,其中.
20.先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1),其中a=﹣2.
21.先化简,后求值:3a2﹣4ab+5﹣a2+3ab﹣3,其中a=2,b=3.
22.先化简再求值:当a=﹣,b=1时,求代数式5(3a2b﹣ab2)﹣(ab2+3a2b)的值.
整式化简求值
参考答案与试题解析
一.解答题(共22小题)
1.先化简,再求值:(4a2﹣3a)﹣2(a2+a﹣1)﹣(﹣2+a2﹣4a),其中a=﹣2.
【解答】解:原式=4a2﹣3a﹣2a2﹣2a+2+2﹣a2+4a
=a2﹣a+4,
将a=﹣2代入可得原式=10.
故答案为10.
2.先化简,再求值.7x+8﹣6,其中x=.
【解答】解:原式=7x+8﹣12﹣2(x+2)
=7x+8﹣12﹣2x﹣4
=5x﹣8,
当x=时,
原式=5x﹣8
=5×﹣8
=﹣4.
3.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.
【解答】解:原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b
=﹣ab2,
当a=﹣1,b=﹣2时,原式=4.
4.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.
【解答】解:原式=3x2﹣6xy﹣3x2+2y﹣2xy﹣2y
=﹣8xy,
当x=﹣,y=﹣3时,原式=﹣12.
5.先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.
【解答】解:原式=2a2+6ab﹣9﹣a2+6ab+9=a2+12ab,
当a=﹣5,b=时,原式=25﹣45=﹣20.
6.先化简,再求值:2(a2+3ab﹣4.5)﹣(3a2﹣4ab﹣9),其中a=3,b=﹣.
【解答】解:原式=2a2+6ab﹣9﹣3a2+4ab+9
=﹣a2+10ab,
当a=3、b=﹣时,
原式=﹣9+10×3×(﹣)
=﹣9﹣5
=﹣14.
7.求3x2+x+3(x2﹣x)﹣(6x2+x)的值,其中x=﹣6.
【解答】解:原式=3x2+x+3x2﹣2x﹣6x2﹣x
=﹣2x,
当x=﹣6时,原式=﹣2×(﹣6)=12.
8.已知A=2a2﹣a,B=﹣5a+1.
(1)化简:3A﹣2B+2;
(2)当时,求3A﹣2B+2的值.
【解答】解:(1)3A﹣2B+2,
=3(2a2﹣a)﹣2(﹣5a+1)+2,
=6a2﹣3a+10a﹣2+2,
=6a2+7a;
(2)当时,
3A﹣2B+2=.
9.先化简,再求值:2(a2+3ab﹣4.5)﹣(a2﹣6ab﹣9),其中a=﹣5,b=.
【解答】解:原式=2a2+6ab﹣9﹣a2+6ab+9=a2+12ab,
当a=﹣5,b=时,原式=25﹣45=﹣20.
10.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.
【解答】解:原式=2a﹣2ab+2ab﹣b﹣a=a﹣b,
当a=3,b=﹣2时原式=3﹣(﹣2)=3+2=5.
11.先化简,再求值
3(ab2+ab)﹣2(ab2﹣3ab)﹣9ab,其中a=2,b=﹣1.
【解答】解:原式=3ab2+3ab﹣2ab2+6ab﹣9ab=ab2,
当a=2,b=﹣1时,原式=2×(﹣1)2=2.
12.求多项式的值,其中x=5,y=﹣8.
【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,
当x=5时,原式=﹣50.
13.已知:有理数a、b在数轴上表示如图所示,先化简下式后,再求值:3ab ﹣[2a2﹣(b2﹣3ab)﹣a2].
【解答】解:原式=3ab﹣2a2+b2﹣3ab+a2=﹣a2+b2,
由数轴上点的位置得:a=1,b=﹣1,
则原式=﹣1+1=0.
14.先化简,再求值:2(xy+xy)﹣3(xy﹣xy)﹣5xy.其中x=﹣1,y=2.
【解答】解:2(xy+xy)﹣3(xy﹣xy)﹣5xy
=2xy+2xy﹣3xy+3xy﹣5xy
=﹣xy,
当x=﹣1,y=2时,原式=2.
15.化简求值:x2﹣(﹣x2+3xy)﹣2(x2﹣2xy),其中x=﹣2,y=3.
【解答】解:原式=x2+x2﹣3xy﹣2x2+4xy=xy,
当x=﹣2,y=3时,原式=﹣6.
16.化简求值:2(2x﹣3y)﹣(3x+4y﹣1),其中x=2,y=﹣.
【解答】解:2(2x﹣3y)﹣(3x+4y﹣1),
=x﹣10y+1,
当x=2,y=﹣时,
原式=2﹣10×(﹣)+1=8.
17.先化简,再求值:﹣4(a2﹣4ab+1)+2(2a2﹣9ab),其中a=,b=﹣6.
【解答】解:原式=﹣4a2+16ab﹣4+4a2﹣18ab
=﹣2ab﹣4,
当a=,b=﹣6时,原式=4﹣4=0.
18.化简并求值:2(2a﹣3b)﹣(3a+2b+1),其中a=2,b=﹣.
【解答】解:原式=4a﹣6b﹣3a﹣2b﹣1
=a﹣8b﹣1,
当a=2,b=﹣时,原式=2+4﹣1=5.
19.先化简再求值:,其中.
【解答】解:原式=x﹣3x+y2+x+y2
=﹣x+y2,
当x=2,y=时,原式=﹣2+=﹣1.
20.先化简,再求值:(4a2﹣3a)﹣(2a2+a﹣1),其中a=﹣2.
【解答】解:(4a2﹣3a)﹣(2a2+a﹣1),
=2a2﹣4a+1,
当a=﹣2时,原式=2×(﹣2)2﹣4×(﹣2)+1=8+8+1=17.
21.先化简,后求值:3a2﹣4ab+5﹣a2+3ab﹣3,其中a=2,b=3.
【解答】解:∵3a2﹣4ab+5﹣a2+3ab﹣3=2a2﹣ab+2,
∴将a=2,b=3代入得,
原式=2×22﹣2×3+2=4.
22.先化简再求值:当a=﹣,b=1时,求代数式5(3a2b﹣ab2)﹣(ab2+3a2b)的值.
【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)
=15a2b﹣5ab2﹣ab2﹣3a2b
=12a2b﹣6ab2,
当a=﹣,b=1时,
原式=12×(﹣)2×1﹣6×(﹣)×12
=3+3
=6.。