2014年高考物理二轮专题复习 专题三 功和能3-1课后作业(含解析)
- 格式:doc
- 大小:296.00 KB
- 文档页数:10
计算题题型专练(三) 功和能、动量1.如图所示是某次四驱车比赛的轨道中的某一段。
张华控制的四驱车(可视为质点),质量m= 1.0 kg,额定功率为P=7 W。
张华的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机。
当四驱车由平台边缘B点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆弧轨道,且此时的速度大小为5 m/s,∠COD=53°,并从轨道边缘E点竖直向上飞出,离开E以后上升的最大高度为h=0.85 m。
已知A、B间的距离L=6 m,四驱车在AB段运动时的阻力恒为1 N。
重力加速度g取10 m/s2,不计空气阻力。
sin 53°= 0.8,cos 53°=0.6,求:(1)四驱车运动到B点时的速度大小:(2)发动机在水平平台上工作的时间;(3)四驱车对圆弧轨道的最大压力。
答案(1)3 m/s (2)1.5 s (3)55.5 N2.如图所示,两个半径为R的四分之一圆弧构成的光滑细管道ABC竖直放置,且固定在光滑水平面上,圆心连线O1O2水平。
轻弹簧左端固定在竖直挡板上,右端与质量为m的小球接触(不拴接,小球的直径略小于管的内径),长为R的薄板DE置于水平面上,板的左端D到管道右端C的水平距离为R。
开始时弹簧处于锁定状态,具有的弹性势能为3mgR,其中g为重力加速度。
解除锁定,小球离开弹簧后进入管道,最后从C点抛出。
(1)求小球经C 点时的动能; (2)求小球经C 点时所受的弹力大小;(3)讨论弹簧锁定时弹性势能满足什么条件,从C 点抛出的小球才能击中薄板DE 。
解析 (1)解除弹簧锁定后小球运动到C 点过程,弹簧和小球组成的系统机械能守恒3mgR =2mgR +E k解得E k =mgR(2)小球过C 点时的动能E k =12mv 2设小球经过C 点时管道对小球的作用力为F ,则mg +F =mv2R解得F =mg ,方向竖直向下 (3)小球离开C 点后做平抛运动 竖直方向:2R =12gt 2水平方向:x 1=v 1t若要小球击中薄板,应满足R ≤x 1≤2R 弹簧的弹性势能E p =2mgR +12mv 21解得弹性势能E p 满足178mgR ≤E p ≤52mgR 时,小球才能击中薄板。
积盾市安家阳光实验学校第三课时机械能守恒功能关系【知识梳理】1、机械能守恒律机械能守恒律内容:____________________________________________________表达式:2、功和能的关系:(1)重力做功是变化的量度(2)弹力做功是变化的量度(3)电场力做功是变化的量度(4)安培力做功是变化的量度(5)除重力和弹簧弹力以外其它力做功是变化的量度(6)合力做功是变化的量度(7)滑动摩擦力做功与摩擦生热的关系3、能量转化与守恒律(1)物理中常见的能量形式_______________________________________________(2)能量转化与守恒律内容:_______________________表达式:【规律与方法总结】交流与探究1例题1、如图所示,质量分别为2 m和3m的两个小球固在一根直角尺的两端A、B,直角尺的顶点O处有光滑的固转动轴。
AO、BO的长分别为2L和L。
开始时直角尺的AO处于水平位置而B在O 的正下方。
让该系统由静止开始自由转动,求:⑴当A到达最低点时,A小球的速度大小v;⑵ B球能上升的最大高度h;⑶开始转动后B球可能达到的最大速度v m。
总结:1、机械能守恒律的条件(1)做功分析:____________________________________。
(2)能量形式分析:________________________________.。
2、解题步骤⑴确研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选一种表达式,列式求解。
例如机械能守恒律就有多种表达形式:E K+E P=E K/+E P′,ΔE K+ΔE P=0。
它们的实质是一样的,但在运用时有繁简之分。
因为重力势能的计算要选参考平面,而重力势能变化的计算跟参考平面的选取无关,所以用后者往往更方便一些。
【变式训练1】如图所示,半径为R的光滑半圆上有两个小球BA、,质量分别为Mm和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度? 交流与探究2例2、(功能关系)在将物体举起某一高度的过程中,若不计阻力,则 [ ]A 、举力所做的功于物体增加的重力势能B 、举力和重力做功代数和于物体增加的动能C 、合外力对物体所做的功于物体增加的机械能D 、举力所做的功于物体增加的机械能 【变式训练2】如图所示,固于绝缘水平面上的很长的平行金属导轨,表面粗糙,电阻不计.导轨左端与一个电阻R 连接,金属棒ab的质量为m ,电阻也不计.整个装置放在垂直于导轨平面的匀强磁场中.则当ab 棒在水平恒力F 作用下从静止起向右滑动的过程中A .恒力F 做的功于电路中产生的电能B .恒力F 与摩擦力的合力做的功于电路中产生的电能C .克服安培力做的功于电路中产生的电能D .恒力F 与摩擦力的合力做的功于电路中产生的电能与 棒获得的动能之和交流与探究3例3.(功能关系在电场中的用)如图所示匀强电场E 的区域内,在O 点处放置一点电荷 +Q , a 、b 、c 、d 、e 、f 为以O 点为球心的球面上的点,aecf 平面与电场平行,bedf 平面与电场垂直,则下列说法中正确的是 A .b 、d 两点的电场强度相同 B .a 点的电势于f 点的电势C .点电荷+q 在球面上任意两点之间移动时,电场力一做功D .将点电荷+q 在球面上任意两点之间移动,从球面上a 点移动到c 点的电势能变化量一最大解析:由于点电荷+Q 在b 、d 两点的场强方向分别向上和向下,b 、d 两点的场强大小相同,方向不同,A 错;a 点和f 点位于+Q 形成电场的势面上,但若把一电荷从a 点移动到f 点,电场E 要对电荷做功,B 错;当点电荷+q 在bedf 面上任意两点间移动时,电场力不做功,C 错;球面上相距最远的点(沿场强E 的方向)是ac ,电场E 对其做功最大,电势能的变化量最大。
2014年高考物理二轮专题复习检测试题:专题三功和能 Word版含解析本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间90分钟。
第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有的小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.物体在合外力作用下做直线运动的v-t图象如图所示。
下列表述正确的是( )A.在0~2s内,合外力总是做负功B.在1~2s内,合外力不做功C.在0~3s内,合外力做功为零D.在0~1s内比1~3s内合外力做功快[答案]CD[解析]根据物体的速度图象可知,根据动能定理可知在0~2s内物体先加速后减速,合外力先做正功后做负功,A错;根据动能定理得0~3s内合外力做功为零,1~2s内合外力做负功,C对,B错;在0~1s内比1~3s内合外力做功快,D对。
2.(2013·浙江高考模拟冲刺)在一场英超联赛中,我国球员孙继海大力踢出的球飞行15m 后,击在对方球员劳特利奇的身上。
假设球击中身体时的速度约为22m/s,离地面高度约为1.5m,估算孙继海踢球时脚对球做的功为( )A.15J B.150JC.1500J D.15000J[答案]B[解析]孙继海踢球时脚对球做的功等于球增加的机械能。
足球的质量大约为0.5kg,则足球增加的机械能E=mgh+12mv2=0.5×10×1.5J+12×0.5×222J=128.5J,故B正确。
3.如图所示是一种清洗车辆用的手持喷水枪。
设枪口截面积为0.6cm 2,喷出水的速度为20m /s (水的密度为1×103kg /m 3)。
当它工作时,估计水枪的功率约为( )A .250WB .300WC .350WD .400W[答案] A[解析] 每秒钟喷出水的动能为E k =12mv 2=12ρSvt·v 2,代入数据得E k =240J ,故选项A正确。
第八章 化学实验基础 第二节 物质的检验 检验常见物质的一般程序与思路 1.固态物质的检验。
2.无色溶液的检验。
思维点拨:本题主要涉及离子的推断,意在考查考生的分析推理能力。
离子的推断主要是对于物质中所含的成分,运用实验的手段进行分析和推断,最后得出结论。
其主要依据是实验结果,解答此类问题必须掌握离子的性质,包括颜色以及与其他物质反应产生的现象,推断时需注意排除一些杂质离子母扇拧 针对训练 1.向四支试管中分别加入少量不同的无色溶液进行如下操作,结论正确的是( ) 操作 现象 结论 A 滴加BaCl2溶液 生成白色沉淀 原溶液中有SO B 滴加氯水和CCl4,振荡、静置 下层溶液显紫色 原溶液中有I- C 用洁净铂丝蘸取溶液进行焰色反应 火焰呈黄色 原溶液中有Na+,无K+ D 滴加稀NaOH溶液,将湿润红色石蕊试纸置于试管口 试纸不变蓝 原溶液中无NH 解析:向溶液中滴加BaCl2溶液生成的白色沉淀可能是碳酸钡或亚硫酸钡,A错;向溶液中滴加氯水和CCl4,振荡、静置,下层溶液显紫色说明有I2生成,则原溶液中有I-,B正确;焰色反应呈黄色说明原溶液肯定有Na+,但不能确定没有K+,因为K+的焰色反应为紫色,能被黄色遮盖,C错;向溶液中滴加稀NaOH溶液,将湿润红色石蕊试纸置于试管口,试纸不变蓝有可能是没有加热,NH+4与OH-生成NH3·H2O,没有NH3逸出。
答案:B 物质的鉴定与鉴别 1.鉴定是对一种未知物质进行确认,即根据被检物质特有的性质和现象,确定被检物质是否存在。
物质鉴定的一般思路是:根据被鉴物质的性质确定实验原理,若被鉴物质是纯净的离子化合物,则阳离子和阴离子都要检验;若被鉴物质存在于混合物中,则要分析是否有干扰物,若有干扰物则要先分离干扰物质后再进行检验。
物质鉴定的一般步骤为: 2.鉴别是指对两种或两种以上物质进行定性辨认。
物质鉴别的一般思路是:当待鉴物质较少时,可直接根据它们性质的差异进行逐一鉴别;当待鉴物质较多时,可就阴、阳离子或官能团进行分组,然后对每一小组进行逐一鉴别。
高三物理“功和能的关系”知识定位在高中物理学习过程中,既要学习到普遍适用的守恒定律——能量守恒定律,又要学习到条件限制下的守恒定律——机械能守恒定律。
学生掌握守恒定律的困难在于:对于能量守恒定律,分析不清楚哪些能量发生了相互转化,即哪几种能量之和守恒;而对于机械能守恒定律,又不能正确的分析何时守恒,何时不守恒。
在整个高中物理学习过程中,很多同学一直错误的认为功与能是一回事,甚至可以互相代换,其实功是功,能是能,功和能是两个不同的概念,对二者的关系应把握为:功是能量转化的量度。
知识梳理1、做功的过程是能量转化的过程,功是能的转化的量度。
2、能量守恒和转化定律是自然界最基本的定律之一。
而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。
本章的主要定理、定律都是由这个基本原理出发而得到的。
需要强调的是:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它个一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
3、复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。
突出:“功是能量转化的量度”这一基本概念。
⑴物体动能的增量由外力做的总功来量度:W外=ΔE k,这就是动能定理。
⑵物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。
⑶物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。
⑷当W其=0时,说明只有重力做功,所以系统的机械能守恒。
⑸一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
f d=Q(d为这两个物体间相对移动的路程)。
例题精讲1【题目】如图所示,一根轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D位置小球速度减小到零。
静电场 复习测试题一、选择题(本题10小题,每题4分,共40分;每小题只有1个选项正确,将正确答案填写在答题卷的表格中,不填入表格的答案无效。
) 1.以下叙述中正确的是 ( ) A .带电量较小的带电体可以看成是点电荷B .电场线的形状可以用实验来模拟,这说明电场线是实际存在的C .一般情况下,两个点电荷之间的库仑力比它们之间的万有引力要大得多D .电场线的分布情况可以反映出电场中各点的场强方向,但无法描述电场的强弱 2.平行金属板水平放置,板间距为0.6cm ,两板接上600V 电压,板间有一个带电液滴质量为4.8×10-10g ,处于静止状态,则油滴上有元电荷数目是(g 取10m/s 2)( )A .3×106B.300C.10D.3×1043.下列关于点电荷的场强公式2r QkE 的几种不同的理解,正确的是 ( ) A..以点电荷Q 为中心,r 为半径的球面上各处的场强相同. B .当r→0时,E→∞;当r→∞时,E→0C .点电荷Q 产生的电场中,各点的场强方向一定是背向点电荷QD .在点电荷Q 的电场中,某点的场强大小与Q 成正比,与r 2成反比4.在点电荷+Q 形成的电场中有一点A ,当一个-q 的检验电荷从电场的无限远处被移到电场中的A 点时,电场力做功为W ,则检验电荷在A 点的电势能及电场中A 点的电势分别为 ( )A. E A =-W , φA =W q B. E A =W, φA =-W qC .E A =W, φA =W qD .E A =-W , φA =-Wq5.如图所示,一水平放置的金属板正上方有一固定的正点电荷Q ,一表面绝缘的带正电小球(可视为质点且不影响Q 的电场)从左端以v 滑上金属板的上表面,向右运动到右端,在此过程中( ) A .小球受到的电场力做正功; B .小球先减速运动,后加速运动;C .小球受到的电场力方向始终沿两电荷连线斜向下;D .小球做匀速直线运动。
高三物理二轮复课研讨会长宁中学王战伟从本周开始高三物理复课已进入二轮专题复习阶段,通过一轮系统全面的复习,学生对基本概念、基本规律有了较清晰的认识,只是缺乏知识的横向联系和综合运用。
因此,二轮复习我们应重引导学生概括、总结已有的知识,打通知识之间的内在联系,将知识系统化。
同时,强化方法迁移,做到一题多解,提高学生解题的速度及准确性。
为了搞好高三物理后期复习,经高三物理备课组集体研究,提出了下列复习计划和策略。
具体做法如下:一、复习计划1、时间安排:3月25日———5月10日2、形式:按板块专题复习,打破章节顺序。
注重知识间联系与综合运用。
3、目标:梳理知识,建立模型。
构建纵横相联系的体系,注重学科内知识的综合应用。
强调知识的系统把握类比迁移能力的培养,重视物理思想方法和建模能力的总结,进一步提高学生分析解题能力。
4、专题设置专题一:力与物体的平衡专题二:力与直线运动专题三:力与曲线运动专题四:功和能专题五:带电粒子在电场磁场中的运动专题六:直流与交流电路专题七:电磁感应专题八:实验二、复课策略1.科学设计专题内容二轮复习时间短任务重,更应该重点突出基础知识、主干知识之间的综合运用。
要对教学内容进行精心筛选、组合,紧紧抓住主干知识及主干知识之间的综合应用,以及一轮复习中学生掌握不好的内容,做好拓展、巩固、提升。
对专题教学目标的解析是二轮复习的核心内容,我们主要注重了三个方面的内容:(1)定准目标,以本专题可能考核的几个主要方向和角度为出发点,确立教学目标。
(2)精心选择、设计典型例题,用本专题易考、易错题型,帮助学生理解、巩固目标内容,提升综合解答能力。
(3)梳理题目与知识的关系,归纳本专题易考、易错题型的解答技巧。
2.继续抓好基本概念复习,注重培养学生的综合能力从二模考试考试情况,不难看出学生在基本题目上得分率仍不够高,这说明在前段复习中,我们对基本概念和基本规律复习的不到位。
无论高考怎么考,都必须夯实学科基础。
高考物理力学知识点之功和能真题汇编含答案(3)一、选择题1.如图所示,一个内侧光滑、半径为R的四分之三圆弧竖直固定放置,A为最高点,一小球(可视为质点)与A点水平等高,当小球以某一初速度竖直向下抛出,刚好从B点内侧进入圆弧并恰好能过A点。
重力加速度为g,空气阻力不计,则()A.小球刚进入圆弧时,不受弹力作用B.小球竖直向下抛出的初速度大小为gRC.小球在最低点所受弹力的大小等于重力的5倍D.小球不会飞出圆弧外2.如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)( )A.216vgB.28vgC.24vgD.22vg3.如图所示,小车A放在一个倾角为30°的足够长的固定的光滑斜面上,A、B两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g,滑轮质量及细线与滑轮之间的摩擦不计,小车A的质量为3m,小球B的质量为m,小车从静止释放后,在小球B竖直上升h 的过程中,小车受绳的拉力大小F T和小车获得的动能E k分别为()A.F T=mg,E k=3mgh/8B.F T=mg,E k=3mgh/2C.F T=9mg/8,E k=3mgh/2D.F T=9mg/8,E k=3mgh/84.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
已知轨道Ⅰ的近地点B到地心的距离近似等于地球半径R,远地点A到地心的距离为3R,则下列说法正确的是()A.卫星在B点的加速度是在A点加速度的3倍B.卫星在轨道Ⅱ上A点的机械能大于在轨道Ⅰ上B点的机械能C.卫星在轨道Ⅰ上A点的机械能大于B点的机械能D.卫星在轨道Ⅱ上A点的动能大于在轨道Ⅰ上B点的动能5.如图,倾角为θ的光滑斜面与光滑的半径为R的半圆形轨道相切于B点,固定在水平面上,整个轨道处在竖直平面内。
专题05 功和能1。
【2014·重庆卷】某车以相同的功率在两种不同的水平路面上行驶,受到的阻力分别为车重的1k 和2k 倍,最大速率分别为1v 和2v ,则 A 。
112v k v = B.1212v k k v =C 。
1122v k kv = D 。
122v k v = 2.【2014·全国大纲卷】地球表面附近某区域存在大小为150N/C 、方向竖直向下的电场.一质量为1.00×10-4kg 、带电量为-1.00×10—7C 的小球从静止释放,在电场区域内下落10。
0m 。
对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9。
80m/s 2,忽略空气阻力)( ) A .-1.50×10-4J 和 9.95×10-3J B .1.50×10—4J 和9.95×10-3J C .-1。
50×10-4J 和 9。
65×10-3J D .1。
50×10—4J 和9。
65×10-3J3。
【2014·新课标全国卷Ⅱ】一物体静止在粗糙水平地面上,现用一大小为F 1的水平拉力拉动物体,经过一段时间后其速度变为v ,若将水平拉力的大小改为F 2,物体从静止开始经过同样的时间后速度变为2v ,对于上述两个过程,用1F W 、2F W 分别表示拉力F 1、F 2所做的功,1f W 、2f W 分别表示前后两次克服摩擦力所做的功,则( )A. 214F F W W >,212f f W W >B. 214F F W W >,122f f W W =—C. 214F F W W <,122f f W W =D. 214F F W W <,212f f W W <4。
【2014·安徽卷】如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN 是通过椭圆中心O 点的水平线。
2014年高考物理二轮复习经典试题功 功率 动能定理一、选择题(本题共8小题,每小题8分,共64分,其中第5、6、8小题为多选题.)1.[2012·福建卷]如图所示,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦).初始时刻,A 、B 处于同一高度并恰好处于静止状态.剪断轻绳后A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )A .速率的变化量不同B .机械能的变化量不同C .重力势能的变化量相同D .重力做功的平均功率相同解析:由题意根据力的平衡有m A g =m B g sin θ,所以m A =m B sin θ.根据机械能守恒定律mgh =12m v 2,得v =2gh ,所以两物块落地速率相等,选项A 错;因为两物块的机械能守恒,所以两物块的机械能变化量都为零,选项B 错误;根据重力做功与重力势能变化的关系,重力势能的变化为ΔE p =-W G =-mgh ,选项C 错误;因为A 、B 两物块都做匀变速运动,所以A 重力的平均功率为P A =m A g ·v 2,B 重力的平均功率P B =m B g ·v 2cos(π2-θ),因为m A =m B sin θ,所以P A =P B ,选项D 正确.答案:D2.[2013·虹口质检]质量为2 kg 的物体做直线运动,沿此直线作用于物体的外力与位移的关系如图所示,若物体的初速度为3 m/s ,则其末速度为( )A .5 m/s B.23 m/s C. 5 m/s D.35 m/s解析:根据作用于物体的外力与位移的关系图象与横轴所围面积表示功,物体的外力做功W =4 J +16 J -6 J =14 J .由动能定理,W =12m v 22-12m v 21,解得末速度为v 2=23 m/s ,选项B 正确. 答案:B3.[2013·洛阳统考]如图所示,从光滑的1/4圆弧槽的最高点滑下的小滑块,滑出槽口时速度方向为水平方向,槽口与一个半球顶点相切,半球底面水平,若要使小滑块滑出槽口后不沿半球面下滑,已知圆弧轨道的半径为R 1,半球的半径为R 2,则R 1和R 2应满足的关系是( )A. R 1≤R 22B. R 1≥R 22C. R 1≤R 2D. R 1≥R 2解析:根据动能定理有mgR 1=12m v 2,解得v =2gR 1,若要使小滑块滑出槽口后不沿半球面下滑,则有v ≥gR 2(临界状态可由mg =m v 2R 2求得),代入数据解得R 1≥R 22,选项B 正确. 答案:B4.[2013·浙江省重点中学协作体4月调研]如图所示为某中学科技小组制作的利用太阳能驱动小车的装置.当太阳光照射到小车上方的光电板时,光电板中产生的电流经电动机带动小车前进.若质量为m 的小车在平直的水泥路上从静止开始沿直线加速行驶,经过时间t 前进的距离为l ,且速度达到最大值v m .设这一过程中电动机的功率恒为P ,小车所受阻力恒为F ,那么这段时间内( )A .小车做匀加速运动B .小车受到的牵引力逐渐增大C .小车受到的合外力所做的功为PtD .小车受到的牵引力做的功为Fl +12m v 2m 解析:行驶过程中功率恒为P ,小车做加速度逐渐减小的加速运动,小车受到的牵引力逐渐减小,选项A、B错误;小车受到的合外力所做的功为Pt-Fl,选项C错误;由动能定理,W-Fl=12m v2m,小车受到的牵引力做的功为W=Fl+12m v2m,选项D正确.答案:D5.(多选)如图所示,倾角为30°、高为L的固定斜面底端与水平面平滑相连,质量分别为3m、m的两个小球A、B用一根长为L的轻绳连接,A球置于斜面顶端.现由静止释放A、B两球,B球与弧形挡板碰撞过程时间极短,碰撞过程中无机械能损失,且碰后只能沿斜面下滑,两球最终均滑到水平面上.已知重力加速度为g,不计一切摩擦,则()A. A球刚滑至水平面时的速度大小为125gLB. B球刚滑至水平面时的速度大小为12gLC. 两球在水平面上不可能相撞D. 在A球沿斜面下滑的过程中,轻绳对B球先做正功、后不做功解析:因B球和弧形挡板碰撞过程无能量损失,并且B球的运动方向变为沿斜面向下,又A、B两球用一轻绳连接,所以A、B两球的线速度大小相等(B球上升过程中,A球未到达水平面时).当A球刚到水平面时,B球在竖直高度为L2处,由能量守恒定律得3mgL-mg L 2=12(3m +m )v 21,解得v 1=125gL ,A 正确;因A 球到达水平面上,B 球还在斜面上,所以B 球到水平面时的速度比A 球大.对B球,由能量守恒定律得12m v 21+12mgL =12m v 22,得v 2=32gL ,B 错误;由于v 2>v 1,所以B 球可以追上A 球,C 错误;A 球在斜面上下滑过程中,前L 距离轻绳对B 球做正功,A 球到达斜面中点后,轻绳不再对B 球做功,D 正确.答案:AD6.[2013·东北三校联考]如图所示,两根等长的细线拴着两个小球在竖直平面内各自做圆周运动.某一时刻小球1运动到自身轨道的最低点,小球2恰好运动到自身轨道的最高点,这两点高度相同,此时两小球速度大小相同.若两小球质量均为m ,忽略空气阻力的影响,则下列说法正确的是( )A .此刻两根线拉力大小相同B .运动过程中,两根线上拉力的差值最大为2mgC .运动过程中,两根线上拉力的差值最大为10mgD .若相对同一零势能面,小球1在最高点的机械能等于小球2在最低点的机械能解析:设小球质量为m ,当两小球运动到题中图示位置时,设速度大小为v ,此时两根细线的拉力分别为F 1和F 2,设小球质量为m ,细线长度为L ,则由向心力公式得:F 1-mg =m v 2L ,F 2+mg =m v 2L ,故选项A 错误;易知小球1在最高点时细线的拉力F ′1最小,设此时速度大小为v 1,F ′1+mg =m v 21L ,再由机械能守恒定律得:12m v 2=12m v 21+2mgL ;小球2在最低点时细线的拉力F ′2最大,设此时速度大小为v 2,F ′2-mg =m v 22L ,再由机械能守恒定律得:12m v 22=12m v 2+2mgL ,联立解得,运动过程中两根线上拉力的差值最大为F ′2-F ′1=2mg +m v 22-v 21L =2mg +8mg =10mg ,故选项C 正确,B 错误;取题中图示位置为零势能面,由机械能守恒定律知选项D 正确.答案:CD7.[2013·江西盟校二联]如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得的速度为v ,A 、B 之间的水平距离为s ,重力加速度为g .下列说法正确的是( )A. 小车重力所做的功是mghB. 合外力对小车做的功是12m v 2 C. 推力对小车做的功是12m v 2+mgh D. 阻力对小车做的功是Fs -12m v 2-mgh 解析:小车重力所做的功为-mgh ,A 错误.由动能定理得合外力对小车做的功W =12m v 2,B 正确.推力对小车做的功为Fs ,C 错误.根据动能定理,阻力对小车做的功为-(Fs -12m v 2-mgh ),故D 错误.答案:B8.[2013·石家庄质检二]如图所示为汽车在水平路面上启动过程中的v -t 图象,Oa 为过原点的倾斜直线,ab 段表示以额定功率行驶时的加速阶段,bc 段是与ab 段相切的水平直线,下述说法正确的是( )A .0~t 1时间内汽车以恒定功率做匀加速运动B .t 1~t 2时间内的平均速度为v 1+v 22C .t 1~t 2时间内汽车牵引力做功大于12m v 22-12m v 21 D .在全过程中t 1时刻的牵引力及其功率都是最大值解析:0~t 1时间内汽车做匀加速直线运动,汽车牵引力恒定,由功率定义,可知:汽车功率逐渐增大,选项A 错误;由v -t 图象意义可知:图线与坐标轴围成面积的大小等于汽车的位移大小,则由平均速度的定义可得:t 1~t 2时间内的平均速度大于v 1+v 22,选项B 错误;t 1~t 2时间内,由动能定理可得:W F -W f =12m v 22-12m v 21,则W F >12m v 22-12m v 21,选项C 正确;由汽车功率和牛顿第二定律可知:t 1~t 2时间内,牵引力减小、汽车功率不变;t 2~t 3时间内,牵引力不变、汽车功率不变,故选项D 正确.答案:CD二、计算题(本题共2小题,共36分.需写出规范的解题步骤)9.[2013·淄博二模]如图所示,上表面光滑,长度为3 m 、质量M =10 kg 的木板,在F =50 N 的水平拉力作用下,以v 0=5 m/s 的速度沿水平地面向右匀速运动.现将一个质量为m =3 kg 的小铁块(可视为质点)无初速地放在木板最右端,当木板运动了L =1 m 时,又将第二个同样的小铁块无初速地放在木板最右端,以后木板每运动1 m 就在其最右端无初速地放上一个同样的小铁块.(g 取10 m/s 2)求:(1)木板与地面间的动摩擦因数.(2)刚放第三个铁块时木板的速度.(3)从放第三个铁块开始到木板停下的过程,木板运动的距离. 解析:(1)木板做匀速直线运动时,受到地面的摩擦力为f 由平衡条件得F =f ①f =μMg ②联立并代入数据得μ=0.5. ③(2)每放一个小铁块,木板所受的摩擦力增加μmg令刚放第三块铁块时木板速度为v 1,对木板从放第一块铁块到刚放第三块铁块的过程,由动能定理得-μmgL -2μmgL =12M v 21-12M v 20 ④ 联立代入数据得v 1=4 m/s. ⑤(3)从放第三个铁块开始到木板停下之前,木板所受的摩擦力均为3μmg从放第三个铁块开始到木板停下的过程,木板运动的距离为x ,对木板由动能定理得-3μmgx =0-12M v 21 ⑥ 联立并代入数据得x =169m =1.78 m . ⑦ 答案:(1)0.5 (2)4 m/s (3)1.78 m10.[2013·上海市长宁区二模]如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了1/4个椭圆弧挡板,今以O 点为原点建立平面直角坐标系,挡板的方程满足x 2+4y 2=325y .现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板的右端P 点,则其离开O 点时的速度为多大?(2)为使小物块击中挡板,拉力F 最多作用多长距离?(3)改变拉力F 作用距离,使小物块击中挡板不同位置.试利用平抛运动规律分析,证明:击中挡板的小物块动能均为8 J.解析:(1)v 0=x 2yg = 1.62×0.810m/s =4 m/s. (2)设拉力F 作用的距离为s 1由动能定理有:(F -μmg )s 1-μmg (s -s 1)=12m v 20 (5-0.5×0.5×10)s 1-0.5×0.5×10(5-s 1)=12×0.5×42 s 1=3.3 m或:Fs 1-μmgs =12m v 20 5s 1-0.5×0.5×10×5=12×0.5×42 s 1=3.3 m.(3)设小物块离开水平台阶的速度为v ,击中挡板时的水平位移为x ,竖直位移为y ,则v =x 2yg ①E k=12m v2+mgy②x2+4y2=325y③由①③代入②即可解得E k=8 J.答案:(1)4 m/s(2)3.3 m(3)见解析。
高三物理-专题复习-《功和功率》-《功能关系》(含答案解析)-CAL-FENGHAI.-(YICAI)-Company One1复习备考建议1.能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.2.对于动量问题,可以只在选择题中出现,考查动量守恒定律、动量定理的基本应用,也可在计算题中出现,特别是动量与动力学、能量结合、综合性强、难度高,应加大训练.第4课时 功和功率 功能关系 考点功、功率的分析与计算 1.恒力功的计算(1)单个恒力的功 W =Fl cos α.(2)合力为恒力的功①先求合力,再求W =F 合l cos α.②W =W 1+W 2+….2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算.(2)力的方向不变,大小随位移线性变化可用W =F l cos α计算.(3)F -l 图象中,功的大小等于“面积”.(4)求解一般变力做的功常用动能定理.3.功率的计算(1)P =W t,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10 m/s 2.则以下判断正确的是( )图1A .小环的质量是1 kgB .细杆与地面间的倾角是30°C .前3 s 内拉力F 的最大功率是2.25 WD .前3 s 内拉力对小环做功5.75 J答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第 1 s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1 kg ,sin θ=0.45,故A 正确,B 错误;第1 s 内,速度不断变大,拉力的瞬时功率也不断变大,第1 s 末,P =F v 1=5×0.5 W =2.5 W ;第1 s 末到第3 s 末,P =F v 1=4.5×0.5 W =2.25 W ,即拉力的最大功率为2.5 W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1 J =5.75 J ,故D 正确.变式训练1.(2020·山东等级考模拟卷·3)我国自主研制的绞吸挖泥船“天鲲号”达到世界先进水平.若某段工作时间内,“天鲲号”的泥泵输出功率恒为1×104 kW ,排泥量为1.4 m 3/s ,排泥管的横截面积为0.7 m 2.则泥泵对排泥管内泥浆的推力为( )A .5×106 NB .2×107 NC .2×109 ND .5×109 N答案 A解析 由排泥量和排泥管横截面积可求排泥速度v =1.4 m 3/s 0.7 m 2=2 m/s.由P =F v 可得F =P v =1×107 W 2 m/s=5×106 N. 2.(多选)(2019·福建龙岩市期末质量检查)如图2所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图2A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于 W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错. 考点功能关系的理解和应用1.几个重要的功能关系 (1)重力做的功等于重力势能的减少量,即W G =-ΔE p .(2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p .(3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE .(5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对.2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等.3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化.(2)列动能定理或能量守恒定律表达式.例2(多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和.取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图3所示.重力加速度取10 m/s2.由图中数据可得()图3A.物体的质量为2 kgB.h=0时,物体的速率为20 m/sC.h=2 m时,物体的动能E k=40 JD.从地面至h=4 m,物体的动能减少100 J答案AD解析根据题图图像可知,h=4 m时物体的重力势能mgh=80 J,解得物体质量m=2 kg,抛出时物体的动能为E k0=100 J,由公式E k0=12可知,h=0时物体的速率为v=102m vm/s,选项A正确,B错误;由功能关系可知F f h=|ΔE总|=20 J,解得物体上升过程中所受空气阻力F f=5 N,从物体开始抛出至上升到h=2 m的过程中,由动能定理有-mgh-F f h=E k -100 J,解得E k=50 J,选项C错误;由题图图像可知,物体上升到h=4 m时,机械能为80 J,重力势能为80 J,动能为零,即从地面上升到h=4 m,物体动能减少100 J,选项D 正确.变式训练3.2018年2月13日,平昌冬奥会女子单板滑雪U形池项目中,我国选手刘佳宇荣获亚军,为我国夺得此届冬奥会首枚奖牌.如图4为U形池模型,其中A、B为U形池两侧边缘,C 为U 形池最低点,U 形池轨道各处粗糙程度相同.运动员(可看成质点)在池边高h 处自由下落由左侧进入池中,从右侧飞出后上升的最大高度为h 2,下列说法正确的是( )图4A .运动员再次进入池中后,能够冲出左侧边缘A 然后返回B .运动员再次进入池中后,刚好到达左侧边缘A 然后返回C .由A 到C 过程与由C 到B 过程相比,运动员损耗机械能相同D .由A 到C 过程与由C 到B 过程相比,前一过程运动员损耗机械能较小答案 A解析 运动员由h 处自由下落,到右侧h 2高度,损失的机械能ΔE =mg h 2.运动员受到的摩擦力与正压力成正比,由圆周运动的规律可知,运动员返回时比开始进入时的平均速率要小,平均摩擦力要小,则阻力做功小于mg h 2,故能冲出A 点,选项A 正确,B 错误,同理,A 到C 过程比C 到B 过程平均速率大,平均摩擦力大,运动员损耗机械能大,故C 、D 错误.4.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g 4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin 53°=45,cos 53°=35)( )图5A .运动员重力势能的减少量为35mgh B .运动员动能的增加量为34mgh C .运动员动能的增加量为1516mgh D .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin 53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确. 考点动能定理的应用1.表达式:W 总=E k2-E k1.2.五点说明 (1)W 总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3 如图6所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A 点等高.质量m =0.5 kg 的篮球静止在弹簧正上方,其底端距A 点的高度h 1=1.10 m ,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x 1=0.15 m ,第一次反弹至最高点,篮球底端距A 点的高度h 2=0.873 m ,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x 2=0.01 m ,弹性势能为E p =0.025 J .若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g 取10 m/s 2.求:图6(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小;(3)篮球在整个运动过程中通过的路程.答案(1)500 N/m(2)0.50 N(3)11.05 m解析(1)由最后静止的位置可知kx2=mg,所以k=500 N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mgΔh-F f·L=12m v22-12m v12整个过程动能变化为0,重力做功mgΔh=mg(h1-h2)=1.135 J空气阻力大小恒定,作用距离为L=h1+h2+2x1=2.273 m故可得F f≈0.50 N(3)整个运动过程中,空气阻力一直与运动方向相反根据动能定理有mgΔh′+W f+W弹=12m v2′2-12m v12整个过程动能变化为0,重力做功mgΔh′=mg(h1+x2)=5.55 J弹力做功W弹=-E p=-0.025 J则空气阻力做功W f=-mgΔh′-W弹=-5.525 J因W f=-F f s故解得s=11.05 m.变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3 m以内时,物体上升、下落过程中动能E k随h的变化如图7所示.重力加速度取10 m/s2.该物体的质量为()图7A.2 kg B.1.5 kg C.1 kg D.0.5 kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3 m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3 m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1 kg、F=2 N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图8所示,其中木板AB、BC、CD、DE、EF…的长均为L=1.5 m,木板OA和其他木板与水平地面的夹角都为β=37°,sin 37°=0.6,cos 37°=0.8,g取10 m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8 m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图8(1)物体能否静止在木板上请说明理由.(2)物体运动的总路程是多少(3)物体最终停在何处并作出解释.答案(1)不能理由见解析(2)11.25 m(3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sin β=0.6mg最大静摩擦力F fm=μmg cos β=0.16mg因mg sin β>μmg cos β,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh-μmgs cos β=0解得s=11.25 m(3)假设物体依次能到达B、D点,由动能定理得mg(h-L sin β)-μmg cos β(L+hsin β)=12m v B2解得v B>0mg(h-L sin β)-μmg cos β(3L+hsin β)=12m v D2v D无解说明物体能通过B点但不能到达D点,因物体不能静止在木板上,故物体最终停在C点.考点动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征.2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4(2019·河北邯郸市测试)如图9所示,一根轻弹簧左端固定于竖直墙上,右端被质量m=1 kg可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB长L=5 m,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC长s=1.5 m,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R的光滑竖直圆弧轨道与BC平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5 m /s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图9(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8 m (2)13 m (3)37 m/s ≤v ≤43 m/s解析 (1)物块被弹簧弹出,由E p =12m v 02,可知:v 0=6 m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2 m/s 2,t 1=0.5 s ,x 1=2.75 m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5 m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12m v 2=μ2mgs +mgR代入数据得到:R =0.8 m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12m v 2-12m v B 2=μ2mg ·2s 得到v B =7 m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12m v B 2=μ2mg (s -x ),代入数据解得:x =13 m.(3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin 30°=m v F 2R从B 到F 过程中由动能定理可知:-μ2mgs -mg (R +R sin 30°)=12m v F 2-12m v 12解得:v 1=37 m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12m v 22=μ2mg ·3s +mgR 解得:v 2=43 m/s若物块在传送带上一直加速运动,由12m v B m 2-12m v 02=μ1mgL知其到B 点的最大速度v B m =56 m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37 m/s ≤v ≤43 m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图10所示,O 点距水平地面的高度为H =3 m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2 kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10 m/s 2,空气阻力不计.(sin 37°=0.6,cos 37°=0.8)图10(1)若OB 的长度l =1 m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246 kg·m/s (2)1.5 m355 m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有:-mg (l +l cos 37°)=12m v 2-12m v 02联立得一开始的冲量大小为I =m v 0=246 kg·m/s(2)从剪断AB 到小球至(H -l )高度过程,设小球至(H -l )高度处的速度为v 0′,由机械能守恒可得12=mgl(1-cos 37°)2m v0′小球从(H-l)高度做初速度为v0′的平抛运动,12=H-l2gtx=v0′t联立得,x=42+3l)5(-l当l=1.5 m时x取最大值,为35 5 m.专题突破练级保分练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是()图1A.两小球落地时速度相同B.两小球落地时,重力的瞬时功率相同C.从小球抛出到落地,重力对两小球做的功相等D.从小球抛出到落地,重力对两小球做功的平均功率相等答案 C解析两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B错误;由重力做功公式W=mgh得,从开始运动至落地,重力对两小球做功相同,故C正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是()图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E -t图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)(2018·广东揭阳市一模)如图3,第一次,小球从粗糙的14圆形轨道顶端A 由静止滑下,到达底端B 时的速度为v 1,克服摩擦力做功为W 1;第二次,同一小球从底端B 以v 2冲上圆形轨道,恰好能到达A 点,克服摩擦力做功为W 2,则( )图3A.v1可能等于v2B.W1一定小于W2C.小球第一次运动机械能增加了D.小球第一次经过圆弧某点C的速率小于它第二次经过同一点C的速率答案BD5.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5 m/s的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g=10 m/s2),该送餐员骑电动自行车以5 m/s的速度匀速前行过程做功的功率最接近()A.10 W B.100 W C.1 kW D.10 kW答案 B解析设送餐员和车的总质量为100 kg,匀速行驶时的速率为5 m/s,匀速行驶时的牵引力与阻力大小相等,F=0.02mg=20 N,则送餐员骑电动自行车匀速行驶时的功率为P=F v=100 W,故B正确.6.(多选)如图4所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图4A.两滑块组成的系统机械能守恒B.轻绳对m做的功等于m机械能的增加量C.重力对M做的功等于M动能的增加量D.两滑块组成的系统机械能的损失等于M克服摩擦力做的功答案BD7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m=1 kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5 s时撤去拉力,其1.5 s内的速度随时间变化关系如图乙所示,g取10 m/s2.则()图5 A.0.5 s时拉力功率为12 WB.0.5 s内拉力做功9 JC.1.5 s后物块可能返回D.1.5 s后物块一定静止答案AC解析0~0.5 s内物体的位移:x1=12×0.5×2 m=0.5 m;0.5~1.5 s内物体的位移:x2=12×1×2 m=1 m;由题图乙知,各阶段加速度的大小:a1=4 m/s2,a2=2 m/s2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5 s内F-μgm cos θ-mg sin θ=ma1;0.5~1.5 s内-μmg cos θ-mg sin θ=-ma2,联立解得:F=6 N,但无法求出μ和θ.0.5 s时,拉力的功率P=F v=12 W,故A正确.拉力做的功为W=Fx1=3 J,故B错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C正确,D错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10 N的滑块轻放在倾角为30°的光滑斜面上,从a点由静止开始下滑,到b点接触到一个轻质弹簧,滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点.已知ab=1 m,bc=0.2 m,则以下结论正确的是()图6A.整个过程中弹簧弹性势能的最大值为6 JB.整个过程中滑块动能的最大值为6 JC.从c到b弹簧的弹力对滑块做功5 JD.整个过程中弹簧、滑块与地球组成的系统机械能守恒答案AD解析滑块从a到c, mgh ac+W弹′=0-0解得:W弹′=-6 J.则E pm=-W弹′=6 J所以整个过程中弹簧弹性势能的最大值为6 J,故A正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d点合外力为0,由分析可知d点在b点和c点之间.滑块从a到d有:mgh ad+W弹=E k d-0因mgh ad<6 J,W弹<0所以E k d<6J,故B错误;从c点到b点弹簧的弹力对滑块做的功与从b点到c点弹簧的弹力对滑块做的功大小相等,即为6 J,故C错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D正确.9.(多选)如图7所示,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则()图7A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg答案BD解析滑块b的初速度为零,末速度也为零,所以轻杆对b先做正功,后做负功,选项A 错误;以滑块a、b及轻杆组成的系统为研究对象,系统的机械能守恒,当a刚落地时,b 的速度为零,则mgh=12+0,即v a=2gh,选项B正确;a、b的先后受力如图甲、乙2m v a所示,由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.级争分练10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103 kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10 m/s 2,则以下说法正确的是( )图8A .赛车在前5 s 内的牵引力为5×102 NB .赛车速度为25 m /s 时的加速度为5 m/s 2C .赛车的额定功率为100 kWD .赛车的最大速度为80 m/s 答案 C解析 匀加速直线运动的加速度大小为:a =Δv Δt =205 m/s 2=4 m/s 2,根据牛顿第二定律得:F-F f =ma ,解得牵引力为:F =F f +ma =0.1×1×103×10 N +1×103×4 N =5×103 N ,故A 错误;额定功率为:P =F v =5 000×20 W =100 000 W =100 kW.当车的速度是25 m/s 时,牵引力:F ′=P v ′=100 00025 N =4 000 N ,车的加速度:a ′=F ′-F f m =4 000-0.1×1×1041×103m/s 2=3 m/s 2,故B 错误,C 正确;当牵引力与阻力相等时,速度最大,最大速度为:v m =PF=P F f =100 0001 000m/s =100 m/s ,故D 错误. 11.(2019·福建泉州市期末质量检查)如图9所示,四分之一圆弧AB 和半圆弧BC 组成的光滑轨道固定在竖直平面内,A 、C 两端点等高,直径BC 竖直,圆弧AB 的半径为R ,圆弧BC 的半径为R2.一质量为m 的小球从A 点上方的D 点由静止释放,恰好沿A 点切线方向进入并沿轨道运动,不计空气阻力,重力加速度大小为g .图9(1)要使小球能运动到C 点,D 、A 两点间的高度差h 至少为多大(2)改变h ,小球通过C 点后落到圆弧AB 上的最小动能为多少答案 (1)R 4 (2)32mgR解析 (1)设小球刚好通过C 点的速度为v ,则 mg =m v 2R 2小球从D 点到C 点的过程中机械能守恒,有: mgh =12m v 2联立解得h =R4(2)设小球通过C 点的速度为v 0,落到圆弧AB 上时,水平位移为x ,下落高度为y ,由平抛运动的规律可知x =v 0t ;y =12gt 2从C 点抛出到落到圆弧AB 上,由动能定理得:mgy =E k -12m v 02又x 2+y 2=R 2联立可得:E k =14mg (R 2y+3y )。
专题二功和能第4讲功能关系在力学中的应用一、单项选择题1. 如图2-4-21所示,质量为m的物体在与水平方向成θ角的恒力F作用下以加速度a做匀加速直线运动,已知物体和地面间的动摩擦因数为μ,物体在地面上运动距离为x的过程中力F做的功为().图2-4-21A.μmgx B.m(a+μg)x 1-μtan θC.m(a-μg)x1+μtan θD.μmgx1+μtan θ解析以物体为研究对象,竖直方向有F sin θ+mg=F N,水平方向有F cos θ-μF N=ma,联立解得F=m(a+μg)cos θ-μsin θ,在此过程中F做功W=Fx cos θ=m(a+μg)x1-μtan θ,故正确选项为B.答案 B2.(2013·江苏扬州等四市二测,1)某同学用频闪相机拍摄了运动员跳远比赛时助跑、起跳、最高点、落地四个位置的画面,简化过程如图2-4-22所示,则运动员起跳瞬间消耗的体能约为().图2-4-22A.4 J B.40 J C.400 J D.4 000 J解析运动员的质量可估计为m=60 kg,根据图估计他在最高点的高度为h =0.5 m,则可估算他在最高点的势能为E p=mgh=300 J,而水平速度主要是在助跑时获得的,因此运动员起跳瞬间消耗的体能主要转化为重力势能,所以C正确.答案 C3. 光滑水平地面上叠放着两个物体A和B,如图2-4-23所示.水平拉力F作用在物体B上,使A、B两物体从静止出发一起运动.经过时间t,撤去拉力F,再经过时间t,物体A、B的动能分别设为E A和E B,在运动过程中A、B始终保持相对静止.以下有几个说法:①E A+E B等于拉力F做的功;②E A +E B小于拉力F做的功;③E A等于撤去拉力F前摩擦力对物体A做的功;④E A大于撤去拉力F前摩擦力对物体A做的功.其中正确的是().图2-4-23A.①③B.①④C.②③D.②④答案 A4.物体在恒定阻力作用下,以某初速度在水平面上沿直线滑行直到停止,以a、E k、s和t分别表示物体运动的加速度大小、动能、位移的大小和运动的时间,则以下各图象中,能正确反映这一过程的是().解析物体在恒定阻力作用下运动,其加速度随时间不变,随位移不变,选项A、B错误;由动能定理,fs=E k-E k0,解得E k=E k0-fs,选项C正确,D错误.答案 C5.(2013·浙江杭州一模,5)一物体静止在水平地面上,某时刻受到大小为1 N,方向水平向东的恒力F1作用,非常缓慢地向东运动.当物体向东运动了1 m 时,又给物体施加一大小为 3 N,方向水平向北的力F2.当物体的总位移为 3 m时,物体在上述过程中克服摩擦力所做的功为().A. 3 J B .2 J C .(1+3) J D .3 J解析 因为物体在F 1的作用下做非常缓慢的运动可视为平衡态,所以物体在运动过程中受到的摩擦力大小恒为f =F 1=1 N ,又由图分析可知物体整个过程运动的路程为s 路=s 1+s 2=2 m ,所以W 克=f ·s 路=2 J ,所以B 正确.答案 B二、不定项选择题6. 如图2-4-24所示,M 为固定在水平桌面上的有缺口的正方形木块,abcd为半径是R 的34光滑圆弧形轨道,a 为轨道的最高点,de 面水平且有一定长度.今将质量为m 的小球在d 点的正上方高为h 处由静止释放,让其自由下落到d 处切入轨道内运动,不计空气阻力,则( ).图2-4-24A .只要h 大于R ,释放后小球就能通过a 点B .只要改变h 的大小,就能使小球通过a 点后,既可能落回轨道内,又可能落到de 面上C .无论怎样改变h 的大小,都不可能使小球通过a 点后落回轨道内D .调节h 的大小,可以使小球飞出de 面之外(即e 的右侧)解析 要使小球到达最高点a ,则在最高点小球速度最小时有mg =m v 2R ,得最小速度v =gR ,由机械能守恒定律得mg (h -R )=12m v 2,得h =32R ,即h必须大于或等于32R ,小球才能通过a 点,A 项错;小球若能到达a 点,并从a 点以最小速度平抛,有R =12gt 2,x =v t =2R ,所以,无论怎样改变h 的大小,都不可能使小球通过a 点后落回轨道内,B 项错,C 项正确;如果h 足够大,小球可能会飞出de 面之外,D 项正确.答案 CD7.(2013·山东卷,16)如图2-4-25所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中().图2-4-25A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减小,减小的机械能等于M克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.答案CD8.下列各图是反映汽车以额定功率P额从静止开始匀加速启动,最后做匀速运动的过程中,其速度随时间以及加速度、牵引力和功率随速度变化的图象,其中正确的是().解析分析汽车启动过程可知,汽车先是牵引力不变的匀加速启动过程,加速度恒定,速度均匀增大,功率均匀增大;当功率达到额定功率时,功率不再变化,此后汽车为恒定功率启动,速度继续增大,牵引力减小,加速度减小,当牵引力等于阻力时,加速度减小到零,速度达到最大,然后匀速运动.结合各选项的图象可知,选项B错误,A、C、D正确.答案ACD9. 如图2-4-26所示,将一轻弹簧下端固定在倾角为θ的粗糙斜面底端,弹簧处于自然状态时上端位于A点.质量为m的物体从斜面上的B点由静止下滑,与弹簧发生相互作用后,最终停在斜面上.下列说法正确的是().图2-4-26A.物体最终将停在A点B.物体第一次反弹后不可能到达B点C.整个过程中重力势能的减少量大于克服摩擦力做的功D.整个过程中物体的最大动能大于弹簧的最大弹性势能解析物体最终处于静止状态,故受力平衡,由题知物体重力沿斜面的分力大于物体受到的沿斜面向上的滑动摩擦力,故物体最终将停在A点以下,A 项错;根据能量守恒,物体在运动过程中受到滑动摩擦力作用,机械能减少,故物体第一次反弹后不可能到达B点,B项正确;根据能量守恒,物体在整个过程中重力势能的减少量等于克服摩擦力及克服弹簧弹力做的总功,故C 项正确;整个过程中,物体处于平衡态时其动能最大,设物体处于平衡态时,弹簧的压缩量为x1,则根据动能定理有(mg sin θ-μmg cos θ)·(x AB+x1)-ΔE p1=E km,当物体位于斜面最低点时弹簧的弹性势能最大,设此时弹簧的压缩量为x2,根据动能定理有(mg sin θ-μmg cos θ)(x AB+x2)-ΔE pm=0,由于x2>x1,故ΔE pm>E km,故D项错.答案BC10.(2013·北京西城期末)如图2-4-27甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0 m.选择地面为参随高度h的变化如图乙所示.(g=10 考平面,上升过程中,物体的机械能E机m/s2,sin 37°=0.60,cos 37°=0.80.)则().图2-4-27A.物体的质量m=0.67 kgB.物体与斜面间的动摩擦因数μ=0.40C.物体上升过程的加速度大小a=10 m/s2D.物体回到斜面底端时的动能E k=10 J解析 ΔE 机=-μmg cos α·h sin α=-μmgh cot α=-20 J ,在最大高度时E p =mgh =30 J ,可得m =1 kg ,μ=0.5,A 、B 错.由动能定理-ma ·h sin α=0-E k0=-50 J 得物体上升过程的加速度大小a =10 m/s 2,C 正确.上升和下滑过程的机械能损失相同,所以回到斜面底端时的动能为30 J -20 J =10 J ,D 正确. 答案 CD三、非选择题11.(2013·廊坊模拟)如图2-4-28所示,一质量为M =5.0 kg 的平板车静止在光滑水平地面上,平板车的上表面距离地面高h =0.8 m ,其右侧足够远处有一固定障碍物A .另一质量为m =2.0 kg 可视为质点的滑块,以v 0=8 m/s 的水平初速度从左端滑上平板车,同时对平板车施加一水平向右、大小为5 N 的恒力F .当滑块运动到平板车的最右端时,两者恰好相对静止.此时撤去恒力F ,当平板车碰到障碍物A 时立即停止运动,滑块水平飞离平板车后,恰能无碰撞地沿圆弧切线从B 点切入光滑竖直圆弧轨道,并沿轨道下滑.已知滑块与平板车间的动摩擦因数μ=0.5,圆弧半径为R =1.0 m ,圆弧所对的圆心角∠BOD =θ=106°.取g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.求:图2-4-28(1)平板车的长度;(2)障碍物A 与圆弧左端B 的水平距离;(3)滑块运动到圆弧轨道最低点C 时对轨道压力的大小.解析 (1)滑块与平板车间的滑动摩擦力F f =μmg ,对滑块,由牛顿第二定律得:a 1=F f m =μg =5 m/s 2对平板车,由牛顿第二定律得:a 2=F +F f M =3 m/s 2设经过时间t 1,滑块与平板车相对静止,共同速度为v ,则:v =v 0-a 1t 1=a 2t 1滑块的位移:x 1=v 0+v 2t 1平板车的位移:x 2=v 2t 1平板车的长度:l =x 1-x 2解得:l =4 m.(2)设滑块从平板车上滑出后做平抛运动的时间为t 2,则:h =12gt 22,x AB =v t 2障碍物A 与圆弧左端B 的水平距离:x AB =1.2 m.(3)对滑块,从离开平板车到C 点,由动能定理得:mgh +mgR ⎝ ⎛⎭⎪⎫1-cos 106°2=12m v 2C -12m v 2 在C 点由牛顿第二定律得:F N -mg =m v 2C R ,解得:F N =86 N.由牛顿第三定律得滑块运动到圆弧轨道最低点C 时对轨道压力的大小为86 N.答案 (1)4 m (2)1.2 m (3)86 N12.(2013·北京卷,23)蹦床比赛分成预备运动和比赛动作两个阶段.最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.图2-4-29把蹦床简化为一个竖直放置的轻弹簧,弹力大小F =kx (x 为床面下沉的距离,k 为常量).质量m =50 kg 的运动员静止站在蹦床上,床面下沉x 0=0.10 m ;在预备运动中,假定运动员所做的总功W 全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为Δt =2.0 s ,设运动员每次落下使床面压缩的最大深度均为x 1.取重力加速度g =10 m/s 2,忽略空气阻力的影响.(1)求常量k ,并在图2-4-29中画出弹力F 随x 变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度h m ;(3)借助F -x 图象可以确定弹力做功的规律,在此基础上,求x 1和W 的值. 解析 (1)运动员静止在蹦床上时受力平衡,则mg =kx 0.代入数据得:k =5 000 N/mF -x 图象如图(2)运动员离开床后做竖直上抛运动,且腾空时间为2 s ,由h =12g (Δt )2得:最大高度h m =12g ⎝ ⎛⎭⎪⎫Δt 22=12×10×⎝ ⎛⎭⎪⎫222 m =5 m (3)由图象可知弹簧弹力做功应为F -x 曲线下的面积,其规律为W =12k Δx 2.在运动员从最低点到最高点过程中,由机械能守恒定律得:12kx 21=mg (h m +x 1),代入数据得:x 1=1.1 m运动员所做的总功W +12kx 20=mg (h m +x 0)代入数据解得W =2 525 J ≈2.5×103 J.答案 (1)5000 N/m (2)5 m (3)1.1 m 2.5×103 J。
人教版(新课程标准)物理-高三复习第二轮-选修3-1-综合练习(含解析)一、单选题1.一根放在水平面内的光滑玻璃管绝缘性很好,内部有两个完全相同的弹性金属小球A和B,带电量分别为9Q和﹣Q,两球从如图所示的位置由静止释放,那么两球再次经过图中的原静止位置时,A球受到的库伦力为释放时的()A. 倍B. 倍C. 1倍D. 倍2.下列说法中,正确的是()A. 在一个以点电荷为中心,r为半径的球面上,各处的电场强度都相同B. E= 仅适用点电荷形成的电场C. 电场强度的方向就是放入电场中的电荷受到的电场力的方向D. 当初速度为零时,放入电场中的电荷在电场力作用下的运动轨迹一定与电场线重合3.以下说法正确的是()A. 由可知此场中某点的电场强度E与F成正比B. 由公式可知电场中某点的电势φ与q成反比C. 由U ab=Ed可知,匀强电场中的任意两点a、b间的距离越大,则两点间的电势差也一定越大D. 公式C= ,电容器的电容大小C与电容器两极板间电势差U无关4.如图,在两根平行直导线中,通以相反的电流和,且,设两导线所受磁场力的大小分别为和,则两导线A. 相互吸引,且B. 相互排斥,且C. 相互吸引,且D. 相互排斥,且5.在xOy坐标的原点处放置一根与坐标平面垂直的通电直导线,电流方向指向纸内(如图所示),此坐标范围内还存在一个平行于xOy平面的匀强磁场。
已知在以直导线为圆心的圆周上的a、b、c、d四点中,a点的磁感应强度最大,则此匀强磁场的方向()A. 沿x轴正方向B. 沿x轴负方向C. 沿y轴正方向D. 沿y轴负方向6.如图所示电路中,电源电压恒定不变,若将滑动变阻器的滑片P向右移动的过程中,电路中的()A. 电压表示数减小,灯L变暗B. 电压表示数减小,灯L变亮C. 电压表示数增大,灯L变暗D. 电压表示数增大,灯L变亮7.如图所示,R为定值电阻,R x为侍测电阻,电压U为一定值.用一只伏特表分别测量R和R x上的电压,示数分别为U1和U2,发现U1+U2<U.则关于R x阻值的下列说法中,正确的是()A. 精确等于B. 近似等于C. 当伏特表内阻R V比R、R x都大的多时才近似等于D. 因伏特表的内阻未知,上述说法都不正确8.平行板电容器中有一带电粒子P处于静止状态,若把滑动变阻器R的滑动触头向下移动,则带电粒子将()A. 向上加速运动B. 向下减速运动C. 向下加速运动D. 仍然静止不动9.如右图所示,在水平直导线正下方,放一个可以自由转动的小磁针. 现给直导线通以向右的恒定电流,不计其他磁场的形响,则()A. 小磁针保持不动B. 小磁针的N将向下转动C. 小磁针的N极将垂直于纸面向里转动D. 小磁针的N极将垂直于纸面向外转动二、多选题10.如图,R1为定值电阻,R2为可变电阻,E为电源电动势,r为电源内电阻,以下说法中正确的是()A. 当R2=R1+r时,R2上获得最大功率B. 当R1=R2+r时,R1上获得最大功率C. 当R2=0时,电源的总功率最大D. 当R2=0时,电源的输出功率最大11.铅蓄电池的电动势为2V,这表示()A. 电路中每通过1C电荷量,电源将2J的化学能转变为电能B. 在1s内非静电力做功为2JC. 蓄电池能在1s内将2 J的化学能转变为电能D. 蓄电池将化学能转变成电能的本领比一节干电池大12.一个空气平行板电容器,极板间正对面积为S,板间距为d,充以电量Q后两板间电压为U,为使电容器的电容加倍,可采用的办法有()A. 将电压变为B. 将电量变为2QC. 将极板正对面积变为2SD. 两板间充入介电常数为原来2倍的电介质13.一电荷量为+Q的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等.a、b为电场中的两点,则()A. a点的电势比b点的低B. a点的电场强度比b点的大C. 检验电荷﹣q在a点的动能比在b点的小D. 将检验电荷﹣q从a点移到b点的过程中,电场力做负功14.如图所示,两带电平行金属板水平放置,距板右端L处有一竖直放置的光屏M.一质量为m、电荷量为q的质点以速度v0从两板中央射入板间,最后垂直打在M屏上,重力加速度为g,则下列结论正确的是()A. 板间电场强度大小为B. 板间电场强度大小为C. 质点在竖直方向上发生的总位移大小为D. 质点在板内做匀变速直线运动15.在匀强电场中有相距d=2cm的a、b两点,电势差U ab=50V,则匀强电场的电场强度可能为()A. E=1×103 V/mB. E=2×103 V/mC. E=3×103 V/mD. E=4×103 V/m16.空间存在着平行于x轴方向的静电场.A、M、O、N、B为x轴上的点,OA<OB,OM=ON,AB间的电势φ随x的分布为如图所示,一个带电粒子在电场中仅在电场力作用下从M点由静止开始沿x轴向右运动,则下列判断中正确的是()A. 粒子一定带负电B. 粒子从M向O运动过程中所受电场力均匀增大C. 粒子一定能通过N点D. AO间的电场强度大于OB间的电场强度17.用回旋加速器来加速质子,为了使质子获得的动能增加为原来的4倍,原则上可以采用下列哪几种方法( )A. 将其磁感应强度增大为原来的2倍B. 将其磁感应强度增大为原来的4倍C. 将D形盒的半径增大为原来的2倍D. 将D形盒的半径增大为原来的4倍18.如图所示,质量为m、长为L的金属棒MN两端由等长的轻质细线水平悬挂,处于竖直向上的匀强磁场中,磁感应强度大小为B.当棒中通以恒定电流后,金属棒摆起后两悬线与竖直方向夹角的最大值为θ=60°,下列说法正确的是()A. 电流方向由N指向MB. 悬线与竖直方向夹角的最大值为θ=60°时,金属棒处于平衡状态C. 悬线与竖直方向夹角的最大值为θ=30°时,金属棒速率最大D. 恒定电流大小为19.用一绝缘柄将一带正电玻璃棒a接触另一不带电玻璃棒b,使之接触起电.以下说法正确的是()A. 在此接触起电过程中,玻璃棒a上的正电荷向玻璃棒b上转移B. 在此接触起电过程中,玻璃棒b上的负电子向玻璃棒a上转移C. 在此接触起电过程中,它们的电荷的代数和不变D. 在此接触起电过程中,电荷并不一定遵循电荷守恒定律三、实验探究题20.小华、小刚共同设计了图甲所示的实验电路,电路中的各个器材元件的参数为:电池组(电动势约6V,内阻r约3Ω)、电流表(量程2.0A,内阻r A=0.8Ω)、电阻箱R,(0~99.9Ω)、滑动变阻器R2(0~R t)、开关三个及导线若干.他们认为该电路可以用来测电源的电动势、内阻和R2接入电路的阻值.(1)小华先利用该电路准确地测出了R2接入电路的阻值.他的主要操作步骤是:先将滑动变阻器滑片调到某位置,接着闭合S2、S,断开S1,读出电流表的示数I;再闭合S、S1,断开S2,调节电阻箱的电阻值为3.6Ω时,电流表的示数也为I.此时滑动变阻器接入电路的阻值为________Ω.(2)小刚接着利用该电路测出了电源电动势和内电阻.①他的实验步骤为:a.在闭合开关前,调节电阻R1或R2至________(选填“最大值”或“最小值”),之后闭合开关S,再闭合________(选填“S1”或“S2”);b.调节电阻________(选填“R1”或“R2”),得到一系列电阻值R和电流I的数据;c.断开开关,整理实验仪器.②图乙是他根据实验数据绘出的﹣R图象,图象纵轴截距与电源电动势的乘积代表________,电源电动势E________V,内阻r________Ω.(计算结果保留两位有效数字).四、综合题21.如图所示,在磁感应强度B=1T的匀强磁场中,用两根细线悬挂长l=10cm、质量m=5g的金属导线.今在金属导线中通以稳恒电流,使悬线受的拉力为零.(1)求金属导线中电流的大小和方向.(2)若将电流反向,每根悬线所受的拉力多大?(g=10m/s2)22.如图所示,质量为m=5×10﹣8 kg的带电粒子以v0=2m/s的速度从水平放置的平行金属板A、B中央飞入电场,已知板长L=10cm,板间距离d=2cm,当A、B间加电压U AB=103 V时,带电粒子恰好沿直线穿过电场(设此时A板电势高).求:(1)带电粒子的电性和所带电荷量;(2)A、B间所加电压在什么范围内带电粒子能从板间飞出?23.如图所示的电路中,电源电动势E=1.5V,内阻r=0.6Ω,电阻=3Ω,电阻=4Ω,电阻=6Ω。
高考物理力学知识点之功和能全集汇编含答案(3)一、选择题1.如图所示,用同种材料制成的一个轨道ABC,AB段为四分之一圆弧,半径为R,水平放置的BC段长为R。
一个物块质量为m,与轨道的动摩擦因数为μ,它由轨道顶端A从静止开始下滑,恰好运动到C端停止,物块在AB段克服摩擦力做功为()A.mgRμB.mgRC.12mgRπμD.()1-mgRμ2.如图所示,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽高h处开始自由下滑,则()A2ghB2ghC.小球在下滑过程中,小球和槽组成的系统总动量守恒D.小球自由下滑过程中机械能守恒3.某人用手将1kg的物体由静止向上提起1m,这时物体的速度为2m/s(g取10m/s2),则下列说法正确的是()A.物体克服重力做功2J B.合外力做功2JC.合外力做功12J D.手的拉力对物体做功10J4.我国的传统文化和科技是中华民族的宝贵精神财富,四大发明促进了科学的发展和技术的进步,对现代仍具有重大影响,下列说法正确的是()A.春节有放鞭炮的习俗,鞭炮炸响的瞬间,动量守恒但能量不守恒B.火箭是我国的重大发明,现代火箭发射时,火箭对喷出气体的作用力大于气体对火箭的作用力C.装在炮弹中的火药燃烧爆炸时,化学能全部转化为弹片的动能D.指南针的发明促进了航海和航空,静止时指南针的N极指向北方5.如图,倾角为θ的光滑斜面与光滑的半径为R的半圆形轨道相切于B点,固定在水平面上,整个轨道处在竖直平面内。
现将一质量为m的小球自斜面上距底端高度为H的某点A由静止释放,到达半圆最高点C时,对C点的压力为F,改变H的大小,仍将小球由静止释放,到达C点时得到不同的F值,将对应的F与H的值描绘在F H-图像中,如图所示。
则由此可知()A.小球开始下滑的高度H的最小值是2R B.图线的斜率与小球质量无关C.a点的坐标值是5R D.b点坐标的绝对值是5mg6.如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动.已知小球在最低点时对轨道的压力大小为N1,在高点时对轨道的压力大小为N2.重力加速度大小为g,则N1–N2的值为A.3mg B.4mg C.5mg D.6mg7.假设某次罚点球直接射门时,球恰好从横梁下边缘踢进,此时的速度为v.横梁下边缘离地面的高度为h,足球质量为m,运动员对足球做的功为W1,足球运动过程中克服空气阻力做的功为W2,选地面为零势能面,下列说法正确的是()A.运动员对足球做的功为W1=mgh+mv2B.足球机械能的变化量为W1-W2C.足球克服空气阻力做的功为W2=mgh+mv2-W1D.运动员刚踢完球的瞬间,足球的动能为mgh+mv28.如图所示,长为l的轻杆一端固定一质量为m的小球,另一端有固定转轴O,杆可在竖直平面内绕轴O无摩擦转动.已知小球通过最低点Q时,速度大小为,则小球的运动情况为()A.小球不可能到达圆周轨道的最高点PB.小球能到达圆周轨道的最高点P,但在P点不受轻杆对它的作用力C.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向上的弹力D.小球能到达圆周轨道的最高点P,且在P点受到轻杆对它向下的弹力9.如图所示,三个固定的斜面底边长度都相等,斜面倾角分别为 30°、45°、60°,斜面的表面情况都一样.完全相同的物体(可视为质点)A、B、C分别从三斜面的顶部滑到底部的过程中A.物体A克服摩擦力做的功最多B.物体B克服摩擦力做的功最多C.物体C克服摩擦力做的功最多D.三物体克服摩擦力做的功一样多10.某人造地球卫星发射时,先进入椭圆轨道Ⅰ,在远地点A加速变轨进入圆轨道Ⅱ。
专题三 功与能专项训练一、选择题1、一人用力踢质量为100g 的皮球,使球由静止以20m/s 的速度飞出。
假定人踢球瞬间对球平均作用力是200N ,球在水平方向运动了20m 停止。
则人对球所做的功为( A )A .20 JB .2000JC .500 JD .4000 J2、一物体在相同的水平恒力作用下,分别沿粗糙的水平地面和光滑的水平地面移动相同的距离,恒力做的功分别为W1和W2,下列说法正确的是( A )A. W1=W2B. W1>W2C. W1<W2D. 条件不足,无法比较W1和W2的大小3、一个物体在相互垂直的两个力F1、F2的作用下运动,运动过程中F1对物体做功-6J ,F2对物体做功8J ,则F1和F2的合力做功为( B )A .14JB .2JC .10JD .无法计算4、如图所示,演员正在进行杂技表演,由图可估算他将一只鸡蛋抛出的过程中对鸡蛋所做的功最接近于( D )A .300JB 、30JC 、3JD 、0.3J5、如图3所示,用一与水平方向成α的力F 拉一质量为 m 的物体。
使它沿水平方向匀速移动距离 s ,若物体和地面间的动摩擦因数为 μ ,则此力F 对物体做的功,下列表达式中正确的有( AD )A .Fscos αB .μmgsC. μmgs /(cos α - μsin α)D.μmgscos α /(cos α + μsin α)6、如图所示,质量为m 的木块放在倾角为α的斜面上与斜面一起水平向左匀速运动,木块( C)A .对斜面的压力大小为mgsin αB .所受的支持力对木块不做功C .所受的摩擦力对木块做负功D .所受的摩擦力方向可能沿斜面向下7、一滑块静止在粗糙水平地面上,t=0时给滑块施加一水平方向的作用力F ,力F 和滑块的速度v 随时间的变化规律分别如图甲和乙所示。
设在第1秒内、第2秒内F 对滑块做的功分别为W1、W2,则W1与W2之比为( A )A. 1∶ 1B. 1∶ 2C. 1∶ 4D. 2∶ 18、两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离的大小关系是( A ).A.乙大B.甲大C.一样大D.无法比较9、两辆汽车在同一平直路面上行驶,它们的质量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1.当两车急刹车后,甲车滑行的最大距离为S1,乙车滑行的最大距离为S2,设两车与路面间的动摩擦因数相等,不计空气阻力,则( D ).A .S1∶S2=1∶2B .S1∶S2=1∶1C .S1∶S2=2∶1D .S1∶S2=4∶110、下列关于运动物体所受的合外力,合外力做功和动能变化的关系正确的是( D ).A.物体的动能不变,所受的合外力必定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.如果物体所受的合外力为零,那么合外力对物体做的功一定为零11、某人在高h 处抛出一质量为m 的物体,不计空气阻力,物体落地时速度为v ,该人对物体所做功为( A)A .221mv -mghB .221mvC .mgh +221mv D .mgh 12、如图5-2-11所示,一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平拉力F 作用下从平衡位置P 点缓慢地移到Q 点,此时悬线与竖直方向夹角为θ,则拉力F 做的功为 ( B ).A .mgLcos θB .mgL(1-cos θ)C .FLsin θD .FLcos θ13、质量为1kg 的物体在外力的作用下从静止开始做直线运动,其加速度随时间的变化如图所示,则( C )A .第1s 内质点动能增加量是4JB .第2s 内合外力所做的功是2JC .第2s 末合外力的瞬时功率是3WD .0~2s 内合外力的平均功率是4.5W14、某物体沿直线运动的v -t 关系如图所示,已知在第1 s 内合外力对物体做的功为W ,则( CD )A.从第1 s末到第3 s末合外力做功为4WB.从第3 s末到第5 s末合外力做功为-2WC.从第5 s末到第7 s末合外力做功为WD.从第3 s末到第4 s末合外力做功为-0.75W15、一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。
2014年高考物理二轮专题复习课后作业:专题三功和能3-1 1.(2013·上海普陀区一模)如图所示,两个互相垂直的恒力F1和F2作用在同一物体上,使物体发生一段位移后,力F1对物体做功为4J,力F2对物体做功为3J,则力F1与F2的合力对物体做功为( ) A.1J B.3.5JC.5J D.7J[答案]D[解析]合力的功等于各力做功的代数和,故力F1和F2的合力对物体做功为7J,D正确。
2.(2013·吉林实验中学二模)如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动。
小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h的变化图象可能是图中的( )[答案]AB[解析] 对小球由动能定理得mgh =12mv 2-12mv 20,则v 2=2gh +v 20,当v 0=0时,B 正确;当v 0≠0,A 正确。
3.质量为m =2kg 的物体沿水平面向右做直线运动,t =0时刻受到一个水平向左的恒力F ,如图甲所示,此后物体的v -t 图象如图乙所示,取水平向右为正方向,g =10m /s 2,则( )A .物体与水平面间的动摩擦因数为μ=0.5B .10s 末恒力F 的瞬时功率为6WC .10s 末物体在计时起点左侧2m 处D .10s 内物体克服摩擦力做功34J[答案] CD[解析] 由题图乙知前后两段物体加速度的大小分别为a 1=2m /s 2、a 2=1m /s 2,由牛顿第二定律知F +μmg =ma 1,F -μmg =ma 2,联立得F =3N 、μ=0.05,A 错;10s 末恒力F 的瞬时功率为P =Fv =18W ,B 错;由速度图象与坐标轴所围面积的物理意义知,10s 内物体的位移s =-2m ,即在计时起点左侧2m 处,C 对;10s 内物体的路程为L =34m ,即10s 内物体克服摩擦力所做的功W =fL =0.05×10×2×34J =34J ,D 对。
4.(2013·陕西宝鸡二模)如图所示,劲度系数为k 的轻弹簧下悬挂一个质量为m 的重物,处于静止状态,手托重物使之缓慢上移,直到弹簧恢复原长,然后放手使重物从静止开始下落,重物下落过程中的最大速度为v ,不计空气阻力,则下列说法正确的是( )A .小球速度最大时弹簧的弹性势能为零B .弹簧的弹性势能最大时小球速度为零C .手托重物缓慢上移时手对重物做功为W 1=m 2g2kD .重物从静止下落到速度最大过程中重物克服弹簧弹力所做的功为W 2=m 2g 2k -12mv 2[答案] BD[解析] 当小球受到的重力大小与弹簧的弹力大小相等时,小球的速度最大,此时弹簧处于伸长状态,弹簧的弹性势能不为零,A 错误;当小球运动到最低点时,速度为零,此时弹簧的伸长量最大,弹性势能最大,B 正确;手托重物缓慢上移时重物的动能不变,根据动能定理得W 1+W 弹簧-mgh =0,h =mg k ,故W 1=mgh -W 弹簧=m 2g2k -W 弹簧,C 错误;重物从静止下落到速度最大过程中由动能定理得mgh -W 弹簧=12mv 2,则W 2=W 弹簧=m 2g 2k -12mv 2,D 正确。
5.(2013·河南洛阳一练)如图所示,细绳的一端固定在O 点,另一端系一小球,开始时细绳被拉直,并使小球处在与O 点等高的A 位置,现将小球由静止释放,它由A 运动到最低点B 的过程中,小球所受重力的瞬时功率变化的情况是( )A .一直在增大B .一直在减小C .先增大后减小D .先减小后增大[答案] C[解析] 小球在A 位置时速度为零,故功率为零,小球在B 位置时速度方向与重力方向垂直,故功率也为零,而在由A 到B 的过程中功率不为零,所以小球所受重力的瞬时功率先增大后减小,C 正确。
6.(2013·淮安模拟)质量均为1.5×103kg的甲、乙两车同时同地出发在水平面上运动,二者所受阻力均为车重的0.5倍,由于牵引力不同,甲车做匀速直线运动,乙车做匀加速直线运动,其运动的位移—时间(x-t)图象如图所示,则以下叙述正确的是( ) A.乙车牵引力为7.5×103NB.t=1s时两车速度相同且v共=1m/sC.t=1s时两车间距最大,且最大间距为1mD.0~2s内阻力对两车做的功均为-3×103J[答案]C[解析]甲车做匀速运动,牵引力与阻力大小相等为7.5×103N,乙车做加速运动,牵引力大于7.5×103N,A错;甲车速度v甲=2m/s,乙车加速度a乙=2m/s2,v乙=a乙t,t=1s时两车速度相同且v共=2m/s,此时二者间距最大,最大间距为1m,B错,C对;0~2s内阻力对两车做的功均为W=fΔx=-3×104J,D错。
7.(2013·山东淄博一模)“蹦极”是一项既惊险又刺激的运动。
运动员脚上绑好弹性绳从很高的平台上跳下,从开始到下落到最低点的速度—时间图象如图所示,设运动员开始跳下时的初速度为零,不计阻力,则下列说法正确的是( )A.0~t1时间内,运动员做自由落体运动B.t1~t2时间内,运动员做加速度逐渐减小的加速运动C.t1~t2时间内,重力对运动员做的功大于运动员克服拉力做的功D.t2~t3时间内,运动员动能的减少量大于克服拉力做的功[答案]ABC[解析]0~t1时间内,运动员做匀加速直线运动,说明此时绳子对运动员没有力的作用,做自由落体运动,A 正确;由图象可知,t 1~t 2时间内,图线的斜率逐渐减小,则运动员的加速度逐渐减小,而速度增大,故B 正确;t 1~t 2时间内,对运动员由动能定理得mgh -W F =ΔE k ,ΔE k >0,故mgh>W F ,C 正确,t 2~t 3时间内,运动员的速度由最大变到零,t 3时刻运动员下落到最低点,此过程中有mgh -W F =0-12mv 2,运动员动能的减少量为12mv 2=W F -mgh ,小于克服拉力做的功,D 错误。
8.(2013·大连模拟)甲、乙两辆同样的汽车在平直的公路上沿同一方向做直线运动,在两车运动的v -t 图中,分别描述了甲、乙两车在0~t 2时间内的运动情况。
假设在运动过程中,两车所受的阻力大小相等且恒定,则在这段时间内,下列说法正确的是( )A .如果两车出发点不同,可能相遇两次B .在t 1时刻两车肯定相距最近C .在t 1时刻两车牵引力的功率相等D .在0~t 2时间内甲车牵引力做的功比乙车多[答案] AD[解析] 如果两车出发点不同,乙车在后面追上甲车,第一次相遇;乙车减速运动,后来乙车速度小于甲车,甲车可能再追上乙车,第二次相遇,A 正确。
两车追及过程中速度相等时距离有极值,t 1时刻两车可能相距最近,也可能相距最远,B 错。
乙车做匀减速运动,牵引力小于阻力,甲车做匀速直线运动,牵引力大小等于阻力,由于P =Fv ,t 1时刻两车速度相等,乙车牵引力比甲车小,则其牵引力的功率也比甲车小,C 错。
由图象与横轴所围面积可得在0~t 2时间内两车位移大小相等,甲车牵引力大于乙车,做功比乙车多,D 正确。
9.(2013·江苏宿迁一模)质量为2 kg 的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E k 与其发生位移x 之间的关系如图所示。
已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g 取10m /s 2,则下列说法正确的是( )A .x =1m 时速度大小为2m /sB .x =3m 时物块的加速度大小为2.5m /s 2C .在前4m 位移过程中拉力对物块做的功为9JD .在前4m 位移过程中物块所经历的时间为2.8s[答案] D[解析] 对物块由动能定理得F 合x =ΔE k ,则F 合=ΔE kx ,即图线的斜率等于合外力。
在0~2s 内,F 合=ΔE k x =2N ,设x =1m 时速度大小为v ,由动能定理得F 合x =12×mv 2-0,v =2m /s ,A 错误;由图线知2~4m 内加速度恒定,a =F 合m =ΔE k xm =52×2m /s 2=54m /s 2,B 错误;在前4m 位移过程中由动能定理得W -μmgx =9J ,W =9J +0.2×2×10×4J =25J ,C 错误;在x =2m 时,12mv 21=4J ,v 1=2m /s ,在x =4m 时,12mv 22=9J ,v 2=3m /s ,在前2m 内,2m =v 12t 1,t 1=2s ,在后2m 内,2m =v 1+v 22t 2,t 2=0.8s ,故t 1+t 2=2.8s ,D 正确。
10.(2013·湖北荆州质检)某科技创新小组设计制作出一种全自动升降机模型,用电动机通过钢丝绳拉着升降机由静止开始匀加速上升,已知升降机的质量为m ,当升降机的速度为v 1时,电动机的功率达到最大值P ,以后电动机保持该功率不变,直到升降机以最大速度v 2匀速上升为止,整个过程中忽略摩擦阻力及空气阻力,重力加速度为g 。
有关此过程下列说法正确的是( )A .钢丝绳的最大拉力为P v 2B .升降机的最大速度为v 2=P mgC .钢丝绳的拉力对升降机所做的功等于升降机克服重力所做的功D .升降机速度由v 1增大至v 2的过程中,钢丝绳的拉力不断减小[答案] BD[解析] 升降机匀加速上升阶段,钢丝绳的拉力不变且最大,根据P =Fv 1得F =Pv 1,A 错误;升降机匀速上升时,速度最大,此时F =mg ,v 2=P F =Pmg ,B 正确;升降机速度由v 1增大至v 2的过程中,功率保持不变,速度增大,根据P =Fv 可知,拉力F 减小,D 正确;由动能定理可知,钢丝绳的拉力对升降机所做的功与重力所做的功的代数和等于物体动能的增量,故钢丝绳的拉力对升降机所做的功等于动能的增量与升降机克服重力所做的功之和,C 错误。
11.(2013·湖北八市调考)如图,在水平地面xOy 上有一沿x 正方向做匀速运动的传送带,运动速度为3v 0,传送带上有一质量为m 的正方形物体随传送带一起运动,当物体运动到yOz 平面时遇到一阻挡板C ,阻止其继续向x 正方向运动。
设物体与传送带间的动摩擦因数为μ1,与挡板之间的动摩擦因数为μ2。
此时若要使物体沿y 正方向以匀速4v 0运动,重力加速度为g ,问:(1)沿y 方向所加外力为多少?(2)若物体沿y 方向运动了一段时间t ,则在此期间摩擦力所做的功为多少? [答案] (1)μ1mg 3μ2+45 (2)-4μ1mgv 0t 3μ2+45[解析] (1)地面xOy 对物块摩擦力如图甲所示,物块沿轴正向匀速运动时受力图如图乙所示。