圆锥曲线的焦点弦长新解
- 格式:pdf
- 大小:298.74 KB
- 文档页数:5
圆锥曲线中点弦直角弦焦点弦三大弦案一、用“点差法”解圆锥曲线的中点弦问题我们可以使用“点差法”来解决圆锥曲线的中点弦问题,即将弦的端点坐标代入圆锥曲线方程并作差,得到一个关于弦的中点和斜率的式子,从而减少运算量。
例1:对于椭圆x^2/4+y^2/2=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=-2b^2/2a^2.例2:对于双曲线x^2/4-y^2/9=1,如果AB是不平行于对称轴的弦,M是其中点,那么我们可以使用点差法证明K_AB=2b^2/2a^2.二、直角弦对于椭圆x^2/8+y^2/4=1上的点P(2,2),我们可以通过作两条互相垂直的XXX和PB来求直线AB的方程。
例2:对于双曲线-x^2/4+y^2/1=1的顶点M(2,0),如果过M作两条互相垂直的直线与椭圆x^2/8+y^2/4=1相交于A、B 两点,我们需要判断直线AB是否过定点。
例3:对于抛物线y^2=2x上的点M(2,2),我们可以通过作两条互相垂直的弦MP和MQ来求直线AB过的定点。
例4:对于椭圆x^2/84+y^2/36=1,如果OA垂直OB,且直线AB的斜率为1,我们需要求直线AB的方程。
三、焦点弦1、对于抛物线y=x^2上的点P,如果线段PF1垂直于F1F2且PF1=8,我们需要求过P且倾斜角为θ的直线与抛物线的交点。
2、对于椭圆x^2/9+y^2/4=1,如果点P(3,0)在其上,且线段F1P和F2P的长度之和为10,我们需要求离心率。
3、对于双曲线x^2/16-y^2/9=1,如果其右焦点为(5,0),且过点P(1,2)且斜率为k的直线与双曲线交于两点,我们需要求离心率。
4、对于椭圆x^2/16+y^2/9=1,如果其左、右焦点分别为(-3,0)和(3,0),过点P(0,2)的直线与椭圆交于A、B两点,且A、B关于点M(0,-2)对称,我们需要求四边形面积的最小值。
练:1、对于椭圆x^2/4+y^2/2=1,如果点P在其上,且PF1垂直于F1F2且PF1=4,PF2=3,我们需要求椭圆的标准方程和直线l的方程。
圆锥曲线弦长公式的各类表达形式及应用
圆锥曲线弦长公式是指一种求解圆锥曲线弦长长度的数学公式。
圆锥曲线是常见的椭圆锥这类参数方程曲线,表示一条从圆柱面出发在四个方向上均呈轻微弯曲,伸展出不同长度的弦曲线,它具有如下表达形式:
X^2 + Y^2 + z^2 / a^2 + 2z / c = 1
其中a为曲线的椭圆截面半径,c为曲线的焦点到原点的距离。
此外,圆锥曲线的弦长公式又有两种表达形式:积分形式和解析形式。
即:
积分形式:l= ∫ a,b √[(dx/dt)^2 + (dy/dt)^2+ (dz/dt)^2] dz
解析形式:l= 2a ∫ 0,π/2 [1+ (z/c)^2] ^1/2 d θ
这两种形式分别由圆锥曲线弦长公式参数方程求得,分别通过积分、解析解轴,分别求得弦长长度。
应用上,圆锥曲线弦长公式有各种广泛的应用。
它被冶金、机械、建筑等工程学科广泛使用,主要处理伸缩性有限的形状问题,满足测量要求及计算曲线的长度的需要。
同时,它还被广泛应用于地球物理学领域,一种可以变成圆锥曲线的小球轨迹,可以用来研究宇宙物质的运动规律。
总而言之,圆锥曲线弦长公式具有可探索性广泛的应用,对于求解圆锥曲线弦长长度具有重要意义。
圆锥曲线专题解析3:焦点弦问题圆锥曲线专题解析3:焦点弦问题Ø方法导读圆锥曲线是高考的必考内容,主要命题点有直线与圆锥曲线的位置关系的应用,圆锥曲线中的弦长、弦中点、面积、定点、定值、最值、取值范围、存在性问题,综合性较强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识结合,难度较大.解题时,充分利用数形结合思想,转化与化归思想,同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养.在解题过程中常用到点差法、根与系数的关系、设而不求、整体代换等技巧,注意掌握.如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦.圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识.焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的.Ø高考真题【2018·全国I卷理·19】设椭圆的右焦点为,过的直线与交于,两点,点M的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.Ø解题策略【过程分析】第一问,先求出椭圆的右焦点的坐标,由于与轴垂直,所以可求出直线的方程,从而求出点的坐标,再利用直线方程的两点式,即可求出直线的方程;第二问,对直线分三类讨论:当直线与轴重合时,直接求出.当直线与轴垂直时,可直接证得.当直线与轴不重合也不垂直时,设的方程为,,,利用斜率公式表示出,把直线的方程代入椭圆的方程,消去转化为关于X的一元二次方程,利用根与系数的关系即可证明,从而证得.【深入探究】破解此类解析几何题的关键,一是“图形”引路,一般需画出大致图形,把已知条件翻译到图形中,利用直线方程的点斜式或两点式,即可快速表示出方程;二是“转化”桥梁,即会把要证的两角相等,根据图形的特征,转化为斜率之间的关系,再把直线与椭圆的方程联立,利用根与系数的关系,以及斜率公式即可证得结论.Ø解题过程(1)由已知得,的方程为.由已知可得,点的坐标为或,所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,,,则,,直线,的斜率之和为.由,得.将代入得.所以,,则.从而,故,的倾斜角互补,所以.综上,.Ø解题分析本题考查椭圆的标准方程及其简单性质、焦点弦斜率问题,考查考生的推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想,考查的核心素养是逻辑推理、直观想象、数学运算.对比2015年全国I卷理科数学第20题:在直角坐标系中,曲线与直线交于,两点.(1)当时,分别求在点和处的切线方程;(2)轴上是否存在点,使得当变动时,总有说明理由.2018年的全国I卷的第19题只是把2015年全国I卷的第20题的“抛物线”变为“椭圆”,仍然考查直线与圆锥曲线有两个交点的位置关系,都是“求方程”与“相交弦的斜率”问题,只是去掉了原来的是否存在型的外包装.在强调命题改革的今天,通过改编、创新等手段来赋予高考典型试题新的生命,这成为高考命题的一种新走向,所以我们在复习备考的过程中要注意对高考真题的训练,把握其实质,掌握其规律,规范其步骤,做到“胸中有高考真题”,那么我们就能做到以不变应万变.Ø拓展推广1.圆锥曲线过焦点的所有弦中最短的弦过焦点且与对称轴垂直的弦称为通径.(1)椭圆过焦点的最短弦为通径,长为.(2)双曲线过焦点的最短弦为通径或实轴长,长为或.注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线过焦点的最短弦为通径,长为.注意:对于焦点在轴负半轴上,焦点在轴上的抛物线,上述结论仍然成立.2.圆锥曲线的焦半径公式圆锥曲线上任意一点到焦点的距离叫做圆锥曲线关于该点的焦半径,利用圆锥曲线的第二定义很容易得到圆锥曲线的焦半径公式.(1)椭圆的焦半径公式①若为椭圆上任意一点,点,分别为椭圆的左右焦点,则,.②若为椭圆上任意一点,点,分别为椭圆的上下焦点,则,.(2)双曲线的焦半径公式①若为双曲线上任意一点,点,分别为双曲线的左右焦点,当点在双曲线的左支上时,则,;当点在双曲线的右支上时,则,.①若为双曲线上任意一点,点,分别为双曲线的上下焦点,当点在双曲线的下支上时,则,;当点在双曲线的上支上时,则,.(3)抛物线的焦半径公式①若为抛物线上任意一点,则;②若为抛物线上任意一点,则;③若为抛物线上任意一点,则;④若为抛物线上任意一点,则.3.圆锥曲线的焦点弦的两个焦半径倒数之和为定值(1)椭圆的焦点弦的两个焦半径倒数之和为常数,(其中).(2)双曲线的焦点弦的两个焦半径倒数之和为常数,当焦点弦的两个端点,在同支时,;当,在异支时,(其中).注意:对于焦点在轴上的椭圆、双曲线,上述结论仍然成立.(3)抛物线的焦点弦的两个焦半径倒数之和为常数(其中).涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.另外熟记圆锥曲线焦点弦的一些重要结论,可以快速求解与焦点弦有关的最值或范围问题.变式训练1如图,椭圆的右焦点为,过点的直线与椭圆交于、两点,直线与轴相交于点,点在直线上,且满足轴.(1)当直线与轴垂直时,求直线的方程;(2)证明:直线AM经过线段的中点.变式训练2已知抛物线的焦点与椭圆的右焦点重合,抛物线的动弦过点,过点且垂直于弦的直线交抛物线的准线于点.(1)求抛物线的标准方程;(2)求的最小值.变式训练3设抛物线的焦点为,过且斜率为()的直线与交于两点,.(1)求的方程;(2)求过点且与的准线相切的圆的方程.变式训练4已知抛物线的焦点为,过的直线交抛物线于,两点.(1)若以,为直径的圆的方程为,求抛物线的标准方程;(2)过,分别作抛物线的切线,,证明:,的交点在定直线上.变式训练5抛物线的焦点为,是上一点,且.(1)求的方程;(2)过点的直线与抛物线相交于,两点,分别过点,两点作抛物线的切线,,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.。
圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y +=代入曲线方程,化为关于x 的一元二次方程,设出交点坐标()(),,,,2211y x B y x A 利用韦达定理及弦长公式]4))[(1(212212x x x x k -++求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.一、椭圆的焦点弦长若椭圆方程为)0(12222>>=+b a by a x ,半焦距为c>0,焦点)0,(),0,(21c F c F -,设过1F 的直线l 的倾斜角为l ,α交椭圆于两点()(),,,,2211y x B y x A 求弦长AB .解:连结B F A F 22,,设y B F x A F ==11,,由椭圆定义得y a B F x a A F -=-=2,222,由余弦定理得222)2(cos 22)2(x a c x c x -=⋅⋅-+α,整理可得αcos 2⋅-=c a b x ,同理可求得αcos 2⋅+=c a b y ,则ααα222222cos 2cos cos c a ab c a b c a b y x AB -=⋅++⋅-=+=;同理可求得焦点在y 轴上的过焦点弦长为α2222sin 2c a ab AB -=(a 为长半轴,b 为短半轴,c 为半焦距).结论:椭圆过焦点弦长公式:⎪⎪⎩⎪⎪⎨⎧⋅-⋅-=).(sin2),(cos222222222轴上焦点在轴上焦点在ycaabxcaabABαα二、双曲线的焦点弦长设双曲线(),0,012222>>=-babyax其中两焦点坐标为)0,(),0,(21cFcF-,过F1的直线l的倾斜角为α,交双曲线于两点()(),,,,2211yxByxA求弦长|AB|.解:(1)当ababarctanarctan-<<πα时,(如图2)直线l与双曲线的两个交点A、B在同一支上,连BFAF22,,设,,11yBFxAF==,由双曲线定义可得ayBFaxAF2,222+=+=,由余弦定理可得222222)2()cos(22)2(,)2(cos22)2(aycycyaxcxcx+=-⋅⋅-++=⋅⋅-+απα整理可得αcos2⋅+=cabx,αcos2⋅-=caby,则可求得弦长;cos2coscos222222αααcaabcabcabyxAB-=⋅-+⋅+=+=(2)时或当παπα<<-<≤ababarctanarctan0,如图3,直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F == 则a y B F a x A F 2,222-=+=,由余弦定理可得222)2(cos 22)2(a x c x c x +=⋅⋅-+α,222)2(cos 22)2(a y c y c y -=⋅⋅-+α,整理可得,则,cos ,cos 22a c b y a c b x -⋅=+⋅=αα .cos 2cos cos 222222a c ab a c b a c b x y AB -⋅=+⋅--⋅=-=ααα因此焦点在x 轴的焦点弦长为⎪⎪⎩⎪⎪⎨⎧<<-<≤--<<-=).arctan arctan 0(cos 2),arctan (arctan cos 222222222παπααπααa b a b ac ab a ba b c a ab AB 或 同理可得焦点在y 轴上的焦点弦长公式⎪⎪⎩⎪⎪⎨⎧-<<-<<-<≤-=).arctan (arctan sin 2),arctan arctan 0(sin 222222222a b a b a c ab a ba b c a ab AB πααπαπαα或 其中a 为实半轴,b 为虚半轴,c 为半焦距,α为AB 的倾斜角.三、 抛物线的焦点弦长若抛物线)0(22>=p px y 与过焦点)0,2(pF 的直线l 相交于两点()()2211,,,y x B y x A ,若l 的倾斜角为α,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA 1、BB 1,A 1、B 1为垂足,y FB x FA ==,设,则点A 的横坐标为αcos 2⋅+x p ,点B 横坐标为αcos 2⋅-y p,由抛物线定。
圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。
由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。
本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。
焦点弦定理公式嘿,咱今天就来好好唠唠这焦点弦定理公式。
要说这焦点弦定理公式啊,那在数学的圆锥曲线里可是个重要角色。
咱们先从抛物线说起,在抛物线中,焦点弦长等于 x₁ + x₂ + p (这里的 x₁、x₂是焦点弦端点的横坐标,p 是抛物线的焦准距)。
这公式看着简单,可真要用起来,那得好好琢磨琢磨。
我记得有一次给学生讲这个知识点的时候,有个小家伙瞪着大眼睛一脸懵地看着我,嘴里嘟囔着:“老师,这咋这么复杂呀?”我就笑着跟他说:“别着急,咱们一步步来。
”然后我就给他举了个例子,比如说抛物线 y² = 2px ,有一条焦点弦的两个端点坐标是 (x₁, y₁) 和 (x₂,y₂) ,那根据抛物线的方程,咱就能得到 y₁² = 2px₁,y₂² = 2px₂。
然后呢,通过一系列的推导和计算,就能把焦点弦长给算出来啦。
再说说椭圆里的焦点弦,那也有它独特的公式。
对于椭圆 x²/a² +y²/b² = 1 (a > b > 0),焦点弦长可以用2ab² / (b² + c²sin²α) 来表示(这里的 c 是椭圆的半焦距,α 是焦点弦与长轴的夹角)。
在双曲线中呢,焦点弦长公式又有所不同。
双曲线 x²/a²- y²/b² = 1 ,焦点弦长是 2ab² / (|b² - c²sin²α|) 。
学习这些公式的时候,可不能死记硬背,得理解其中的原理。
就像搭积木一样,一块一块弄清楚了,才能搭出漂亮的城堡。
比如说在做练习题的时候,有这么一道题:已知抛物线 y² = 8x ,有一条焦点弦的两个端点横坐标分别是 2 和 6,让求这条焦点弦的长度。
这时候,咱们就可以先算出 p = 4 ,然后根据公式,焦点弦长就等于 2+ 6 + 4 = 12 。
圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。
由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。
本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。