全国高中数学竞赛讲义-不等式的证明(练习题)
- 格式:doc
- 大小:496.00 KB
- 文档页数:3
不等式的证明(北京习题集)(教师版)一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合A { | (t ,t ,t ) ,t {0 ,1},k 1,2,,n},对于集合A 中1 2 n k的任意元素 (x ,x ,,) 和(y ,,y ,记x y) 1 2 n 1 2nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合B ,使其元素个数最多,并说明理由.2 2 22.(2016 春•北京校级月考)已知,,求证 a b …(a b) (用分析法证明)a b R23 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2nT x x n Nn r r *( )n 1 2r0.(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的n N ,.* T Zn4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x ) e ,用反证法证明方程f (x ) 0 没有负数根.x 1b b5.(2019 秋•大兴区期中)①已知0 ,求证:.a b 1a 1 a②已知1,当取什么值时,x 的值最小?最小值是多少?x x 9x 16.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .a a a11 12 1na a a7.(2019•东城区二模)若n 行n 列的数表 ( )(n 2) 满足:,,,2,,,21 22 2 … a {0 1}(i j 1 n)nM M Mija a an1 n2 nn第1页(共8页)n nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为A m .对于ik ik jk nk 1 k 1nk 1A m T(n,m) a a ,1 i j n , i, j N*( ) ,记集合…….|T(n,m) | 表示集合T(n,m)中元素的个数. n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (2) (0 1 1) (1…… 3 , , * )31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出(2),若不存在,说明理由;A4 4n(Ⅲ)对于数表A (m)(0 m n,m N ) ,求证:|T(n,m) |….*n2第2页(共8页)不等式的证明(北京习题集)(教师版)参考答案与试题解析一.解答题(共7 小题)1.(2018•北京)设n 为正整数,集合{ | ( ,t ,t ) ,{0 ,,,2,,,对于集合中A t t 1}k 1 n} A1 2 n k的任意元素,,,和,,,记(x x x ) (y y y )1 2 n 1 2 nM (1,) [(x y | x y |) (x y | x y |) (x y | x y |)]1 1 1 12 2 2 2 n n n n2(Ⅰ)当n 时,若 (1,1, 0) , (0,1,1) ,求M (,) 和M (,) 的值;3(Ⅱ)当 4 时,设是的子集,且满足:对于中的任意元素,,当,相同时,是奇数;当n B A B M (,)M (,) B,不同时,是偶数.求集合中元素个数的最大值;(Ⅲ)给定不小于 2 的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,,M (,) 0 ,写出一个集合,使其元素个数最多,并说明理由.B【分析】(Ⅰ)直接根据定义计算.(Ⅱ)注意到 1 的个数的奇偶性,根据定义反证证明.(Ⅲ)根据抽屉原理即可得证.【解答】解:,.(I ) M (,) 11 0 2 M (,) 0 1 0 1x y | x y |(II) 考虑数对 (x ,y ) 只有四种情况: (0,0) 、 (0,1) 、 (1, 0) 、 (1,1) ,相应的分别为 0、0、0、1,k k k kk k2所以B 中的每个元素应有奇数个 1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素):(1 ,0,0,0 ) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1) ,(0 ,1,1,1) 、 (1 ,0,1,1) 、 (1 ,1,0,1) 、 (1 ,1,1, 0) ,对于任意两个只有 1 个 1 的元素,都满足是偶数,M (,)所以四元集合B {(1 ,0,0, 0) 、 (0 ,1,0, 0) 、 (0 ,0,1, 0) 、 (0 ,0,0,1)}满足题意,假设B 中元素个数大于等于 4,就至少有一对互补元素,除了这对互补元素之外还有至少 1 个含有 3 个 1 的元素,则互补元素中含有 1 个 1 的元素与之满足M (,) 1不合题意,故B 中元素个数的最大值为 4.第3页(共8页)(Ⅲ)B {(0,0,0,0), (1 ,0, 0, 0) , (0 ,1,0,0), (0 ,0,10),(0 ,0,0,,1)},此时中有个元素,下证其为最大.B n 1对于任意两个不同的元素,,满足,则,中相同位置上的数字不能同时为 1,M (,) 0假设存在有多于个元素,由于,0,0,,与任意元素都有,B n 1 (0 0) M (,) 0所以除 (0 ,0,0,, 0) 外至少有n 1 个元素含有 1,根据元素的互异性,至少存在一对,满足,此时不满足题意,x y l M (,) (1)i i故B 中最多有n 1 个元素.【点评】本题主要考查集合的含义与表示、集合的运算以及集合之间的关系.综合性较强,难度较大.2 2 22.(2016 春•北京校级月考)已知a ,b R,求证 a b …(a b) (用分析法证明)22 2 2【分析】分析法证明不等式,寻找使 a b …(a b) 成立的充分条件,直到使不等式成立的条件显然具备为2止.2 2 2【解答】证明:要证 a b …(a b) ,22 2 1 2只要证( ) ,a b … a b2即证明,2(a b )…a 2ab b2 2 2 2也就是证明,(a b) 02此式显然成立,故要证的不等式成立.【点评】本题考查不等式的证明,着重考查分析法的应用,考查推理能力,体现了转化的数学思想,属于中档题.3 .(2014 •朝阳区二模)已知,x 是函数 f (x ) x 2 mx t 的两个零点,其中常数m ,t Z ,设x1 2.nT x x (nN )n r r *Tx x (n N )n 1 2r0(1)用m ,t 表示T ,T ;1 2(2)求证:T mT tT ;5 4 3(3)求证:对任意的,.n N* T Znn【分析】( 1 )依题意,知,,利用( ) ,易知T x x m ,x x m x x t T x n r x r n N*1 2 1 2 n 1 2 1 1 2r0;2T x 2r x r x 2 x x x 2 (x x )2 x x m2 t2 1 2 1 1 2 2 1 2 1 2r0第4页(共8页)k(2)由,可得;x x T x T x mT tTk r r 51 2 5 1 4 2 4 3r0(3)利用数学归纳法证明即可.【解答】解:(1)x x m ,x x t .1 2 1 2n因为( ) ,所以,T x x n N T x x mn r r *n 1 2 1 1 2r0分2T x x x x x x x x x x m t2 r r 2 2 2 2( ) 32 1 2 1 1 2 2 1 2 1 2r0k 5 4(2)由x x ,得T x x x x x x x Tx .k r r 5 r r 4 r r 5 51 2 5 1 2 1 1 2 2 1 4 2r0 r0 r0即.T x T x55 1 4 2所以.x T x x T x 52 4 1 23 2所以 5 1 4 ( 2 4 1 2 3 )( 1 2 ) 4 1 2 3 4 3 8分T x T x T x x T x x T x x T mT tT(3)①当n 1,2 时,由(1)知T 是整数,结论成立.k②假设当 1 ,时结论成立,即T ,T k 都是整数.n k n k(k… 2)k 1k k 1 k由,得T x x x x x x ,T x k r x rk 1r r k r r k 1 k 1 2 k 1 1 2 1 1 2 2r0 r0 r0即,T x T xk 1 k 1 1 k 2所以,,T x T x k x T x x T xk 1k 1 k 1 2 2 k 1 2 k 1 2所以T 1 x1T (x2T x1x2T 1) (x1 x2 )T x1x2T 1 .k k k k k k即.T mT tTk 1 k k 1由T ,T k 都是整数,且m ,t Z 知,T 也是整数,即n k 1时,结论也成立.k 1 k 1由①②可知,对于一切,分n N* T Z13n【点评】本题考查综合法证明不等式,突出考查数学归纳法的应用,考查抽象思维、逻辑思维的综合应用,考查推理证明的能力,属于难题.4.(2014•北京校级模拟)(1)求证:7 6 5 2 ;x x 2(2)已知函数f (x) e ,用反证法证明方程f (x) 0 没有负数根.x 1【分析】(1)采用分析法来证,要证7 6 5 2 ,只需两边平方,整理后得到一恒成立的不等式即可.(2)对于否定性命题的证明,可用反证法,先假设方程f (x) 0 有负数根,经过层层推理,最后推出一个矛盾的结论.第5页(共8页)【解答】证明:(1)要证7 6 5 2只需证( 7 6) ( 5 2)2 2只需证即证13 2 42 9 4 5 2 2 5 42 只需证24 8 5 42只需证即证4 5 9 80 81上式显然成立,命题得证.x x (2)设存在x 0 0(x 0 1) ,使,则e 0f x( ) 0xx 12由于得 0 1,解得x 2 ,0 e x 1 0x 1 20 21与已知矛盾,因此方程没有负数根.x 0 0 f (x ) 0【点评】(1)本题主要考查不等式的证明,证明用到了分析法,分析法是从要证明的结论出发,一步步向前推,得到一个恒成立的不等式,或明显成立的结论即可.(2)本题考查了函数的零点问题与方程的根的问题.方程的根,就是指使方程成立的未知数的值.对于结论是否定形式的命题,往往反证法证明.a b b 1 b5.(2019 秋•大兴区期中)①已知0 ,求证:.a 1 a②已知,当取什么值时,x 的值最小?最小值是多少?x 1x x 91【分析】①作差法证明即可;②利用基本不等式判断即可.b 1 b ab a ab b a b【解答】解:①证明:a b 0 ,0 ,a 1 a (a 1)a a(a 1)b 1 b故;a 1 a②当时,,,x 1 x 1 x 1 x x 1 0 9 1 9 1 2 ( 1)( 9 ) 1 51 y x x (x)当且仅当,即时,取等号,x 1 3 x 2故当 2 时,x 值最小,最小为 5.x 9x 1【点评】考查了作差法和基本不等式法的应用,基础题.6.(2019 秋•西城区校级期中)已知a ,b 0 ,证明:a3 b3…a2b ab2 .【分析】作差,因式分解,即可得到结论.【解答】证明:(a3 b3 ) (a2b ab2 ) a2 (a b) b2 (b a)第6页(共8页)(a b)(a b ) (a b) (a b)2 2 2Q a 0 b 0,,(a b)2 0a b 0 ,,(a b)2 (a b) 0,则有.a3 b3…a2b b2a【点评】本题考查不等式的证明,重点考查作差法的运用,考查学生分析解决问题的能力,属于基础题.a a a11 12 1na a a7.(2019•东城区二模)若行列的数表…满足:a {0 , 1}(i ,j 1,2,,n) ,n n ( )(n 2)21 22 2nM M Mija a an1 n2 nnn nn 0 m n) ( )a m(i 1,2,,,,| a a | 0 (i, j 1, 2,,n,i j) ,记这样的一个数表为Am .对于ik ik jk nk 1 k 1nk 1A (m) ,记集合T n m a a …i j…n i j N* .|T(n,m) | 表示集合T(n,m) 中元素的个数.( , ) ,1 , ,n ij ij ik jk1 1 0(Ⅰ)已知,写出ij i j i j N 的值;A (1…… 3 , , * )(2) (0 1 1)31 0 1(Ⅱ)是否存在数表A (2)满足|T(4, 2) |1?若存在,求出A (2),若不存在,说明理由;4 4n(Ⅲ)对于数表( )(0 , ) ,求证:.A m m n m N* |T(n,m) |…n2【分析】(Ⅰ)根据题意计算、和的值;12 13 23(Ⅱ)不存在数表A (2),使得|T(4, 2) |1,说明理由即可;4(Ⅲ)在数表A (m) 中,将换成,得出,根据题意计算,得出,,,从1 A (n m) |T(n m) ||T(n nm) | n ij ij n ijn而得出.|T |…(n,m)2【解答】解:(Ⅰ)根据题意,计算12 13 23 1;(3 分)(Ⅱ)不存在数表A (2),使得|T(4, 2) |1.理由如下:41 1 0 0a a a a假设存在A (2),使得|T(4, 2) |1.不妨设A (2) ( 21 22 23 24 ) ,的可能值为 0,1.4 4 ija a a a31 32 33 34a a a a41 42 43 44当ij i j 时,经验证这样的A (2)不存在.0 (1……4)4第7页(共8页)a a 121 22当1(1 4) 时,有,这说明此方程组至少有两个方程的解相同,ij …i j… a a 131 32a a 141 421 1 0 0a a 10 1 a a23 24不妨设,所以有 a a1,A (2) ( 23 24 )4 33 340 1 a a33 34a a 143 441 0 a a43 44这也说明此方程组至少有两个方程的解相同,1 1 0 0 1 1 0 00 1 0 1 0 1 0 1这样的A (2)只能为 ( ) 或 ( ) ,40 1 0 1 0 1 1 01 0 1 0 1 0 0 1这两种情况都与矛盾,|T(4, 2) | 1即不存在数表A (2),使得|T(4, 2) |1.(8 分)4(Ⅲ)在数表A m 中,将换成1 ,这将形成,( ) A (nm) n ij ij n由于,ij a i a j a i a j a in a jn1 12 2可得 (1 a )(1 a ) (1 a )(1 a ) (1 a )(1 a ) n m m ,i1 j1 i2 j2 in jn ij从而,,.|T(n m) ||T(n n m) |nn……当m…时,由于| a a | 0(0 i j n,i, j N* ) ,it jt2t 1n所以任两行相同位置的 1 的个数…1.2nn又由于… 0 ,而从 1 到1的整数个数…,ij2 2n从而| ( , ) | ;T n m …2n从而当 0 m n 时,都有|T |….(13 分)(n,m)2【点评】本题考查了不等式的性质与应用问题,也考查了矩阵乘法的性质应用问题,是难题.第8页(共8页)。
第60讲 不等式的证明1.比较法作差比较法与作商比较法的基本原理: (1)作差法:a -b >0⇔__a >b __.(2)作商法:ab >__1__⇔a >b (a >0,b >0).2.综合法与分析法(1)综合法:证明不等式时,从已知条件出发,利用定义、公理、定理、性质等,经过__推理论证__而得出命题成立,综合法又叫顺推证法或由因导果法.(2)分析法:证明命题时,从待证不等式出发,逐步寻求使它成立的__充分条件__,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.这是一种__执果索因__的思考和证明方法.3.反证法先假设要证的命题__不成立__,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的__推理__,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)__矛盾__的结论,以说明假设__不正确__,从而证明原命题成立,我们把它称为反证法.4.放缩法证明不等式时,通过把所证不等式的一边适当地__放大__或__缩小__以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得出原不等式成立,这种方法称为放缩法.5.数学归纳法数学归纳法证明不等式的一般步骤: (1)证明当__n =n 0__时命题成立;(2)假设当__n =k __(k ∈N *,且k ≥n 0)时命题成立,证明__n =k +1__时命题也成立. 综合(1)(2)可知,结论对于任意n ≥n 0,且n 0,n ∈N *都成立. 6.柯西不等式(1)代数形式:设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)向量形式:设α,β是两个向量,则|α||β|≥|α·β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.(3)三角不等式:设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则 (x 1-x 2)2+(y 1-y 2)2+(x 2-x 3)2+(y 2-y 3)2≥ (x 1-x 3)2+(y 1-y 3)2.(4)一般形式:设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.7.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任一排列,那么a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n .当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时,反序和等于顺序和.1.思维辨析(在括号内打“√”或“”).(1)用反证法证明命题“a ,b ,c 全为0”时假设为“a ,b ,c 全不为0”. ( × ) (2)若实数x ,y 适合不等式xy >1,x +y >-2,则x >0,y >0.( √ ) (3)不等式|x +a |+|x +b |≥c 恒成立的充要条件是|a -b |≥c .( √ ) (4)不等式|x +a |-|x +b |<c 恒成立的充要条件是|a -b |≤c .( × )2.若a >0,b >0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5解析 ∵12为a ,b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab,∵ab ≤a +b 2,∴ab ≤(a +b )24=14.∴1+1ab≥1+4.∴α+β的最小值为5.故选D.3.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( B )A .8B .4C .1D .14解析 因为3a ·3b =3,所以a +b =1. 1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·a b =4,当且仅当b a =a b ,即a =b =12时“=”成立.故选B.4.若直线3x +4y =2,则x 2+y 2的最小值为__425__,最小值点为__ ⎝⎛⎭⎫625,825 __. 解析 画出直线3x +4y =2的图象,再画以原点为圆心的圆,要使圆和直线有交点,则最小半径为直线与圆相切时,r =|2|5=25,切点为直线3x +4y =2与4x -3y =0的交点.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425,最小值点为⎝⎛⎭⎫625,825. 5.定义在R 上的函数f (x )对任意两个不等的实数x 1,x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“Ζ函数”,以下函数中为“Ζ函数”的序号为__②④__.①y =-x 3+1;②y =3x -2sin x -2cos x ;③y =⎩⎪⎨⎪⎧ ln |x |,x ≠0,0,x =0;④y =⎩⎪⎨⎪⎧x 2+4x ,x ≥0,-x 2+x ,x <0.解析 由排序不等式原理可知x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)⇒⎩⎪⎨⎪⎧ x 1>x 2,f (x 1)>f (x 2)或⎩⎪⎨⎪⎧x 1<x 2,f (x 1)<f (x 2)⇒f (x )是R 上的增函数.易知①是R 上的减函数;③是R 上的偶函数;对于②,y ′=3+22sin ⎝⎛⎭⎫x -π4>0;对于④,根据其图象可以判定为增函数.一 比较法证明不等式比较法证明不等式的步骤(1)作差(商);(2)变形;(3)判断差的符号(商与1的大小关系);(4)下结论.其中“变形”是关键,作差比较法中通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.【例1】 已知a ,b ,x ,y ∈(0,+∞),且1a >1b ,x >y .求证:x x +a >yy +b.证明 方法一 ∵x x +a -y y +b =bx -ay (x +a )(y +b ),1a >1b 且a ,b ∈(0,+∞),∴b >a >0.又x >y >0,∴bx >ay . ∴bx -ay (x +a )(y +b )>0,即x x +a >yy +b.方法二 ∵x ,y ,a ,b ∈(0,+∞), ∴要证x x +a >yy +b,只需证明x (y +b )>y (x +a ),即证xb >ya . 而由1a >1b>0,得b >a >0.又x >y >0,∴xb >ya 显然成立.故原不等式成立.二 分析法和综合法证明不等式分析法和综合法证明不等式的技巧证明不等式,主要从目标式的结构特征,综合已知条件,借助相关定理公式探索思路,如果这种特征不足以明确解题方法时,就应从目标式开始通过“倒推”——分析法,寻找目标式成立的充分条件直至与已知条件吻合,然后从已知条件出发综合写出证明过程.【例2】 (2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2.三 柯西不等式的应用柯西不等式应用的常见类型及解题策略(1)求表达式的最值.依据已知条件,利用柯西不等式求最值,注意等号成立的条件. (2)证明不等式.注意所证不等式的结构特征,寻找柯西不等式的条件,然后证明. 【例3】 (1)已知实数a ,b ,c ,d 满足a +b +c +d =3,a 2+2b 2+3c 2+6d 2=5,求证:1≤a ≤2. (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.证明 (1)由柯西不等式得(2b 2+3c 2+6d 2)⎝⎛⎭⎫12+13+16≥ (b +c +d )2,即2b 2+3c 2+6d 2≥(b +c +d )2,由已知可得 2b 2+3c 2+6d 2=5-a 2,b +c +d =3-a , ∴5-a 2≥(3-a )2,即1≤a ≤2, 当且仅当2b 12=3c 13=6d16,即2b =3c =6d 时,等号成立. (2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z3,即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.1.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是( D )A .1B .2C .3D .4解析 2a 2+1ab +1a (a -b )-10ac +25c 2=(a -5c )2+a 2-ab +ab +1ab +1a (a -b )=(a -5c )2+ab +1ab +a (a -b )+1a (a -b )≥0+2+2=4,当且仅当a -5c =0,ab =1,a (a -b )=1时等号成立,如取a =2,b =22,c =25满足条件.故选D.2.若P =x 1+x +y 1+y +z1+z (x >0,y >0,z >0),则P 与3的大小关系为__P <3__.解析 ∵1+x >0,1+y >0,1+z >0, ∴x 1+x +y 1+y +z 1+z <1+x 1+x +1+y 1+y +1+z 1+z=3,即P <3. 3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:⎝⎛⎭⎫1a -1·⎝⎛⎭⎫1b -1·⎝⎛⎭⎫1c -1≥8. 证明 ∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,⎝⎛⎭⎫1a -1·⎝⎛⎭⎫1b -1·⎝⎛⎭⎫1c -1=(b +c )(a +c )(a +b )abc≥ 2bc ·2ac ·2ababc=8.4.设a ,b ,c 是正实数,且a +b +c =9,求2a +2b +2c 的最小值.解析 ∵(a +b +c )⎝⎛⎭⎫2a +2b +2c =[(a )2+(b )2+(c )2]⎣⎡⎦⎤⎝⎛⎭⎫2a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫2c 2 ≥⎝⎛⎭⎫a ·2a +b ·2b +c ·2c 2=18, 当且仅当a =b =c =3时,等号成立. ∴2a +2b +2c ≥2.∴2a +2b +2c的最小值为2.易错点 混淆恒成立问题、无解问题和有解问题错因分析:转化为最值问题时,弄错大小或忽略等号导致错误.【例1】 已知关于x 的不等式||x -1-||x -3<a ,①恒成立;②无解;③有解;分别求a 的取值范围.解析 设g (x )=||x -1-||x -3, 则g (x )=⎩⎪⎨⎪⎧2,x >3,2x -4,1≤x ≤3,-2,x <1,则-2≤g (x )≤2,所以①a ∈(2,+∞);②a ∈(-∞,-2];③a ∈(-2,+∞). 【跟踪训练1】 设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R 使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解析 (1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a ,则-1a =-6,3a =2,无解;当a <0时,解集为⎣⎡⎦⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12.综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32.由此可知h (x )在⎝⎛⎭⎫-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎝⎛⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意,知-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.课时达标 第60讲[解密考纲]不等式的证明以解答题进行考查,主要考查综合法、比较法,还常用基本不等式证明不等式或求最值.1.已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2. 证明 (a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0.又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0, 即(a 3+b 3)-(a 2b +ab 2)>0,所以a 3+b 3>a 2b +ab 2. 2.已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明 因为b 2+c 2≥2bc ,a 2>0,所以a 2(b 2+c 2)≥2a 2bc ,① 同理,b 2(a 2+c 2)≥2ab 2c ,② c 2(a 2+b 2)≥2abc 2,③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c≥abc .3.已知a ,b ,c ∈(0,+∞),求证:2⎝⎛⎭⎫a +b 2-ab ≤3⎝ ⎛⎭⎪⎫a +b +c 3-3abc . 证明 欲证2⎝⎛⎭⎫a +b 2-ab ≤3⎝ ⎛⎭⎪⎫a +b +c 3-3abc , 只需证a +b -2ab ≤a +b +c -33abc ,即证c +2ab ≥33abc ,∵a ,b ,c ∈(0,+∞), ∴c +2ab =c +ab +ab ≥33c ·ab ·ab =33abc , ∴c +2ab ≥33abc 成立,故原不等式成立. 4.设a ,b 为正实数,且1a +1b =2 2.(1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值. 解析 (1)由22=1a +1b ≥21ab ,得ab ≥12,当a =b =22时取等号.故a 2+b 2≥2ab ≥1,当a =b =22时取等号. 所以a 2+b 2的最小值是1.(2)由(a -b )2≥4(ab )3,得⎝⎛⎭⎫1a -1b 2≥4ab ,即⎝⎛⎭⎫1a +1b 2- 4ab ≥4ab ,从而ab +1ab≤2. 又a ,b 为正实数,所以ab +1ab ≥2,所以ab +1ab =2,所以ab =1.5.已知函数f (x )=|x |-|2x -1|,记f (x )>-1的解集为M . (1)求M ;(2)已知a ∈M ,比较a 2-a +1与1a的大小.解析 (1)f (x )=|x |-|2x -1|=⎩⎪⎨⎪⎧x -1,x ≤0,3x -1,0<x <12,-x +1,x ≥12.由f (x )>-1,得⎩⎪⎨⎪⎧x ≤0,x -1>-1或⎩⎪⎨⎪⎧ 0<x <12,3x -1>-1或⎩⎪⎨⎪⎧x ≥12,-x +1>-1,解得0<x <2,故M ={x |0<x <2}. (2)由(1)知0<a <2,因为a 2-a +1-1a =a 3-a 2+a -1a =(a -1)(a 2+1)a,当0<a <1时,(a -1)(a 2+1)a <0,所以a 2-a +1<1a ;当a =1时,(a -1)(a 2+1)a =0,所以a 2-a +1=1a ;当1<a <2时,(a -1)(a 2+1)a >0,所以a 2-a +1>1a .综上所述,当0<a <1时,a 2-a +1<1a ;当a =1时,a 2-a +1=1a ;当1<a <2时,a 2-a +1>1a.6.已知a ,b ,c >0,a +b +c =1.求证: (1)a +b +c ≤3; (2)13a +1+13b +1+13c +1≥32. 证明 (1)∵由柯西不等式得(a +b +c )2=(1·a +1·b +1·c )2≤(12+12+12)·[(a )2+(b )2+(c )2]=3,当且仅当1a =1b =1c,即a =b =c =13时,等号成立,∴a +b +c ≤ 3. (2)∵由柯西不等式得[(3a +1)+(3b +1)+(3c +1)]⎝⎛⎭⎫13a +1+13b +1+13c +1≥⎝⎛⎭⎪⎫3a +1·13a +1+3b +1·13b +1+3c +1·13c +12=9(当且仅当a =b =c =13时取等号),又a +b +c =1,∴6⎝⎛⎭⎫13a +1+13b +1+13c +1≥9,∴13a +1+13b +1+13c +1≥32.。
证明不等式的基本方法现实世界中的量,相等是相对的、局部的,而不等的绝对的、普遍的。
不等式的本质是研究“数量关系”中的“不等关系”。
对于两个量,我们常要比较它们之间的大小,或者证明一个量大于另一个,这就是不等式的证明。
不等式的证明因题而异,灵活多变,常常要用到一些基本的不等式,如柯西不等式、平均值不等式等等,其中还需要用一些技巧性高的代数变形。
在这一部分我们主要来学习一些证明不等式的基本方法。
不等式是数学竞赛的热点之一。
由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。
而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。
证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。
但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。
【知识概要】证明不等式的常用方法有:⒈比较法:依据实数的运算性质及大小顺序之间的关系,通过两个实数的差或商的符号(范围)确定两个数的大小关系的方法。
基本解题步骤是:作差(商)—变形—判号(范围)—定论。
证题时常用到配方、因式分解、换元、乘方、恒等式、重要不等式、优化假设、放缩等变形技巧。
⒉分析综合法:所谓“综合”指由“因”导“果”,从已知条件出发,依据不等式的性质、函数的性质、重要不等式等逐步推进,证得所要证的不等式。
所谓“分析”指的是执“果”索“因”,从欲证不等式出发,层层推求使之成立的充分条件,直至已知事实为止。
一般先用分析法分析证题思路,再用综合法书写证明过程。
⒊重要不等式法:主要有均值不等式、柯西不等式、排序不等式等。
⒋换元法:适当引入新变量,通过代换简化原有结构,实现某种变通,给证明的成功带来新的转机。
具体地讲,就是化超越式为代数式,化无理式为有理式,化分式为整式,化高次式为低次式等等。
2000-2005全国高中数学竞赛不等式试题2004年全国高中数学联赛试卷(第一试)3、不等式2log 211log 3212++-x x >0的解集是 ( ) A .[2,3] B 。
(2,3) C 。
[2,4] D 。
(2,4)[答案]3、解:原不等式等价于22331log 0222log 10x x ++>⎪-≥⎩2310,220t t t t ⎧-+>⎪=⎨⎪≥⎩则有 解得01t ≤<。
即20log 11,24x x ≤-<∴≤<。
故选C 。
2003年全国高中数学联赛(第一试)7.不等式322430x x x --+<的解集是______________ 9. 已知 {}2430,,A x x x x R =-+<∈ (){}1220,2750,.x B x a x a x x R -=+≤-++≤∈若A B ⊆,则实数a 的取值范围是_____________.13. 设35,2x ≤≤ 证明不等式319.[答案]7. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---3,215215,3 . 提示: 原不等式可以化为:()()01||3||2<-+-x x x 9. 14-≤≤-a提示:()3,1=A ,令()a x f x +=-12,()()5722++-=x a x x g ,则只需()()x g x f ,在(1,3)上的图象均在x 轴的下方,其充要条件是()()()()⎪⎪⎩⎪⎪⎨⎧≤≤≤≤03010301g g f f ,由此推出14-≤≤-a ; 13.证明:由()bd ac da cd bc ab d c b a d c b a +++++++++=+++2)(22222可得 ,22222d c b a d c b a +++≤+++当且仅当a=b=c=d 时取等号 ……5分则()()()()x x x x x x x 315321123153212-+-++++≤-+-++ 192142≤+=x ……………………………………………………15分 因为x x x 315,32,1--+不能同时相等,所以1923153212<-+-++x x x ……………………………………20分2001年全国高中数学联赛试卷4.如果满足∠ABC=60°,AC=12,BC=k 的△ABC 恰有一个,那么k 的取值范围是( )(A )k=38(B )0<k≤12 (C ) k≥12(D ) 0<k≤12或k=386.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较结果是( )(A ) 2枝玫瑰价格高 (B ) 3枝康乃馨价格高(C ) 价格相同 (D ) 不确定.10. 不等式232log 121>+x 的解集为 . 11.函数232+-+=x x x y 的值域为[答案].4.D 6.A 10. ()()∞+⎪⎪⎭⎫ ⎝⎛,42,11,072 11. ()∞+⎪⎭⎫⎢⎣⎡,223,12000年全国高中数学联赛 (第一试)10.已知)(x f 是定义在R 上的函数,1)1(=f 且对任意R x ∈都有5)()5(+≥+x f x f 1)()1(+≤+x f x f若x x f x g -+=1)()(,则=)2002(g .11.若1)2(log )2(log 44=-++y x y x ,则||||y x -的最小值是 .12.使不等式x a x a x cos 1cos sin 22+≥++对一切R x ∈恒成立的负数a 的取值范围是 .[答案]10. 解:由x x f x g -+=1)()(,得1)()(-+=x x g x f ,所以5)1()(1)5()5(+-+≥-+++x x g x x g1)1()(1)1()1(+-+≤-+++x x g x x g即)()5(x g x g ≥+,)()1(x g x g ≤+∴)()1()2()4()5()(x g x g x g x g x g x g ≤+≤+≤+≤+≤∴)()1(x g x g =+即)(x g 是周期为1的周期函数,又1)1(=g ,故1)2002(=g11. 解:⎪⎩⎪⎨⎧=-+>->+4)2)(2(0202y x y x y x y x ⇒⎩⎨⎧=-≥>440||222y x y x 由对称性只考虑0≥y ,因为0>x ,所以只须求y x -的最小值.令u y x =-公代入4422=-y x ,有0)4(2322=-+-u uy y .这是一个关于y 的二次方程显然有实根,故0)3(162≥-=∆u ,∴3≥u 当334=x ,33=y 时,3=u .故||||y x -的最小值为3 12. 解:原不等式可化为4)1()21(cos 222-+≤--a a a x ∵1cos 1≤≤-x ,0<a ,021<-a ∴当1cos =x 时,函数2)21(cos --=a x y 有最大值2)211(--a , 从而有4)1()211(222-+≤--a a a ,整理得022≥-+a a ∴1≥a 或2-≤a ,又0<a ,∴2-≤a1999年全国高中数学联合竞赛三、(满分20分)已知当x ∈[0,1]时,不等式0sin )1()1(cos 22>-+--θθx x x x 恒成立,试求的取值范围.[答案]13. 若对一切x ∈[0,1],恒有f(x)= 0sin )1()1(cos 22>-+--θθx x x x ,则 cosθ=f(1)>0, sinθ=f(0)>0. (1)取x ∈ (0,1),由于 ()()()x x x x x f ---≥1cos sin 12θθ,所以,()0>x f 恒成立,当且仅当 01cos sin 2>-θθ (2 )先在[0,2π]中解(1)与(2):由cosθ>0,sinθ>0,可得0<θ<2π.又由(2)得 sin2θ>21注意到0<2θ<π,故有6π<2θ< 65π, 所以,12π<θ<125π.因此,原题中θ的取值范围是2kπ+12π<θ<2kπ+125π,k ∈Z.或解:若对一切x ∈[0,1],恒有f (x )=x 2c o s θ-x (1-x )+(1-x )2s i n θ>0,则c o s θ=f (1)>0,s i n θ=f (0)>0. (1)取 x 0= ∈(0,1),则 .由于 +2x (1-x ),所以,0<f (x 0)=2x 0(1-x 0) .故 -+>0 (2)反之,当(1),(2)成立时,f (0)=s i n θ>0,f (1)=c o s θ>0,且x ∈(0,1)时,f (x )≥2x (1-x )>0.先在[0,2π]中解(1)与(2):由c o s θ>0,s i n θ>0,可得0<θ<.又-+>0, > , s i n 2θ>, s i n 2θ>,注意到 0<2θ<π,故有 <2θ< ,所以,<θ< .因此,原题中θ的取值范围是 2k π+<θ<2k π+ ,k ∈Z首届中国东南地区数学奥林匹克(2004年7月11日 8:00 — 12:00 温州)63)cos()2sin2364sin cosa aπθθθθ+-+-<++对于0,2πθ⎡⎤∈⎢⎥⎣⎦恒成立,求a的取值范围。
高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A.417+B.417-C .417D .以上答案都不对3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.8.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦10.(2023·全国·高三专题练习)设0()n ii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nn k k k k x x x x λ==≥+++∑∑ .16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk kn i i i kD C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111n n k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.高中数学竞赛与强基计划试题专题:不等式一、单选题1.(2020·北京·高三强基计划)若正实数x ,y ,z ,w 满足x y w ≥≥和2()x y z w +≤+,则w zx y+的最小值等于()A .34B .78C .1D .前三个答案都不对【答案】D【分析】利用基本不等式可求最小值,从而可得正确的选项.【详解】根据题意,有2111122222w z w x y w w x w x y x y x y y +-+≥+=++-≥+-≥-,等号当1::::12x y z w =12-.2.(2021·北京·高三强基计划)已知,,a b c +∈R ,且111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭,则()444444111a b c a b c ⎛⎫++++ ⎪⎝⎭的最小值是()A .417+B .417-C .417D .以上答案都不对【答案】A【分析】根据题设条件可设1ab =,利用柯西不等式可求最小值.【详解】由111()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭可得22111a b c ab a b ab c +⨯=⨯++,由对称性可设1ab =,则条件即1()3a b c a b c ⎛⎫+-+-= ⎪⎝⎭即221a b c c a b ++=+,从而2221a b a b a b+≥⇒+≥++根据柯西不等式()()24444444411a b c a b a b c ⎛⎫++++≥++ ⎪⎝⎭242()4()3a b a b ⎡⎤=+-++⎣⎦417≥+等号当1,1c a b =+=417+3.(2021·北京·高三强基计划)若a ,b ,c 为非负实数,且22225a b c ab bc ca ++---=,则a b c ++的最小值为()A .3B .5C .7D .以上答案都不对【答案】B【分析】利用非负性可求最小值.【详解】根据题意,有5a b c ++=≥=,等号当cyc (,,)(5,0,0)a b c =时可以取得,因此所求最小值为5.二、填空题4.(2021·北京·高三强基计划)在锐角ABC 中,tan tan 2tan tan 3tan tan A B B C C A ++的最小值是_________.【答案】6+++【分析】利用柯西不等式及三角形的恒等式可取最小值.【详解】记题中代数式为M ,我们熟知三角形中的三角恒等式:cot cot cot cot cot cot 1A B B C C A ++=,于是tan tan 2tan tan 3tan tan M A B B C C A=++2(1cot cot cot cot cot cot A B B C C A ≥++2(16=+=+,等号当tan tan tan tan tan :tan :tan A B B C C A A B C ==⇒=时取得,因此所求最小值为6+++5.(2021·全国·高三竞赛)已知正实数122020,,,a a a 满足1220201a a a +++= ,则222202012122320201a a a a a a a a a ++++++ 的最小值为________.【详解】由柯西不等式知()()()22220201212232220112232021a a a a a a a a a a a a a a a ⎛⎫+++++++++⎡⎤ ⎪⎣⎦+++⎝⎭ ()2122201a a a ≥+++= ,且()()()1223202012a a a a a a ++++++= ,所以2222201212232020112a a a a a a a a a +++≥+++ ,且当12202012020a a a ==== 时取到等号.故答案为:12.6.(2022·浙江·高二竞赛)设a ,b ,c ,d +∈R ,1abcd =,则21914a a+∑∑的最小值为______.【答案】7316【详解】由题意可得1abc d=,且a b c d ,则()222222911141f a a b c a b c a b c abc=+++++++,原问题等价于求函数()f a 的最小值.322291()2214()d f a a a b c a b c d a '-⎛⎫=-+⋅-⋅- ⎪+++⎝⎭322221924()a da a a d a abcd --=+⋅-⋅+++()22223232229()4()a d a d a d a d a a b c d d --=-+++()()222222328()9()4()a d a b c d a d a d a a b c d d -+++--=+++()2223228()()94()a d a d a b c d a d a a b c d d -=⋅++++-+++,3a b c d a d ++++ ,22()(3)12a b c d a d ad ∴++++ ,2228()()9a d a b c d a d ∴++++-[]228()129332()3a d ad a d ad a d ad +⋅-=+- ,令()32()3g a a d ad =+-,则()323g a d '=-,由a b c d可得1d ≤,则()()'0,g a g a >单调递增,2()()643(643)0g a g d d d d d ∴=-=-> ,则()()'0,f a f a >单调递增,()()f a f d ≥,此时1a b c d ====,73()(1)16f a f =.7.(2021·全国·高三竞赛)设正实数122020,,,a a a 满足202011i i a ==∑,则120201min1i ii kk a a ≤≤=+∑最大值为_________.【答案】1【详解】解析:最大值为1记01202011min,1,11ii i k ii k kk a S x a x a ≤≤====+=+∑∑,则1i i i a x x -=-,故111i i i i i x x xS x x ---≤=-,即11i ix S x --≥,对1,2,3,,2020i = ,求和,并结合算术-几何平均不等式,有120202020101202020202020(1)202020202i i i x x S x x -=⎛⎫-≥≥⨯=⎪⎝⎭∑,故1S ≤1(((1,2,3,,2020)i i i a i -=-= 时取到.所以原式的最大值为18.(2021秋·天津河北·高三天津外国语大学附属外国语学校校考阶段练习)设0,0,25y x y x >>+=,则当=x _______时,12y y x +取到最大值.【答案】52或2.5【分析】巧妙利用换元2log z x =得到111022z y ++=+,将12y y M x +=取对数运算得到2log (1)(1)1M y z =++-,将所求问题转化为求(1)(1)y z ++的最大值问题,由111022z y ++=+使用两次基本不等式可求出(1)(1)y z ++的最大值,考查等号取得条件即可.【详解】设12y y M x +=,则22log (1)log M y y x =++,设2log z x =,则2z x =,可知225z y +=,2log (1)(1)(1)1M y y z y z =++=++-.1111210222222z y z y +++++=+≥⋅≥⋅,(当且仅当z y =,即522yx ==时取等号.)所以5≥,故(1)(1)y z ++有最大值22(log 5),所以2log M 就有最大值,即12y y M x +=有最大值.【点睛】使用基本不等式求最值关键是要有定值才能求最值,没有明显的定值要进行变形拼凑.在此题中拼凑的定值有:①225z y +=及111022z y ++=+,为求(1)(1)z y +++最大值做准备;②通过提取公因式实现因式分解拼凑乘积,(1)(1)(1)1y y z y z ++=++-,产生了(1)(1)y z ++与上面(1)(1)z y +++遥相呼应,可以使用基本不等式.三、解答题9.(2023·全国·高三专题练习)设0()R[]nii i f x a x x ==∈∑,满足00,1,2,,.i a a i n ≤≤= 又设()0,1,,2i b i n = 满足22[()]nii i f x b x ==∑,证明:()2111.2n b f +⎡⎤≤⎣⎦【分析】根据给定条件,利用多项式平方运算求出2[()]f x ,再利用赋值法结合已知及进行不等式的放缩,推理判断作答.【详解】22200[()]()()nni si i ji s i j sf x a x a a x==+===∑∑∑,于是s iji j sb a a+==∑,222000001111[(1)]()(2)(2)2222n n i i i j i j i j i i i j n i j n i j n f a a a a a a a a ==≤<≤≤<≤≤<≤==+≥=∑∑∑∑∑001ni j j i j n j a a a a =<≤=≥=∑∑,因为00,1,2,,i a a i n ≤≤= ,则211211001010111[(1)]2nn i j n n n n n ji j n j b a a a a a a a a a a a a a a a a f +--+=+===+++≤+++=≤∑∑ ,所以211[(1)]2n b f +≤.10.(2023·全国·高三专题练习)设0()nii i f x a x ==∑,1()n ii i g x c x +==∑是两个实系数非零多项式,且存在实数r 使得()()().g x x r f x =-记{}{}001max ,max i i i n i n a a c c ≤≤≤≤+==,证明:()1.a n c ≤+【分析】根据给定条件,利用多项式恒等定理求出多项式(),()f x g x 的对应项系数的关系,再按||1r ≤和||1r >讨论,并结合含绝对值不等式的性质推理作答.【详解】因为()()()g x x r f x =-,即1110101()()n n nn niii ii n i i i i i i n i i i i i c x x r a x a xra x ra a ra x a x +++-======-=-=-+-+∑∑∑∑∑,则有()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,于是2211121101231,,,,nn n n n n n n n n n a c a c rc a c rc r c a c rc r c r c +-+--++==+=++=++++ ,若1r ≤,则1111,||2n n n n n n n a c c a c rc c r c c +-++=≤=+=+⋅≤,2221111||3,n n n n n n n a c rc r c c r c r c c --+-+=++≤+⋅+≤ ,()22012311231||||||||||||||||1n n n n a c rc r c r c c r c r c r c n c ++=++++≤+⋅+⋅++⋅≤+ ,所以()1i a n c ≤+,于是()1a n c ≤+,若1r >,则11,r<由()0011,1,2,,,i i i n n c ra c a ra i n c a -+=-=-== ,得()0011111,1,2,,,i i i n n a c a a c i n a c r r r-+=-=-== ,于是00101012120122321111111111,,,,a c a a c c c a a c c c c r r r r r r r r r r =-=-=--=-=--- 101111111,n n n n n n a c c c a c r r r--+-=----= ,于是0001010122111111,2a c c c a c c c c c r r r r r r =-=<=--≤+<,201201232321111113,,a c c c c c c c r r r r r r=---≤++< 1011011111111111,n n n n n n n n n a c c c c c c nc a c c r r r r r r---+--=----≤+++<=≤ ,所以i a nc <,于是()1a n c <+,综上得:()1a n c ≤+.11.(2021·全国·高三竞赛)已知:a ,b ,0,2c a b c ≥++=,求证:11()1()1()bc ca ababc a b abc b c abc c a ++≤++++++.【详解】()()()()111abc a b ab bc ca c a b ab ⎡⎤⎣⎦++-++=-+⨯-,因为a ,b ,0,2c a b c ≥++=,所以()1,1c a b ab +≤≤.于是()1abc a b ab bc ca ++≥++,同理()1abc b c ab bc ca ++≥++,()1abc c a ab bc ca ++≥++.则:1()1()1()bc ca ababc a b abc b c abc c a ++++++++1bc ca abab bc ca ab bc ca ab bc ca≤++=++++++.故题中的不等式成立.12.(2021·全国·高三竞赛)求所有的正实数a ,使得存在实数x 满足22sin cos 22x x a a +≥.【详解】设22sin x t a =,则不等式化为20at t+-≥.当01a <<时,2[,1]t a ∈;当1a =时,1t =;当1a >时,2[1,]t a ∈.因此不等式可化为220t t a +≥-.设2()2f t t t a =-+,考虑()f t 在1和2a 之间恒小于零,则2(1)0,()0,0f f a a <<>,故()()21110a a a a <⎧⎪⎨-+-<⎪⎩,1a <<.所以a的取值范围是10,[1,)2⎛⎤⋃+∞ ⎥ ⎝⎦.13.(2022·新疆·高二竞赛)(1)若实数x ,y ,z 满足2221++=x y z ,证明:||||||-+-+-≤x y y z z x ;(2)若2023个实数122023,,, x x x 满足2221220231+++= x x x ,求12232022202320231-+-++-+- x x x x x x x x 的最大值.【详解】(1)不妨设x y z ≤≤,则||||||-+-+-=-+-+-x y y z z x y x z y zx2()=-=≤≤=z x .(2)因为2023为奇数,则1220231,, i x x x x x 中必存在1,i i x x +(令20241=x x )同号,不妨设12,x x 同号,则:20233232023112112211232++===-=-+-≤-+++=∑∑∑ii i i i i i i xx x x x x x x x x x S .不妨设210≥≥x x ,则122122-++=x x x x x,所以:20232322=⎫⎫=+≤≤=⎪⎪⎪⎪⎭⎭∑i i S x x当且仅当124130,,====== x x x xx或124130,,====== x x x x x 因此12232022202320231-+-++-+- x x x x x x xx 的最大值为14.(2021·全国·高三竞赛)设m 为正整数,且21n m =+,求所有的实数组12,,,n x x x ,使得22221221i i nmx x x x x =++++ ,对所有1,2,,i n = 成立.【分析】第一步化简原式,第二步利用AM GM -不等式即可得到1k =或2m ,这两种情况是对称的,不妨证明1k =的时候成立,所以原式成立.【详解】由已知22121,1,2,,i i njj mx x i nx==+=⋅⋅⋅∑,得22121ni jj i mx x x ==-∑,故221i i mx x -全相等.注意到若实数a b ¹满足2211a b a b =--,则ab a b =+,即1b a b =-.因此,1i b x b b ⎧⎫∈⎨⎬-⎩⎭,0,1,2,,b i n ≠= .设i x 中有1bb -,21n k m k -=+-个b ,则有201k m ≤≤+,且()2222221(1)1b mb k m k b b b ⋅++-=--,即()21(1)21km k b m b ++--=-.由AM GM -不等式,若201k m <<+,()21(1)21km k b m b ++--≥≥-,因此必取等,即1k =或2m ,这两种情况是对称的,不妨1k =,则21(1)21m b m b +-=-,知11b m -=,则1,1m b a m m+==+.若0k =,则()21(1)2m b m +-=,即222(1)(1),12m m b a m m++==+.若21k m =+,则2121m m b +=-,即222(1)(1),21m m b a m m ++==+.综上可知,12,,,n x x x 要么1个21,+m m 个1m m +;要么全是22(1)1m m ++.15.(2021·全国·高三竞赛)求最大的正实数λ,使得对任意正整数n 及正实数01,,,n x x x ,均有010111.nnk k k k x x x x λ==≥+++∑∑ .【分析】先取101231,2,4,,2n n x x x x x -===== ,通过对其求和可得λ的范围,再利用放缩法可得010101201111333n nx x x x x x x x x x x +++≥+++++++++ ,最后求出最大的正实数λ的值.【详解】一方面,取101231,2,4,,2n n x x x x x -===== ,得1111322nn kk λ-=-≥∑即1113122n n λ-⎛⎫-≥- ⎪⎝⎭.令n →∞,得3λ≤.另一方面对正实数x ,y 有114x y x y+≥+,故0101114x x x x +≥+,012012114x x x x x x +≥+++,01230123114x x x x x x x x +≥+++++,……01101114n n nx x x x x x x -+≥++++++ .以上各式相加,得010101201111333n nx x x x x x x x x x x +++≥+++++++++ .故3λ=时,原不等式恒成立.综上,λ的最大值为3.16.(2021·全国·高三竞赛)已知01({0,1,,10})i x i <<∈ 证明:存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.【详解】不妨1210x x x ≤≤≤ ,设()(,)i j j i f i j x x x x =-,当010i j ≤≤≤时,因为()()()22333i j j i i i j j j i j i x x x x x x x x x x x x -≤++-=-,即333(,)j i f i j x x ≤-,当且仅当i j =时,等号成立.故()()10103311131,1i i i i f i i x x -==-<-<∑∑,所以存在{1,2,,10}i ∈ ,使得13(1,)10f i i -<,即1(1,)30f i i -<.所以存在,{0,1,2,,10}i j ∈ ,使得()1030i j j i x x x x <-<.17.(2021·全国·高三专题练习)已知:0a >,0b >,1a b +=.2<.【分析】构造一个直角三角形,,<cos )2αα+≤,即得证.【详解】证明:为了使得条件1a b +=与待证式的中间部分在形式上接近一些,我们将该条件作如下变形:11222a b ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,进而有222⎫+=⎪⎪⎭.①(如图所示).显然,这个直角三角形的三边长之间的关系是符合①的,从而满足条件1a b +=.由图所示,根据定理“三角形任意两边之和大于第三边”<.α=,α=.cos )24πααα⎛⎫+=+≤ ⎪⎝⎭∴2<成立.18.(2021·全国·高三专题练习)已知a ,b 为正数,且a b ¹2112a b a b+>>>+.【分析】如图所示,可先构造Rt ABC △,再构造Rt BCD ,最后,作Rt Rt BC D BCD '△≌△,由图形直观得AB BC BD BE >>>,即得证.=可先构造Rt ABC △,使得2a b BC +=,2a bAC -=,如图所示.此时,AB =.再以2a bBC +=为斜边,2a b CD -=为直角边构造Rt BCD,则BD =最后,作Rt Rt BC D BCD '△≌△,过点D 作DE BC ⊥'交BC '于点E ,由2BD BE BC =⋅'得22112BD BE a b BC a b=='+,由图形直观得AB BC BD BE >>>,2112a b a b+>>>+.19.(2022·湖北武汉·高三统考强基计划)设()1,,2n x x n ⋅⋅⋅≥皆为正数,且满足1211112022202220222022n x x x ++⋅⋅⋅+=+++2022≥【详解】证法一:由AM-GM 不等式有:()=120222022ni i i x x +∏=11=2022nk i i k x ≠+∑∏()11i n n =⎛≥- ⎝∏()()=11=2022nn i i n x -+∏,2022≥.证法二:不妨设12022i i y x =+,则12022,1iix i n y =-≤≤.从而原题转化为:已知111=,0<<20222022ni i i y y =∑,求证()=11ln 2022ln 20221ni i n n y ⎛⎫-≥-⎡⎤ ⎪⎣⎦⎝⎭∑.令()11ln 20222022i f y y y ⎛⎫=-<< ⎪⎝⎭,则()()2214044=2022''y f y y y --.不失一般性,我们设12n y y y ≤≤≤ ,则:(1)若1214044n y y y ≤≤≤≤,由Jesen 不等式有:()()1111ln 202212022nn i i i f y nf y nf n n n n ==⎛⎫⎛⎫≥==-⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭∑∑.(2)若12114044n n y y y y -≤≤≤≤≤ .容易得到()1ni i f y =∑取得最小值当且仅当121n y y y -=== .20.(2023·全国·高三专题练习)实数,,a b c 和正数λ使得()32f x x ax bx c =+++有三个实数根123,,x x x .且满足:(1)21x x λ-=;(2)()31212x x x >+,求332279a c ab λ+-的最大值.【分析】解法一:设12x m λ=-,22x m λ=+,()30x m t t =+>,利用韦达定理可化简所求式子为解法二:由()()()32311321232279222a c ab x x x x x x x x x +-=+-+-+-可令21x x λ=+,()3102x x n n λ=++>,由此可化简所求式子为3922n n λλ⎛⎫⋅- ⎪⎝⎭,令0n t λ=>,()()39202g t t t t =->,利用导数可求得()max g t ,即为所求式子的最大值.【详解】解法一:由题意可设:12x m λ=-,22x m λ=+,()31212x x x m >+= ,∴可令()30x m t t =+>,由韦达定理得:()()123221223312232123332444a x x x m t b x x x x x x m mt c x x x m m t m t λλλ⎧⎪=-++=-+⎪⎪=++=+-⎨⎪⎪=-=--++⎪⎩,则()323222327929292727244a ab a a b m m t m t t λλ-=-=+---,3222272727272744c m m t m t λλ=--++,则323332279942a c abt t λλλ+--=要取得最大值,则23940t t λ->,()3223322791942a c abt t λλλ+-=-2=(当且仅当222948t t λ-=,即t=时取等号),又t =满足23940t t λ->,∴取0m =,2λ=,则t =,此时11x =-,21x =,3x =a =1b =-,c =时,3322792a c ab λ+-=,332279a c abλ+-∴解法二:323227927273333a a a a a c ab a b c f⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=-+-+-+=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()()()12312327333333a a a x x x a x a x a x ⎛⎫⎛⎫⎛⎫=------=------ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,又123a x x x -=++,()()()32311321232279222a c ab x x x x x x x x x ∴+-=+-+-+-,令21x x λ=+,()3102x x n n λ=++>,322339227922224a c ab n n n n n λλλ⎛⎫⎛⎫⎛⎫∴+-=+-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,2233339222799422n n a c ab n n λλλλλ⎛⎫- ⎪+-⎛⎫⎝⎭∴==⋅- ⎪⎝⎭;令0nt λ=>,则3332279922a c abt t λ+-=-,令()()39202g t t t t =->,则()2962g t t '=-,令()0g t '=,解得:t =,∴当0,2t ⎛∈ ⎝⎭时,()0g t '>;当,2t ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g t '<;()g t ∴在2⎛⎫⎪ ⎪⎝⎭上单调递增,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减,()max22482g t g ⎛⎫∴==-⨯= ⎪ ⎪⎝⎭;∴当2λ=,n =11x =-,21x =,3x =a =1b =-,c =332279a c ab λ+-=332279a c abλ+-∴21.(2021·全国·高三竞赛)设,1,2,,i a i n +∈=R ,记:121kk k ni i i k D C aa a =+++∑ ,其中求和是对1,2,…,n 的所有kn C 个k 元组合12,,,k i i i 进行的,求证:1.(1,2,,1)k k D D k n +≥=- .【详解】任取121,,,k i i i a a a + ,由柯西不等式,有:()()1211211212111(1)(1)k j k k k j i i i i i i i i i i k a a a a k a a a a a a ++++=+≥+++-++++-+++∑ 1212(1)1k i i i k k a a a ++=⋅+++ .所以()1211212111(1)1k k jk j i i i i i i i k k aa a aa a a +++=+++++++-∑∑∑.其中求和对1,2,…,n 的所有1k n C +个1k +元组合进行.上式左边实际上是一些k 元组合的求和,因对任意k 元组合12,,,k i i i a a a ,选这k 个数的1k +元组合有n k -个(余下的n k -个数中任意一个数都与其构成一个1k +元组合),故121121111()k j kk j i i i i i i i n k a a a a a a a ++==-+++-+++∑∑∑ .这样便有1212121(1)1()k k i i i i i i k n k a a a k aa a ++-≥++++++∑∑ ,所以1212121(1)1C ()C k k kkni i i ni i i kk a a a n k aa a ++≥+++-+++∑∑ .再注意到1()(1)k k n n n k C k C +-=+,即得:121211111C C k k k k ni i i n i i i k k aa a a a a +++≥++++++∑∑.这就证明了1k k D D +≥,其中1,2,,1k n =- .即有121k k n D D D D D +≥≥⋅⋅⋅≥≥≥⋅⋅⋅≥.22.(2021·全国·高三竞赛)已知12,,,n a a a R ∈L ,且满足222121n a a a +++= ,求122311n n n a a a a a a a a --+-++-+-L 的最大值.【答案】当n为偶数时,最大值为n为奇数时,最大值为【详解】i j i j a a a a -≤+当且仅当·0i j a a ≤时等号成立.(1)当n 为偶数时,122311n n n a a a a a a a a --+-++-+-L 最大时,显然需满足10i i a a +⋅≤,否则用1i a +-替换1i a +依然满足条件,且值增大.设11n a a +=,所以()111112nn nii i i i i i i a aa a a ++===-≤+=≤=∑∑∑当且仅当i j a a ==i 为奇数,j 为偶数或i 为偶数,j 为奇数)时等号成立.(2)当n 为奇数时,122311,,,,n n n a a a a a a a a ----- 必存在()111,i i n a a a a ++=同号,不妨设12,a a 同号,则:112112211232A nn nii i i i i i i a aa a a a a a a a a ++===-=-+-≤-+++=∑∑∑.不妨设210a a ≥≥,则122122a a a a a -++=,所以:23A 2222ni i a a ==+≤≤=⎝∑当且仅当124130,a a a a a =======L L124130,,a a a a a ======L L .23.(2021·全国·高三竞赛)已知正实数12,,,(2)n a a a n > 满足121n a a a +++= .证明:23131212121222(1)n n n n a a a a a a a a a a n a n a n n -+++≤+-+-+-- .【详解】当4n ≥时,由平均值不等式知1111111n nn j i nj i j j j ia a a a n n --==≠⎛⎫- ⎪-⎛⎫ ⎪= ⎪ ⎪--⎝⎭⎪⎝⎭∑∏ .又111i a n -<-,则131111n i i a a n n ---⎛⎫⎛⎫≤ ⎪ ⎪--⎝⎭⎝⎭,所以231312112222n n n n a a a a a a a a a a n a n a n -++++-+-+- ()()3311(1)2ni i i a n a n =-≤-+-∑33321(10)1(1)(02)(1)(2)(1)ni n n n n n n =-<=≤-+----∑.当3n =时,即证312311(1)4=≤+∑i i i a a a a a .由于()()()()11123121311111111411a a a a a a a a a ⎛⎫=≤+ ⎪+-+---⎝⎭,所以3112131111((1)4(1)(1)=≤++--∑∑i i i a a a a a a ()()2131111411a a a a ⎛⎫=+ ⎪--⎝⎭∑()2323123111414a a a a a a a +==-∑∑,所以31231111(1)44=≤=+∑∑i i i a a a a a a .命题得证.24.(2021·浙江金华·高三浙江金华第一中学校考竞赛)数列{}n a 定义为11a =,()11111nn k k a a n n +==+≥∑.证明,存在正整数n ,使得2020n a >.【详解】由题意2112a a =+=.对2n ≥,我们有:11nn k k na n a +==+∑;()1111n n k k n a n a -=-=-+∑.两式相减,得:11n n na na +-=,即()111n n a a n n+=+≥.对2n ≥有1111n n k a k-==+∑.取403621n =+,则114035220211122i i n n k i k a k k +-===+⎛⎫=+=+ ⎪⎝⎭∑∑∑1403521021122i i i i k ++==+⎛⎫>+ ⎪⎝⎭∑∑403501220202i ==+=∑,从而403621n =+满足要求.25.(2021·全国·高三竞赛)给定正整数3n ≥.求最大的实数M .使得211nk k k k a M a a =+⎛⎫≥ ⎪+⎝⎭∑对任意正实数12,,,n a a a 恒成立,其中11n a a +=.【答案】3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩【详解】当4n ≥时,令1(1,2,,1)k k a xa k n +==- ,则2221111(1)11nk n k k k a x n a a x x -=+⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑.当0x →时,2211(1)111n x n x x -⎛⎫⎛⎫-+→ ⎪ ⎪++⎝⎭⎝⎭.令1k k k a x a +=,则问题化为:121n x x x = ,证明:21111n k k x =⎛⎫≥ ⎪+⎝⎭∑.当4n =时,首先证明:22111111x y xy⎛⎫⎛⎫+≥⎪ ⎪+++⎝⎭⎝⎭.①①式332212x y xy x y xy ⇔++≥+,由均值不等式知成立.由①式知2412341123412341234211111111k k x x x x x x x x x x x x x x x x x =⎛⎫++≥+== ⎪++++++⎝⎭∑.假设n k =时,对任意正实数12,,,k x x x 结论成立.则1n k =+时,由对称性不妨设121,,,,k k x x x x + 中1k x +最大,则11k x +≥,所以22211111111k k k k x x x x ++⎛⎫⎛⎫⎛⎫+≥ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,由归纳假设知,此时结论成立.由数学归纳法知,2111nk k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑.故1M =.当1233,n a a a ===时,231134k k k k a a a =+⎛⎫= ⎪+⎝⎭∑.由于24111k k k k a a a =+⎛⎫≥ ⎪+⎝⎭∑,令34a a =,则231134k k k k a a a =+⎛⎫≥⎪+⎝⎭∑,所以34M =.综上所述,3,3,41, 4.n M n ⎧=⎪=⎨⎪≥⎩26.(2019·河南·高二校联考竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C --- .【详解】原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C--- .在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=,cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++ .而上式左边8=,故原不等式得证27.(2022·贵州·高二统考竞赛)正数a ,b 满足+=1a b ,求证:2332211318a b a b ⎛⎫⎛⎫⎛⎫-- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ .【详解】332211a b a b ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭()()()()55234234222211(1)(1)11a b a b a aa ab b b b a b a b ----++++++++==()()23423411a aa ab b b b ab++++++++=23231111a a a b b b a b ⎛⎫⎛⎫=++++++++ ⎪⎪⎝⎭⎝⎭231ab ⎫≥++++⎪⎭(柯西不等式),122a b +=,令t =231()1g t t t t t=++++,其中102t <≤,则2213()12341104g t t t t =-+++≤-+++<',所以131()28g t g ⎛⎫≥= ⎪⎝⎭.所以2332211318a b a b ⎛⎫⎛⎫⎛⎫--≥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.28.(2022·江苏南京·高三强基计划)已知整数1n >,证明:11!32nnn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.【详解】解同除!n :()()11111!3!2nnn nn n n n ++⋅<<,设()1!nnn a n +=,原题即证:23n nn a <<,而()2211111111C C 2nn nn n n n n n n aa n n n n -+⎛⎫⎛⎫⎛⎫==+=++⋅+⋅⋅⋅+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以112121···2n n n n n a a a a a a ----⋅⋅⋅>,即1122n nn a a ->⋅=,1n >,又2211111C C nn n n n n a a n n -⎛⎫⎛⎫=++⋅++ ⎪ ⎝⎭⎝⎭ 11122!3!!n <+++⋅⋅⋅+211112222n -<+++⋅⋅⋅+11332n -=-<,所以112121···<3n n n n n a a aa a a ----⋅⋅⋅,即1133n nn a a -<⋅<,1n >,综上可得:1n >时,23nnn a <<,即11!32n nn n n ++⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.29.(2022·浙江杭州·高三学军中学校考竞赛)设实数12,,,n a a a 满足11(1)(1)n n i i i i a a ==+=-∏∏,求1ni i a =∑的最小值.【分析】由特例可得当n 为偶数时,1||ni i a =∑的最小值为0,当n 为奇数时,问题可转化为“给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.”,利用逐步调整法可证后者.【详解】当n 为偶数时,取10n a a =⋯==,故1||ni i a =∑的最小值为0;当n 为奇数时,也可只取121,1a a =-=,其余为0,此时1||2ni i a ==∑,下证当n 为奇数时,12ni i a =≥∑恒成立.(利用换元可以得到更直观的形式如问题2).问题2:给定正奇数n ,设11,,n x x +⋯满足1(1,2,)i i x x i n +≠=,111n n i i i i x x +===∏∏,则111||2ni i i i i x x x x +=++≥-∑恒成立.证明:注意到若10i i x x +⋅≥同号,即有111i i i i x x x x +++≥-,因为n 为正奇数,则必定存在一组0010i i x x +⋅≥同号,否则若1,i i x x +均异号,则111,nni i i i x x +==∏∏的符号必定相异.若还存在其他组10i i x x +≥,则可得111||2ni i i i i x x x x +=++≥-∑成立,若无其他组10,i i x x +≥同号,不妨10n n x x +≥,可设10,0n n x x +>>,(若等于0的可以进行小范围微调,只要不影响绝对值内数值的符号即可).因为无其他组10,i i x x +≥同号,故122221221110,0,,0,0,0,0,,0,0,0k k k k n n n x x x x x x x x x --+-+><<>><<>> ,此时11,n x x +同号.记1i i i x d x +=,则11ni i d ==∏且对1i n ≤≤,11111.1i i i ii i i i i i x x d x x x x x x d ++++--+==-++设1121|1|1(,,,)11n i n n i i nd d f d d d d d -=-+=++-∑ ,下面将在11n i i d ==∏条件下进行调整.①若存在1,1k d k n >≤-.令()1,,,,n n k n i k i d d d d d d d i k n '==>='≠'则()()()()()'''1212211,,,,,,0.111n k k n n k n n k d d d f d d d f d d d d d d d --⋯-⋯=+>+--②若存在,1,1k l d d k l n <<≤-.令()'''1,,,,k l k l i i d d d d d d i k l ===≠则()()1212111,,,,,,111k l k l n n k l k l d d d d f d d d f d d d d d d d '''---⋯-⋯=+-+++()()()()()()1110111k l k l k l k l d d d d d d d d ---=>+++由上述讨论知,经过有限次调整可得:对1i n ≤-,除至多一个1i d ≠(设为)1d 外,其余1i d =.因此就有11n d d =,不妨设1n d >,则101d <<,故1121|1|1(,,,)11n i n n i i n d d f d d d d d -=-+⋯=++-∑111111n n n nd d d d -+≥+-+1111n n n n d d d d -+=++-2≥,原不等式得证.至此我们完成了问题2在奇数情况下的解答,即所求()max 2n λλ==.综上,当n 为偶数时,1||ni i a =∑的最小值为0;当n 为奇数时,1||ni i a =∑的最小值为2.30.(2021·浙江·高二竞赛)设x ,y ,0z >1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.【详解】等价于已知x ,y ,0z >,1x y z ++=,证:()8445221x y z x y z +≥+∑,由三元均值不等式有()844522x y z x y z +≥+∑由柯西不等式有()84444622()x y z x y xyz yx ∏+⎛⎫=≥∏+ ⎪⎝⎭,所以有()()8446653()()xy z x y xyz xyz ++≥∏∏,则可知()844522x y z x y z +≥+∑由柯西不等式有()()()866444444322()893xyx y x xyxyz xxy ++≥≥≥+∏∏∑∑∑∏,则有()844522x y z x y z+≥+∑1x y z =++≥13≥,所以()8445221x y z x y z +≥+∑,所以原不等式成立.。
不等式的证明一 能用单调性证明的不等式 二 利用最值证明三 利用中值定理(拉格朗日、柯西、泰勒公式)证明 四 利用凹凸性证明一 能用单调性证明的不等式(1)对不等式()()f x g x ≥,x I ∈,构造函数()()()F x f x g x =-若()F x 的导数()F x '在I 上的符号,若()F x '恒正(或恒负),则可以考虑用单调性证明.(若导数符号不一致,则可能考虑最值方法证明了)(2)若不等式含有两个参数,并且能分离两个参数分别在不等式两边,且结构一样,那么可以用单调性证明(也可用拉格朗日定理证明)。
例(1) 含一个参数的例 1 (1) 设0x <<+∞,证明不等式()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。
(2)证明:当0x >时,()()221ln 1x x x -≥- (1)证明 注意到当1x ≤<+∞时101x<≤,故只需要当证明01x <≤时成立即可 令函数()11ln 1ln(1)ln 4f x x x x x⎛⎫=+++- ⎪⎝⎭,其中01x <≤,则()()21111ln 1ln(1)11f x x x x xx x ⎛⎫'=+--++⎪++⎝⎭,且()10f '= 另外()322(21)ln(1)(1)x x f x x x x ⎡⎤+''=+-⎢⎥+⎣⎦令()2(21)ln(1)(1)x x g x x x +=+-+,其中01x <≤,则()3(1)0(1)x x g x x -'=<+ 故在01x <≤有()()00g x g <=,从而在01x <≤有()0f x ''<,这表明()f x '在01x <≤严格单调减,故在01x <<时()()10f x f ''>=这说明()f x 在01x <≤严格单调增,即()11114xx x x ⎛⎫++≤ ⎪⎝⎭,且等号仅在1x =处成立。
高 中 数 学 竞 赛 不等式 有答案1.不等式的概念与性质 【一】知识要点1.理解不等式的概念,掌握不等式的性质,能运用性质正确、迅速地对不等式进行转换。
2.在利用不等式的性质时,应特别注意条件的限制。
【二】解题指导 例1: 若610≤≤a ,122a b a ≤≤,c a b =-,求c 的取值范围。
例2:设c d R ,∈+,且c d a +≤,c d b +≤,证明:ca db ab +≤例3:已知函数f x ax c ()=-2满足-≤≤-411f (),-≤≤125f () 求证:-≤≤1320f ()【三】巩固练习 一、选择题1、下列四个命题:(1)若ax b >,则x b a>;(2)若a x a y 22>,则x y >;(3)若()()a x a y 2211+>+,则x y >; (4)若xa y a 22>,则x y >。
其中正确的命题的个数是(A )1个 (B )2个 (C )3个 (D )4个2、若a b ,是任意实数,且a b >,则(A )a b 22> (B )b a>1 (C )lg()a b ->0 (D )b a )21()21(< 3、若a b >+1,下列各式中正确的是 (A )a b 22> (B )ab>1 (C )lg()a b ->0 (D )lg lg a b > 4、已知a b <-<<010,,则下列不等式成立的是(A )a ab ab >>2 (B )ab ab a 2>> (C )ab a ab >>2 (D )ab ab a >>2 5、若x y z ,,均为大于-1的负数,则一定有 (A )x y z 2220--< (B )xyz >-1(C )x y z ++<-3 (D )()xyz 21> 6、当a b c >>时,下列不等式成立的是(A )ab ac > (B )a c b c ||||> (C )||||ab bc > (D )()||a b c b -->0 二、填空题1、已知a b c R ,,∈,且a c b <<,则c ab 2+ ()a b c +(用不等号连结)。
不等式的证明考纲要求通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知识梳理1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算数平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈(0,+∞),那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.不等式的证明(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b .②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b . (2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法.1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等.3.几个重要不等式(1)b a +a b ≥2(a ,b 同号);(2)a 2+b 2+c 2≥ab +bc +ca . 诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )答案 (1)× (2)√ (3)× (4)×解析 (1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.2.若a >b >1,x =a +1a ,y =b +1b,则x 与y 的大小关系是( ) A .x >yB .x <yC .x ≥yD .x ≤y答案 A解析 x -y =a +1a -⎝⎛⎭⎫b +1b =a -b +b -a ab =a -b ab -1ab.由a >b >1得ab >1,a -b >0,所以a -bab -1ab >0,即x -y >0,所以x >y . 3.已知a ≥b >0,M =2a 3-b 3,N =2ab 2-a 2b ,则M ,N 的大小关系为________. 答案 M ≥N解析 M -N =2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,故2a 3-b 3≥2ab 2-a 2b ,即M ≥N .4.已知a +b +c >0,ab +bc +ac >0,abc >0,用反证法求证a >0,b >0,c >0时的假设为( )A .a <0,b <0,c <0B .a ≤0,b >0,c >0C .a ,b ,c 不全是正数D .abc <0答案 C5.(2021·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A .1B .2C .3D .4答案 C解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号, 所以⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥2,③正确;由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.6.(2021·西安调研)已知a >0,b >0且ln(a +b )=0,则1a +1b的最小值是________. 答案 4解析 由ln(a +b )=0,得a +b =1.又a >0,b >0,∴1a +1b =a +b a +a +b b =2+b a +a b≥2+2b a ·a b =4.当且仅当a =b =12时,等号成立.故1a +1b的最小值为4.考点一 比较法证明不等式【例1】 设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由.(1)证明 设f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧ 3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12. 因此集合M =⎝⎛⎭⎫-12,12,则|a |<12,|b |<12. 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)解 由(1)得a 2<14,b 2<14. 因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2)=16a 2b 2-4a 2-4b 2+1=(4a 2-1)(4b 2-1)>0,所以|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.感悟升华 比较法证明不等式的方法与步骤(1)作差比较法:作差、变形、判号、下结论.(2)作商比较法:作商、变形、 判断、下结论.提醒 ①当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法. ②当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】 设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是________.答案 s ≥t解析 s -t =a +b 2+1-(a +2b )=b 2-2b +1=(b -1)2≥0,∴s ≥t .考点二 综合法证明不等式【例2】 (2020·全国Ⅲ卷)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }≥34. 证明 (1)由题设可知,a ,b ,c 均不为零,所以ab +bc +ca =12[(a +b +c )2-(a 2+b 2+c 2)]= -12(a 2+b 2+c 2)<0. (2)不妨设max{a ,b ,c }=a .因为abc =1,a =-(b +c ),所以a >0,b <0,c <0.由bc ≤b +c 24,可得abc ≤a 34,当且仅当b =c =-a 2时取等号, 故a ≥34,所以max{a ,b ,c }≥34.感悟升华 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】 已知a ,b ,c 为正数,且满足abc =1.证明:(1)1a +1b +1c≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明 (1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c . 当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2. (2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33a +b 3b +c 3c +a3=3(a +b )(b +c )(c +a ) ≥3×(2ab )×(2bc )×(2ca )=24. 当且仅当a =b =c =1时,等号成立,所以(a +b )3+(b +c )3+(c +a )3≥24.考点三 分析法证明不等式【例3】 (2021·哈尔滨一模)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3;(2)a bc +b ac +c ab≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3, 即证a 2+b 2+c 2+2(ab +bc +ca )≥3,又ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .又易知ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立), ∴原不等式成立.(2)a bc +b ac +c ab =a +b +c abc. 由于(1)中已证a +b +c ≥3,因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .又a bc =ab ·ac ≤ab +ac 2,b ac ≤ab +bc 2,c ab ≤bc +ca 2, ∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时等号成立). ∴原不等式成立.感悟升华 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件 【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 要证b 2-ac <3a ,只需证b 2-ac <3a 2.因为a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.因为a >b >c ,所以a -b >0,a -c >0,所以(a -b )(a -c )>0显然成立,故原不等式成立.1.(2021·江西协作体联考)(1)已知x ,y 是实数,求证:x 2+y 2≥2x +2y -2;(2)用分析法证明:6+7>22+ 5.证明 (1)(x 2+y 2)-(2x +2y -2)=(x 2-2x +1)+(y 2-2y +1)=(x -1)2+(y -1)2,而(x -1)2≥0,(y -1)2≥0,∴(x 2+y 2)-(2x +2y -2)≥0,∴x 2+y 2≥2x +2y -2.(2)要证6+7>22+5,只需证(6+7)2>(22+5)2成立,即证13+242>13+240成立, 即证42>40成立,即证42>40成立,因为42>40显然成立,所以原不等式成立.2.(2020·兰州诊断)函数f (x )=x 2-2x +1+24-4x +x 2.(1)求f (x )的值域;(2)若关于x 的不等式f (x )-m <0有解,求证:3m +2m -1>7. 解 f (x )=x 2-2x +1+24-4x +x 2=|x -1|+2|x -2|.(1)当x ≥2时,f (x )=3x -5≥1;当1<x <2时,f (x )=3-x,1<f (x )<2;当x ≤1时,f (x )=5-3x ≥2.综上可得,函数的值域为[1,+∞).(2)证明 若关于x 的不等式f (x )-m <0有解,则f (x )<m 有解,故只需m >f (x )min ,即m >1,∴3m +2m -1=3(m -1)+2m -1+3≥26+3>7,原式得证. 3.(2021·沈阳五校协作体联考)已知a ,b ,c ,d 均为正实数.(1)求证:(a 2+b 2)(c 2+d 2)≥(ac +bd )2;(2)若a +b =1,求证:a 21+a +b 21+b ≥13. 证明 (1)(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2≥a 2c 2+2abcd +b 2d 2=(ac +bd )2. 当且仅当ad =bc 时取等号.(2)3⎝⎛⎭⎫a 21+a +b 21+b =⎝⎛⎭⎫a 21+a +b 21+b (1+a +1+b )=a 2+1+b 1+a ·a 2+1+a 1+b·b 2+b 2≥a 2+2ab +b 2=(a +b )2=1,当且仅当a =b =12时取等号, 所以a 21+a +b 21+b ≥13. 4.(2021·西安质检)已知a >0,b >0,c >0,且a +b +c =1.(1)求证:a 2+b 2+c 2≥13; (2)求证:a 2b +b 2c +c 2a≥1. 证明 (1)∵a 2+b 2≥2ab (当且仅当a =b 时,取“=”),b 2+c 2≥2bc (当且仅当b =c 时,取“=”),c 2+a 2≥2ca (当且仅当a =c 时,取“=”),∴a 2+b 2+c 2≥ab +bc +ca ,∵(a +b +c )2=1,∴a 2+b 2+c 2+2ab +2bc +2ca =1,∴3(a 2+b 2+c 2)≥1,即a 2+b 2+c 2≥13. (2)∵a 2b +b ≥2a (当且仅当a =b 时,取“=”),b 2c +c ≥2b (当且仅当b =c 时,取“=”),c 2a +a ≥2c (当且仅当a =c 时,取“=”),∴a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c , ∵a +b +c =1,∴a 2b +b 2c +c 2a≥1.5.(2021·开封一模)已知a ,b ,c 为一个三角形的三边长.证明: (1)b a +c b +a c ≥3; (2)a +b +c2a +b +c >2.证明 (1)因为a ,b ,c 为一个三角形的三边长,所以b a +c b +a c ≥33b a ·c b ·a c=3⎝⎛⎭⎫当且仅当b a =c b =a c 时,取等号,所以不等式得证. (2)由于a ,b ,c 为一个三角形的三边长,则有(b +c )2=b +c +2bc >a ,即b +c >a ,所以ab +ac =a (b +c )>a ,同理,ab +bc >b ,ac +bc >c ,三式相加得2ac +2bc +2ab >a +b +c ,左右两边同加a +b +c 得(a +b +c )2>2(a +b +c ), 所以a +b +c2a +b +c >2,不等式得证.6.(2020·贵阳诊断) ∀a ∈R ,|a +1|+|a -1|的最小值为M .(1)若三个正数x ,y ,z 满足x +y +z =M ,证明:x 2y +y 2z +z 2x≥2; (2)若三个正数x ,y ,z 满足x +y +z =M ,且(x -2)2+(y -1)2+(z +m )2≥13恒成立,求实数m 的取值范围.(1)证明 由∀a ∈R ,|a +1|+|a -1|≥|a +1-a +1|=2,当且仅当-1≤a ≤1时取等号,得x +y +z =2,即M =2.又x ,y ,z >0,所以x 2y +y ≥2x 2y·y =2x , 同理可得y 2z +z ≥2y ,z 2x+x ≥2z , 三式相加可得,x 2y +y 2z +z 2x≥x +y +z =2,当且仅当x =y =z =23时,取等号, 所以x 2y +y 2z +z 2x≥2. (2)解 (x -2)2+(y -1)2+(z +m )2≥13恒成立,等价于13≤[(x -2)2+(y -1)2+(z +m )2]min , 由(12+12+12)[(x -2)2+(y -1)2+(z +m )2]≥(x -2+y -1+z +m )2=(m -1)2, 当且仅当x -2=y -1=z +m 时取等号,可得13≤13(m -1)2, 即|m -1|≥1,解得m ≥2或m ≤0,即m 的取值范围是(-∞,0]∪[2,+∞).。
高中数学-不等式的证明精选练习(详解)1.设a ,b ,c ∈R +,且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a ≥2.证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2.2.若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.3.设a ,b ,c ,d 均为正数,且a +b =c +d ,求证:(1)若ab >cd ,则a +b >c +d ; (2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd ,得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1),得a +b >c +d . ②充分性:若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |. 综上,a +b >c +d 是|a -b |<|c -d |的充要条件.4.已知定义在R 上的函数f (x )=|x +1|+|x -2|的最小值为a .(1)求a 的值;(2)若p ,q ,r 是正实数,且满足p +q +r =a ,求证:p 2+q 2+r 2≥3.解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎪⎨⎪⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数, ∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m =(m -1)2m≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎡⎦⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。
高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。
A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。
B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。
C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。
D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。
§14不等式的证明
课后练习
1.选择题
(1)方程x2-y2=105的正整数解有( ).
(A)一组(B)二组(C)三组(D)四组
(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有(). (A)3个(B)4个(C)5个(D)6个
2.填空题
(1)的个位数分别为_________及_________.
(2)满足不等式104≢A≢105的整数A的个数是x×104+1,则x的值
________.
(3)已知整数y被7除余数为5,那么y3被7除时余数为________.
(4)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.
3.求三个正整数x、y、z满足
.
4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?
5.求的整数解.
6.求证可被37整除.
7.求满足条件的整数x,y的所有可能的值.
8.已知直角三角形的两直角边长分别为l 厘米、m 厘米,斜边长为n 厘米,且l ,m ,n 均为正整数,l 为质数.证明:2(l+m+n )是完全平方数.
9.如果p 、q 、、都是整数,并且p >1,q >1,试求p+q 的值. 课后练习答案
1.D.C.
2.(1)9及1.
(2)9.
(3)4.
(4)原方程可变形为x 2=(7y+1)2
+2y(y-7),令y=7可得x=50. 3.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z 无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z 都不能是整数.
4.可仿例2解.
5. 分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.
略解:ca a c bc c b ab b a 2,2,22
23222≥+≥+≥+同理;三式相加再除以2即得证.
评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧. 如n n x x x x x x x x x +++≥+++ 2112322221,可在不等式两边同时加上.132x x x x n ++++
再如证)0,,(256)())(1)(1(3
2233>≥++++c b a c b a c b c a b a 时,可连续使用基本不等式.
(2)基本不等式有各种变式 如2
)2(2
22b a b a +≤+等.但其本质特征不等式两边的次
数及系数是相等的.如上式左右两边次数均为2,系数和为1.
6.8888≡8(mod37),∴88882222≡82(mod37).
7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而
82+73=407,37|407,∴37|N.
7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).
8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.
9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.。