初中数学常用考点1
- 格式:doc
- 大小:52.00 KB
- 文档页数:5
考点1、等腰三角形与直角三角形知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩︒︒3045等腰三角形的判定及性质等边三角形的判定及性质直角三角形的判定及性质全等三角形的判定和性质等腰三角形的性质等腰三角形的判定等边三角形的性质与判定等腰三角形的分类讨论(边、角、高)直角三角形的性质与判定应用直角三角形全等的判定直角三角形中的特殊角()的应用三角形中的动态问题基础知识点重难点题型, 基础知识点知识点1.1等腰三角形的判定及性质1)等腰三角形的有关概念有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
2)等腰三角形的性质①等腰三角形的两个底角相等。
(简写成“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)3)等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简写成“等角对等边”)等腰三角形是以底边的垂直平分线为对称轴的轴对称图形1.(2020·宁波市海曙区储能学校初二期末)若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒2.(2020·哈尔滨市第三十九中学初二月考)在ABC 中,AD 是BAC ∠的平分线,且AB AC CD =+,若81BAC ∠=︒,则ABC ∠的大小为______.第2题 第3题3.(2020·内蒙古凉城·初二期末)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .4.(2020·湖南永定·期中)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE ,点D ,E 可在槽中滑动,若∠BDE=78°,则∠AOB 等于__________度.5.(2020·河北初三其他)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一点,以AD 为一边作等腰三角形,且AD AE =,连接DE ,BAC DAE ∠=∠,2CD =,3BC =.(1)如图1,当点D 在线段BC 上时,线段CE 的长为______________.(2)如图2,当点D 在BC 延长线上时,若140∠=︒,则2∠=__________.6.(2020·广东揭阳·初一期末)如图,ABC 中,AB AC =,D 是BC 中点,下列结论中不正确的是( ). A .B C ∠=∠ B .AD BC ⊥C .AD 平分BAC ∠ D .2AB BD =7.(2020·江阴市长寿中学初二月考)如图,△ABC中,AB=8,AC=6,∠ABC和∠ACB的平分线交于点O,过O点作MN∥BC,分别交AB、AC于M、N点,则△AMN的周长为___________.知识点1.2等边三角形的判定及性质1)等边三角形的有关概念等腰三角形中,有一种特殊的等腰三角形:三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾最短的边、股较长的直角边、弦斜边。
勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
中考数学考点总结归纳初三中考数学知识点总结1.同角或等角的余角相等。
2.过一点有且只有一条直线和已知直线垂直。
3.过两点有且只有一条直线。
4.两点之间线段最短。
5.同角或等角的补角相等。
6.边角边公理:有两边和它们的夹角对应相等的两个三角形全等。
7.角边角公理:有两角和它们的夹边对应相等的两个三角形全等。
8.推论:有两角和其中一角的对边对应相等的两个三角形全等。
9.边边边公理:有三边对应相等的两个三角形全等。
10.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。
11.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
12.直角三角形斜边上的中线等于斜边上的一半。
13.定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
14.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
15.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。
16.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形。
中考数学怎么快速提分中考数学复习课牵扯到一个系统化、完善化的关键环节,这个环节既关系到学生巩固、消化、归纳数学基础知识,提炼分析、解决问题的能力,又关系到学生对所学知识的实际运用,更是对学习基础较差的学生起到查漏补缺的作用。
中考数学复习课的教学一般具有“基础+提高+综合”的特点,不仅要完成教学任务,更要看重“教学有效性”。
因此,初三复习一般都要经历这么三轮复习:在中考复习阶段很多学生在初一、初二时期的单元考等中成绩都是比较优秀,但在初三综合模拟考中往往成绩却不佳。
究其原因一个是因为初一初二单元考等的范围小、内容少,而模拟考或中考试卷考查的范围大、知识面广、易混淆的知识点更多。
中考数学复习,时间紧迫,更需要我们看重教学有效性,如进行系统的复习,打好每一位学生的基础,使每个学生对初中数学知识尽量达到“理解”和“掌握”的要求;在熟练应用基础知识的同时进行提高、拓展和综合。
初中数学 10 大必考知识点整理一、数与运算( 10 个考点)考点1:数的整除性以及有关概念(本考点含整数和整除、分解素因数)考核要求:(1)知道数的整除性、奇数和偶数、质数和合数、倍数和因数、公倍数和公因数等的意义;( 2)知道能被 2 或 3、5、9 整除的正整数的特征;(3)会分解素因数;( 4)会求两个正整数的最小公倍数和最大公因数 .详尽问题讨论涉及的正整数大凡不大于 100.样题汇编:(正在建设中,期望大家能够有意识地建设自己的考试命题数据库)考点 2:分数的有关概念、基本性质和运算考核要求:( 1)掌握分数与小数的互化,初步体会转化思想;( 2)掌握异分母分数的加减运算以及分数的乘除运算 .考点 3:比、比例和百分比的有关概念及比例的性质考核要求:( 1)理解比、比例、百分比的有关概念;(2)比例的基本性质.对合分比定理、等比定理不作教学要求 . 考点 4:有关比、比例、百分比的简单问题考核要求:(1)考查比、比例的实际应用,结合实际掌握求合格率、出勤率、及格率、盈利率、利率的方法;(2)会解决有关比、比例、百分比的简单问题,了解百分比在经济、生活中的一些基本常识及简单应用 .考点 5:有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示考核要求:( 1)理解相反数、倒数、绝对值等概念;( 2)会用数轴上的点表示有理数 .注意:( 1)去掉绝对值符号后的正负号的确定,(2)0 没有倒数 .考点 6:平方根、立方根、次方根的概念考核要求: (1)理解平方根、立方根、次方根的概念;( 2)理解开方与方根的意义,注意平方根和算术平方根的联系和区别 .考点 7:实数的概念考核要求:理解实数的有关概念 .注意:判断无理数不看形式,要看实质 .考点8:数轴上的点与实数的一一对应考核要求:掌握实数与数轴上的点的一一对应关系 .解题关键是判断实数的大小 .考点 9:实数的运算考核要求:( 1)掌握实数的加、减、乘、除、乘方、开方等运算的法则、性质(交换律、结合律、分配律、互逆性、数 0 和数 1 的特征)、运算顺序,明确有关运算性质的推广和运用;( 2)会用计算器进行实数的运算 .注意:( 1)利用运算定律,力求简易计算和巧算,( 2)运算要稳中求快,准确无误 .考点 10:科学记数法考核要求:( 1)理解科学记数法的意义;( 2)会用科学记数法表示较大的数 .2第二部分方程与代数(27 个考点)考点 11:代数式的有关概念考核要求:(1)掌握代数式的概念,会判别代数式与方程、不等式的区别;( 2)知道代数式的分类及各组成部分的概念,如整式、单项式、多项式;(3)知道代数式的书写格式 .注意单项式与多项式次数的区别 .考点 12:列代数式和求代数式的值考核要求:(1)会用代数式表示多见的数量,会用代数式表示含有字母的简单应用题的结果;(2)通过列代数式,掌握文字语言与数学式子表述之间的转换;( 3)在求代数式的值的过程中,进行有理数的运算 .考点 13:整式的加、减、乘、除及乘方的运算法则考核要求:( 1)掌握整式的加、减、乘、除及乘方的运算法则;(2)会用同底数幂的运算性质进行单项式的乘、除、乘方及简单混合运算;(3)会求多项式乘以或除以单项式的积或商;(4)会求两个或三个多项式的积 .注意:要灵敏理解同类项的概念 .考点 14:乘法公式(平方差、两数和、差的平方公式)及其简单运用考核要求:( 1)掌握平方差、两数和(差)的平方公式;( 2)会用乘法公式简化多项式的乘法运算;( 3)能够运用整体思想将一些比较复杂的多项式运算转化为乘法公式的形式 .考点 15:因式分解的意义考核要求:( 1)知道因式分解的意义和它与整式乘法的区别;( 2)会鉴别一个式子的变形过程是因式分解还是整式乘法 .考点 16:因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为 1 的十字相乘法)考核要求:掌握提取公因式法、分组分解法和二次项系数为 1 时的十字相乘法等因式分解的基本方法.考点 17:分式的有关概念及其基本性质考核要求:( 1)会求分式有无意义或分式为 0 的条件;( 2)理解分式的有关概念及其基本性质;( 3)能烂熟地进行通分、约分 .考点 18:分式的加、减、乘、除运算法则考核要求:( 1)掌握分式的运算法则;( 2)能烂熟进行分式的运算、分式的化简 .考点 19:正整数指数幂、零指数幂、负整数指数幂、分数指数幂的概念考核要求:( 1)理解正整数指数、零指数、负整数指数的幂的概念;(2)知道分数指数幂的意义;(3)能够运用零指数的条件进行式子取值范围的讨论 .考点20:整数指数幂,分数指数幂的运算考核要求:( 1)掌握幂的运算法则;( 2)会用整数指数幂及负整数指数幂进行运算;( 3)掌握负整数指数式与分式的互化;( 4)知道分数指数式与根式的互化。
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o 。
第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初中数学一二三级考点初中数学一二三级考点是初中数学学习中最关键的知识点。
在初中数学考试中,考生需要掌握这些重要的考点,才能以优异的成绩通过考试。
下面,我们来一步步详细阐述初中数学一二三级考点。
一级考点:初中一年级的数学学习,主要考点为整数、分数和小学四则运算的加、减、乘、除。
其中,整数加减法运算需要掌握正数、负数的概念,熟练掌握加减法法则,准确进行计算。
对于分数的加减乘除,需要学生熟练掌握带分数的加减法,以及带分数的乘除法,能够灵活运用,准确计算问题。
二级考点:初中二年级数学学习的重点是几何、代数和实数。
在几何方面,学生需要掌握三角形、四边形等基本图形的性质及相关应用,学会运用勾股定理,计算直角三角形的各种角度和边长。
在代数方面,学生需要掌握一元一次方程和不等式的基本概念及相关应用,掌握解方程和解不等式的基本方法。
在实数方面,学生需要掌握正数、负数、零等概念,了解有理数、无理数的特点和规律,掌握实数的大小比较,掌握实数的运算法则。
三级考点:初中三年级数学学习的重点为几何(空间)、函数、统计与概率。
在几何方面,学生需要掌握各种三角形、四面体、平行四边形等各种图形的性质和相关应用,掌握空间直线与平面的相交关系及相关定理。
在函数方面,学生需要掌握函数概念及相关的性质和应用,掌握函数图像的绘制和函数性质判断方法。
在统计和概率方面,学生需要掌握数据分析基本方法和图表分析方法,并探讨相关统计和概率问题。
总结起来,初中数学一二三级考点是初中数学学习的重点,这些知识点对于学生的数学成绩影响非常大。
学生需要在数学学习中注重理解,逐步深入探究,多参加数学讲座和数学竞赛等活动,切实提高自己的数学素养。
同时,学生需要注重巩固数学基础知识,持之以恒,才能在考试中取得优异的成绩。
第一章 实数考点一.实数的概念及分类 (3分)1.实数的分类正有理数有理数 零 有限小数和无穷轮回小数 实数 负有理数 正无理数无理数 无穷不轮回小数 负无理数 2.无理数在懂得无理数时,要抓住“无穷不轮回”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;…等;(4)某些三角函数,如sin60o等考点二.实数的倒数.相反数和绝对值 (3分)1.相反数实数与它的相反数时一对数(只有符号不合的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a 与b 互为相反数,则有a+b=0,a=—b,反之亦成立.2.绝对值一个数的绝对值就是暗示这个数的点与原点的距离,|a|≥0.零的绝对值时它本身,也可算作它的相反数,若|a|=a,则a ≥0;若|a|=-a,则a ≤0.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.3.倒数假如a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.零没有倒数.考点三.平方根.算数平方根和立方根 (3—10分)1.平方根假如一个数的平方等于a,那么这个数就叫做a 的平方根(或二次方跟). 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根记做“a ±”. 2.算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”. 正数和零的算术平方根都只有一个,零的算术平方根是零.a (a ≥0) 0≥a ==a a 2 ;留意a 的双重非负性:-a (a <0) a ≥03.立方根假如一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根).一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零. 留意:33a a -=-,这解释三次根号内的负号可以移到根号外面. 考点四.科学记数法和近似数 (3—6分)1.有用数字一个近似数四舍五入到哪一位,就说它准确到哪一位,这时,从左边第一个不是零的数字起到右边准确的数位止的所稀有字,都叫做这个数的有用数字.2.科学记数法把一个数写做na 10⨯±的情势,个中101<≤a ,n 是整数,这种记数法叫做科学记数法.考点五.实数大小的比较 (3分)1.数轴划定了原点.正偏向和单位长度的直线叫做数轴(画数轴时,要留意上述划定的三要素缺一不成).解题时要真正控制数形联合的思惟,懂得实数与数轴的点是一一对应的,并能灵巧应用.2.实数大小比较的几种经常应用办法(1)数轴比较:在数轴上暗示的两个数,右边的数总比左边的数大. (2)求差比较:设a.b 是实数,(3)求商比较法:设 a.b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(4)绝对值比较法:设a.b 是两负实数,则b a b a <⇔>.(5)平办法:设a.b 是两负实数,则b a b a <⇔>22. 考点六.实数的运算 (做题的基本,分值相当大)1.加法交流律 a b b a +=+2.加法联合律 )()(c b a c b a ++=++3.乘法交流律 ba ab =4.乘法联合律 )()(bc a c ab =5.乘法对加法的分派律 ac ab c b a +=+)(6.实数的运算次序先算乘方,再算乘除,最后算加减,假如有括号,就先算括号里面的.第二章 代数式考点一.整式的有关概念 (3分) 1.代数式用运算符号把数或暗示数的字母衔接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.2.单项式只含稀有字与字母的积的代数式叫做单项式.留意:单项式是由系数.字母.字母的指数构成的,个中系数不克不及用带分数暗示,如b a 2314-,这种暗示就是错误的,应写成ba 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如c b a 235-是6次单项式. 考点二.多项式 (11分) 1.多项式几个单项式的和叫做多项式.个中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式中次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,盘算出成果,叫做代数式的值.留意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,须要应用技能,“整体”代入.2.同类项所有字母雷同,并且雷同字母的指数也分离雷同的项叫做同类项.几个常数项也是同类项.3.去括号轨则(1)括号前是“+”,把括号和它前面的“+”号一路去失落,括号里各项都不变号.(2)括号前是“﹣”,把括号和它前面的“﹣”号一路去失落,括号里各项都变号.4.整式的运算轨则整式的加减法:(1)去括号;(2)归并同类项.整式的乘法:),(都是正整数n m a a a n m n m +=• 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 留意:(1)单项式乘单项式的成果仍然是单项式.(2)单项式与多项式相乘,成果是一个多项式,其项数与因式中多项式的项数雷同.(3)盘算时要留意符号问题,多项式的每一项都包含它前面的符号,同时还要留意单项式的符号.(4)多项式与多项式相乘的睁开式中,有同类项的要归并同类项. (5)公式中的字母可以暗示数,也可以暗示单项式或多项式. (6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不克不及这么盘算的. 考点三.因式分化 (11分)1.因式分化把一个多项式化成几个整式的积的情势,叫做把这个多项式因式分化,也叫做把这个多项式分化因式.2.因式分化的经常应用办法(1)提公因式法:)(c b a ac ab +=+(2)应用公式法:))((22b a b a b a -+=- (3)分组分化法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3.因式分化的一般步调:(1)假如多项式的各项有公因式,那么先提取公因式.(2)在各项提出公因式今后或各项没有公因式的情形下,不雅察多项式的项数:2项式可以测验测验应用公式法分化因式;3项式可以测验测验应用公式法.十字相乘法分化因式;4项式及4项式以上的可以测验测验分组分化法分化因式(3)分化因式必须分化到每一个因式都不克不及再分化为止. 考点四.分式 (8~10分)1.分式的概念一般地,用A.B 暗示两个整式,A ÷B就可以暗示成B A的情势,假如B 中含有字母,式子B A就叫做分式.个中,A叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.2.分式的性质(1)分式的基赋性质:分式的分子和分母都乘以(或除以)统一个不等于零的整式,分式的值不变.(2)分式的变号轨则:分式的分子.分母与分式本身的符号,转变个中任何两个,分式的值不变. 3.分式的运算轨则考点五.二次根式 (初中数学基本,分值很大)1.二次根式式子)0(≥a a 叫做二次根式,二次根式必须知足:含有二次根号“”;被开方数a 必须长短负数.2.最简二次根式若二次根式知足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,如许的二次根式叫做最简二次根式.化二次根式为最简二次根式的办法和步调:(1)假如被开方数是分数(包含小数)或分式,先应用商的算数平方根的性质把它写成分式的情势,然后应用分母有理化进行化简.(2)假如被开方数是整数或整式,先将他们分化因数或因式,然后把能开得尽方的因数或因式开出来.3.同类二次根式几个二次根式化成最简二次根式今后,假如被开方数雷同,这几个二次根式叫做同类二次根式.4.二次根式的性质(1))0()(2≥=a a a (2)==a a 2(3))0,0(≥≥•=b a b a ab(4))0,0(≥≥=b a b ab a5.二次根式混杂运算二次根式的混杂运算与实数中的运算次序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).第三章 方程(组)考点一.一元一次方程的概念 (6分)1.方程含有未知数的等式叫做方程. 2.方程的解能使方程双方相等的未知数的值叫做方程的解. 3.等式的性质(1)等式的双方都加上(或减去)统一个数或统一个整式,所得成果仍是等式.(2)等式的双方都乘以(或除以)统一个数(除数不克不及是零),所得成果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,个中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的尺度情势,a 是未知数x 的系数,b 是常数项.考点二.一元二次方程 (6分)1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般情势 )0(02≠=++a c bx ax ,它的特点是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,个中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.考点三.一元二次方程的解法 (10分)1.直接开平办法应用平方根的界说直接开平方求一元二次方程的解的办法叫做直接开平办法.直接开平办法实用于解形如b a x =+2)(的一元二次方程.依据平方根的界说可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.2.配办法配办法是一种重要的数学办法,它不但在解一元二次方程上有所应用,并且在数学的其他范畴也有着普遍的应用.配办法的理论依据是完整平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x,并用x 代替,则有222)(2b x b bx x ±=+±.3.公式法公式法是用求根公式解一元二次方程的解的办法,它是解一元二次方程的一般办法.一元二次方程)0(02≠=++a c bx ax 的求根公式:4.因式分化法因式分化法就是应用因式分化的手腕,求出方程的解的办法,这种办法简略易行,是解一元二次方程最经常应用的办法.考点四.一元二次方程根的判别式 (3分)根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通经常应用“∆”来暗示,即ac b 42-=∆考点五.一元二次方程根与系数的关系 (3分)假如方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.考点六.分式方程 (8分)1.分式方程分母里含有未知数的方程叫做分式方程. 2.分式方程的一般办法解分式方程的思惟是将“分式方程”转化为“整式方程”.它的一般解法是:(1)去分母,方程双方都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应当舍去;若不等于零,就是原方程的根.3.分式方程的特别解法 换元法:换元法是中学数学中的一个重要的数学思惟,其应用异常普遍,当分式方程具有某种特别情势,一般的去分母不轻易解决时,可斟酌用换元法. 考点七.二元一次方程组 (8~10分)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般情势是(2.二元一次方程的解使二元一次方程阁下双方的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一路,就构成了一个二元一次方程组.4二元一次方程组的解使二元一次方程组的两个方程阁下双方的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次朴直组的解法(1)代入法(2)加减法6.三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程.7.三元一次方程组由三个(或三个以上)一次方程构成,并且含有三个未知数的方程组,叫做三元一次方程组.第四章不等式(组)考点一.不等式的概念(3分)1.不等式用不等号暗示不等关系的式子,叫做不等式.2.不等式的解集对于一个含有未知数的不等式,任何一个合适这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的聚集叫做这个不等式的解的聚集,简称这个不等式的解集.求不等式的解集的进程,叫做解不等式.3.用数轴暗示不等式的办法考点二.不等式基赋性质(3~5分)1.不等式双方都加上(或减去)统一个数或统一个整式,不等号的偏向不变.2.不等式双方都乘以(或除以)统一个正数,不等号的偏向不变.3.不等式双方都乘以(或除以)统一个负数,不等号的偏向转变.测验题型:考点三.一元一次不等式(6~8分)1.一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的双方都是整式,如许的不等式叫做一元一次不等式.2.一元一次不等式的解法解一元一次不等式的一般步调:(1)去分母(2)去括号(3)移项(4)归并同类项(5)将x项的系数化为1考点四.一元一次不等式组(8分)1.一元一次不等式组的概念几个一元一次不等式合在一路,就构成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所构成的一元一次不等式组的解集.求不等式组的解集的进程,叫做解不等式组.当任何数x 都不克不及使不等式同时成立,我们就说这个不等式组无解或其解为空集.2.一元一次不等式组的解法(1)分离求出不等式组中各个不等式的解集(2)应用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.第五章 统计初步与概率初步考点一.平均数 (3分) 1.平均数的概念(1)平均数:一般地,假如有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”.(2)加权平均数:假如n 个数中,1x 消失1f 次,2x 消失2f 次,…,k x 消失kf 次(这里n f f f k =++ 21),那么,依据平均数的界说,这n 个数的平均数可以暗示为nf x f x f x x kk ++=2211,如许求得的平均数x 叫做加权平均数,个中kf f f ,,,21 叫做权.2.平均数的盘算办法 (1)界说法当所给数据,,,,21n x x x 比较疏散时,一般选用界说公式:)(121n x x x n x +++=(2)加权平均数法:当所给数据反复消失时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,个中n f f f k =++ 21.(3)新数据法:当所给数据都在某一常数a 的高低摇动时,一般选用简化公式:a x x +='. 个中,常数a 平日取接近这组数据平均数的较“整”的数,a x x -=11',ax x -=22',…,a x x n n -='.)'''(1'21n x x x nx +++=是新数据的平均数(平日把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据).考点二.统计学中的几个根本概念 (4分) 1.总体所有考核对象的全部叫做总体. 2.个别总体中每一个考核对象叫做个别. 3.样本从总体中所抽取的一部分个别叫做总体的一个样本. 4.样本容量样本中个别的数量叫做样本容量. 5.样本平均数样本中所有个别的平均数叫做样本平均数.6.总体平均数总体中所有个别的平均数叫做总体平均数,在统计中,通经常应用样本平均数估量总体平均数.考点三.众数.中位数 (3~5分) 1.众数在一组数据中,消失次数最多的数据叫做这组数据的众数. 2.中位数将一组数据按大小依次分列,把处在最中央地位的一个数据(或最中央两个数据的平均数)叫做这组数据的中位数. 考点四.方差 (3分) 1.方差的概念在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通经常应用“2s ”暗示,即2.方差的盘算(1)根本公式:(2)简化盘算公式(Ⅰ):也可写成2222212)][(1xx x x n s n -+++=此公式的记忆办法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化盘算公式(Ⅱ):当一组数据中的数据较大时,可以按照简化平均数的盘算办法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,2222212')]'''[(1x x x x n s n-+++=此公式的记忆办法是:方差等于新数据平方的平均数减去新数据平均数的平方.(4)新数据法:原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,依据方差的根本公式,求得,',,','21n x x x 的方差就等于原数据的方差.3.尺度差方差的算数平方根叫做这组数据的尺度差,用“s ”暗示,即 考点五.频率散布 (6分) 1.频率散布的意义在很多问题中,只知道平均数和方差还不敷,还须要知道样本中数据在各个小规模所占的比例的大小,这就须要研讨若何对一组数据进行整顿,以便得到它的频率散布.2.研讨频率散布的一般步调及有关概念(1)研讨样本的频率散布的一般步调是: ①盘算极差(最大值与最小值的差) ②决议组距与组数 ③决议分点④列频率散布表⑤画频率散布直方图(2)频率散布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率.考点六.肯定事宜和随机事宜 (3分) 1.肯定事宜必定产生的事宜:在必定的前提下反复进行实验时,在每次实验中必定会产生的事宜.不成能产生的事宜:有的事宜在每次实验中都不会产生,如许的事宜叫做不成能的事宜.2.随机事宜:在必定前提下,可能产生也可能不放声的事宜,称为随机事宜. 考点七.随机事宜产生的可能性 (3分)一般地,随机事宜产生的可能性是有大小的,不合的随机事宜产生的可能性的大小有可能不合.对随机事宜产生的可能性的大小,我们应用反复实验所获取必定的经验数据可以猜测它们产活力遇的大小.要评判一些游戏规矩对介入游戏者是否公正,就是看它们产生的可能性是否一样.所谓断定事宜可能性是否雷同,就是要看各事宜产生的可能性的大小是否一样,用数据来解释问题. 考点八.概率的意义与暗示办法 (5~6分) 1.概率的意义一般地,在大量反复实验中,假如事宜A 产生的频率mn会稳固在某个常数p 邻近,那么这个常数p 就叫做事宜A 的概率.2.事宜和概率的暗示办法一般地,事宜用英文大写字母A,B,C,…,暗示事宜A 的概率p,可记为P (A )=P考点九.肯定事宜和随机事宜的概率之间的关系 (3分) 1.肯定事宜概率(1)当A 是必定产生的事宜时,P (A )=1 (2)当A 是不成能产生的事宜时,P (A )=0 2.肯定事宜和随机事宜的概率之间的关系事宜产生的可能性越来越小0 1概率的值 不成能产生 必定产生事宜产生的可能性越来越大考点十.古典概型 (3分) 1.古典概型的界说某个实验若具有:①在一次实验中,可能消失的构造有有限多个;②在一次实验中,各类成果产生的可能性相等.我们把具有这两个特色的实验称为古典概型.2.古典概型的概率的求法一般地,假如在一次实验中,有n种可能的成果,并且它们产生的可能性都相m等,事宜A包含个中的m中成果,那么事宜A产生的概率为P(A)=n考点十一.列表法求概率(10分)1.列表法用列出表格的办法来剖析和求解某些事宜的概率的办法叫做列表法.2.列表法的应用处合当一次实验要设计两个身分, 并且可能消失的成果数量较多时,为不重不漏地列出所有可能的成果,平日采取列表法.考点十二.树状图法求概率(10分)1.树状图法就是经由过程列树状图列出某事宜的所有可能的成果,求出其概率的办法叫做树状图法.2.应用树状图法求概率的前提当一次实验要设计三个或更多的身分时,用列表法就不便利了,为了不重不漏地列出所有可能的成果,平日采取树状图法求概率.考点十三.应用频率估量概率(8分)1.应用频率估量概率在同样前提下,做大量的反复实验,应用一个随机事宜产生的频率逐渐稳固到某个常数,可以估量这个事宜产生的概率.2.在统计学中,经常应用较为简略的实验办法代替现实操纵中庞杂的实验来完成概率估量,如许的实验称为模仿实验.3.随机数在随机事宜中,须要用大量反复实验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数.第六章一次函数与反比例函数考点一.平面直角坐标系(3分)1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就构成了平面直角坐标系.个中,程度的数轴叫做x轴或横轴,取向右为正偏向;铅直的数轴叫做y轴或纵轴,取向上为正偏向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;树立了直角坐标系的平面,叫做坐标平面.为了便于描写坐标平面内点的地位,把坐标平面被x轴和y轴朋分而成的四个部分,分离叫做第一象限.第二象限.第三象限.第四象限.留意:x轴和y轴上的点,不属于任何象限.2.点的坐标的概念点的坐标用(a,b)暗示,其次序是横坐标在前,纵坐标在后,中央有“,”离a 时,开,横.纵坐标的地位不克不及颠倒.平面内点的坐标是有序实数对,当b (a,b)和(b,a)是两个不合点的坐标.考点二.不合地位的点的坐标的特点 (3分) 1.各象限内点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2.坐标轴上的点的特点点P(x,y)在x 轴上0=⇔y ,x 为随意率性实数 点P(x,y)在y 轴上0=⇔x ,y 为随意率性实数点P(x,y)既在x 轴上,又在y 轴上⇔x,y 同时为零,即点P 坐标为(0,0) 3.两条坐标轴夹角等分线上点的坐标的特点点P(x,y)在第一.三象限夹角等分线上⇔x 与y 相等点P(x,y)在第二.四象限夹角等分线上⇔x 与y 互为相反数 4.和坐标轴平行的直线上点的坐标的特点位于平行于x 轴的直线上的各点的纵坐标雷同. 位于平行于y 轴的直线上的各点的横坐标雷同. 5.关于x 轴.y 轴或远点对称的点的坐标的特点点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横.纵坐标均互为相反数 6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +考点三.函数及其相干概念 (3~8分) 1.变量与常量在某一变更进程中,可以取不合数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变更进程中有两个变量x 与y,假如对于x 的每一个值,y 都有独一肯定的值与它对应,那么就说x 是自变量,y 是x 的函数.2.函数解析式用来暗示函数关系的数学式子叫做函数解析式或函数关系式. 使函数有意义的自变量的取值的全部,叫做自变量的取值规模. 3.函数的三种暗示法及其优缺陷 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式暗示,这种暗示法叫做解析法.(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来暗示函数关系,这种暗示法叫做列表法.(3)图像法用图像暗示函数关系的办法叫做图像法. 4.由函数解析式画其图像的一般步调(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出响应的点(3)连线:按照自变量由小到大的次序,把所描各点用腻滑的曲线衔接起来.考点四.正比例函数和一次函数 (3~10分) 1.正比例函数和一次函数的概念一般地,假如b kx y +=(k,b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0).这时,y 叫做x 的正比例函数.2.一次函数的图像所有一次函数的图像都是一条直线3.一次函数.正比例函数图像的重要特点:一次函数b kx y +=的图像是经由点(0,b )的直线;正比例函数kx y =的图像是经由原点(0,0)的直线.k 的符号 b 的符号函数图像图像特点k>0b>0图像经由一.二.三象限,y 随x 的增大而增大.b<0图像经由一.三.四象限,y 随x 的增大而增大.K<0b>0图像经由一.二.四象限,y 随x 的增大而减小b<0图像经由二.三.四象限,y 随x 的增大而减小.注:当b=0,正比例函数是一次函数的特例.4.一般地,(1)当k>0时,,y 随x 的增大而增大; (2)当k<0时,图像经由第二.四象限,y 随x 的增大而减小. 5.一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6.正比例函数和一次函数解析式的肯定肯定一个正比例函数,就是要肯定正比例函数界说式kx y =(k ≠0)中的常数k.肯定一个一次函数,须要肯定一次函数界说式b kx y +=(k ≠0)中的常数k 和。
初中数学必考知识点大全第一章:实数重要复习的知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
·2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值: ·(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
.(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
初中数学常用考点1.过俩点有且只有一条直线2.俩点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线与已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果俩条直线都和第三条直线平行,那么这俩条直线也互相平行9.同位角相等,俩直线平行10.内错角相等,俩直线平行、11.同旁内角互补,俩直线平行12.俩直线平行,同位角相等,内错角相等,同旁内角互补13.定理三角形俩边之和大于第三边14.推论三角形俩边之差小于第三边15.三角形内角和定理三角形三个内角的和是180度16.推论1直角三角形的俩个锐角互余17.推论2三角形的一个外角等于和它不相邻的俩个内角的和18.推论3三角形一个外角大于任何一个和它不相邻的内角19.全等三角形的对应边相等,对应角相等20.边角边公理(SAS)有俩边和它们夹角对应相等的俩个三角形全等21.角边角公理(ASA)有俩角和它们的夹边对应相等的俩个三角形全等22.推论(AAS)有俩角和其中一角的对边对应相等的俩个三角形全等23.边边边公理(SSS)有三条边对应相等的俩个三角形全等24.斜边直角边公理(HL)有斜边和一条直角边对应相等的俩个直角三角形全等25.定理1角平分线上的点到这个角俩边的距离相等26.定理2到一个角的俩边的距离相等的点,在这个角的角平分线上27.角平分线是到角俩边距离相等的所有点的集合28.等腰三角形的性质定理等腰三角形的俩个底角相等29.推论1等腰三角形顶角的平分线平分底边并且垂直于底边30.等腰三角形顶角的平分线,底边上的中线和底边上的高线互相重合(三线归一)31.等边三角形的三个内角都是60度32.等腰三角形的判定定理如果一个三角形有俩个角相等,那么这俩个角所对的边也相等33.推论1三个角都相等的三角形是等边三角形34.有一个角是60度的等腰三角形是等边三角形35.在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半36.直角三角形斜边上的中线等于斜边的一半37.定理线段垂直平分线上的点和这条线段俩个端点的距离相等38.逆定理和一条线段俩个端点距离相等的点在线段的垂直平分线上39.线段的垂直平分线可以看作和这条线段俩端距离相等所有点的集合40.定理1关于某条直线对称的俩个图形是全等形41.定理2如果俩个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线42.定理3俩个图形关于某条直线对称,如果他们的对应线段或延长线相交,那么交点在对称轴上43.逆定理如果俩个图形的连线被同一条直线垂直平分,那么这俩个图形关于这条直线对称44.勾股定理在直角三角形中俩个直角边的平方和等于斜边的平方45.勾股定理的逆定理如果三角形的三边a b c,满足a^2+b^2=c^2,那么这个三角形是直角三角形46.定理四边形的内角和等于360度47.四边形的外角和等于360度48.多边形的内角和定理n边形的内角和公式(n-2)*180度49.推论任意多边形的外角和等于360度50.平行四边形的性质定理1平行四边形的对角相等51.平行四边形的性质定理2平行四边形的对边相等52.推论夹在俩条平行线间的平行线段相等53.平行四边形的性质定理3平行四边形的对角线互相平分54.平行四边形的判定定理1俩组对角分别相等的四边形是平行四边形55.平行四边形的判定定理2俩组对边分别相等的四边形是平行四边形56.平行四边形的判定定理3对角线互相平分的四边形是平行四边形57.平行四边形的判定定理4一组对边平行且相等的四边形是平行四边形58.矩形性质定理1矩形的四个角都是直角59.矩形性质定理2矩形的对角线相等60.矩形的判定定理1有三个角是直角的四边形是矩形61.矩形的判定定理2对角线相等的平行四边形是矩形62.菱形的性质定理1菱形的四条边都相等63.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角64.菱形的面积公式对角线之积的一半65.菱形的判定定理1四边都相等四边形是菱形66.菱形的判定定理2对角线互相垂直的平行四边形是菱形67.正方形的性质定理1正方形的四个角是直角四条边都相等68.正方形的性质定理2正方形的俩条对角线相等,并且互相垂直平分,每条对角线平分一组对角69.中心对称图形定理1关于中心对称的俩个图形是全等的70.定理2关于中心对称的俩个图形,对称点的连线都经过对称中心,并且被对称中心平分71.逆定理如果俩个图形的对应点连线都经过某一点,并且被这一点平分,那么这俩个图形关于这一点对称72.等腰梯形性质定理等腰梯形在同一底上的俩个角相等73.等腰梯形的俩条对角线相等74.等腰梯形判定定理在同一底上的俩个角相等的梯形是等腰梯形75.对角线相等的梯形是等腰梯形76.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等77.推论1经过梯形一腰的中点与底平行的直线,必平分另一腰78.推论2经过三角形一边的中点与另一边平行的直线,必平分第三边79.三角形中位线定理三角形中位线平行于第三边,并且等于第三边的一半80.梯形的中位线定理梯形的中位线平行于上下俩底,并且等于俩底和的一半81.比例的基本性质a:b=c:d,那么ad=bc,如果ad=bc那么a:b=c:d82.合比性质如果83.等比性质a/b=c/d=……=m/n(b+d+…+n不等于0)那么(a+c+…m)/(b+d+…+n)=a/b84.平行线分线段成比例定理三条平行线截俩条直线所得的对应线段成比例85.推论平行于三角形一边的直线截其他俩边或者俩边的延长线,所得的对应线段成比例86.定理如果一条直线截三角形的俩边或俩边的延长线,所得的线段成比例,那么这条直线平行于三角形的第三边87.平行于三角形一边,并且和其他俩边相交的直线,所截得的三角形三边与原三角形的三边对应成比例88.定理平行于三角形一边的直线和其他俩边或俩边的延长线相交,所构成的三角形与原三角形相似89.相似三角形的判定定理1俩角对应相等俩三角形相似90.直角三角形被斜边上的高分成的俩个直角三角形与原三角形相似91.判定定理2俩边对应成比例且夹角相等,俩三角形相似92.判定定理3三边对应成比例,俩三角形相似93.定理如果一个直角三角形的斜边和一条直角边和另一个直角三角形的斜边和直角边对应成比例,那么这俩个直角三角形相似94.相似三角形的性质定理1相似三角形对应高的比对应中线的比对应角平分线的比等于相似比95.性质定理2相似三角形的周长比等于相似比96.性质定理3相似三角形面积比等于相似比的平方97.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它余角的正弦值98.任意锐角的正切值等于它余角的余切值,任意锐角的余切值等于它余角的正切值99.圆是定点的距离等于定长的点的集合100.圆的内部可以看作是圆心的距离小于半径的点的集合101.圆的外部可以看作是圆心的距离大于半径的点的集合102.同圆或者等圆的半径相等103.到定点的距离等于定长的点的轨迹,是以定点为圆心定长为半径的圆104.和已知线段俩个端点的距离相等的点的轨迹,是这条线段的垂直平分线105.到已知角俩边距离相等的轨迹是这个角的角平分线106.到俩条平行线距离相等的点的轨迹,是和这俩条平行线平行且相等的一条直线107.定理不在同一条直线上的三点确定一个圆108.垂径定理垂直于弦的直径平分弦并且平分弦所对应的俩条弧109.推论1A平分弦的直径垂直弦,并且平分弦所对的俩条弧B弦的垂直平分线经过圆心,并且平分弦所对的弧110.推论2圆的俩条平行弦所夹得弧相等111.圆是以圆心为对称中心的中心对称图形112.定理在同圆或者等圆中相等的圆心角所对的弧相等,所对的弧相等,所对的弦的弦心距相等113.推论在同圆或者等圆中如果俩个圆心角俩条弧俩条弦或俩条弦的弦心距中有一组量相等,那么其他量也对应相等114.定理一条弧所对的圆周角等于它所对的圆心角的一半115.推论1同弧或等弧所对的圆周角相等,在同圆或者等圆中相等的圆周角所对的弧也相等116. 推论2半圆或者直径所对的圆周角等于90度117. 90度圆周角所对的弦是直径118. 推论3如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形 119. 定理 圆的内接四边形对角互补,并且任何一个外角等于它的内对角120. 直线和圆相交d<r,直线和圆相切d=r,直线和圆相离d>r121. 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线122. 切线的性质定理 圆的切线垂直于经过切点的半径123. 推论1经过圆心且垂直于切线的直线必经过切点124. 推论2经过切点且垂直切线的直线必经过圆心125. 切线长定理 从圆外一点引圆的俩条切线,它们的切线长相等,圆心和这一点的连线平分俩条切线的夹角126. 圆的外切四边形的俩组对边和相等127. 弦切角定理 弦切角等于它所夹得弧对的圆周角128. 推论 如果俩个弦切角所夹得弧相等,那么这俩个弦切角也相等129. 相交弦定理 圆内的俩条相交弦,被交点分成的俩条线段长的积相等130. 俩条线段的比例中项131. 切割线定理 从圆外一点引圆的切线和割线 切线长是这点到割线与圆相交的俩条线段的比例中项132. 推论 从圆外一点引圆的俩条割线 这一点到每条割线与圆的交点的俩条线段长的积相等133. 如果俩个圆相切,那么切点一定在连心线上134. 俩圆外离d>R+r,俩圆内切d=R-r,俩圆内含d<R-r135. 定理 相交俩圆的连心线垂直平分俩圆的公共弦136. 定理把圆分成n 等分 依次连接各分点所得的多边形是这个圆的内接正n 边形,经过各分点做圆的切线 以相邻切线的交点为顶点的多边形是这个圆的外接正n 边形137. 任何一个正多边形都有一个外接圆和一个内切圆 这俩个圆是同心圆138. 正n 边形的每个内角都等于(n-2)*180/n 度139. 弧长测计算公式:L=n /180R π140. 扇形面积公式S=n R π^2/360=LR/2141. 内公切线长=d-(R-r),外公切线长=d-(R+r)142. 完全平方公式 (a±b)²=a²±2ab+b²143. 平方差公式 (a+b )(a-b)=a²-b²144. 常用公式a²-b²=(a+b )(a-b),(a+b )(a²-ab+b²)=a³+b³ (a-b )(a²+ab+b²)=a³-b³145. 146. 跟与系数的关系,俩根之和-b/a,为俩根之积c/a,也称韦达定理147. 判别式b^2-4ac=0,方程有俩个相等实根b^2-4ac>0,方程有俩个不等实数根,b^2-4ac<0方程没有实数根148. 三角函数常见的图形。