催化裂化生产丙烯技术的开发与应用
- 格式:pdf
- 大小:445.55 KB
- 文档页数:5
催化裂化增产丙烯的技术进展丙烯是重要的有机化工原料,随着聚丙烯等衍生物需求的迅速增长,对丙烯的需求也逐年俱增。
世界丙烯的需求己从20年前的1520万吨增加到2000年5120万吨,年均增长率达6.3%。
2001年丙烯需求量达到5020万吨。
据预测,至2005年,丙烯需求的年增长率为5.6%,高于乙烯需求的年增长率3.7%。
预计丙烯的需求量到2010年将达到8600万吨。
丙烯主要衍生物的年均增长率依次是:聚丙烯6.3%,丙烯酸6%,丙烯腈4%,环氧丙烷4%,异丙苯/苯酚3.8%。
在丙烯衍生物中,聚丙烯占丙烯的消费量最大,为57%,其他依次是:丙烯腈11%,羰基合成醇8%,环氧丙烷7%,异丙苯6%,丙烯酸5%,异丙醇3%,其他3%。
在丙烯及其衍生物需求增长的同时,生产丙烯技术也向多样化方向发展。
目前,世界上66%的丙烯来自蒸汽裂解生产乙烯的副产品,32%来自炼油厂催化裂化(FCC)生产汽、柴油的副产品,少量(约2%)由丙烷脱氢和乙烯-丁烯易位反应得到。
按今后5年内丙烯需求增长率5.6%测算,现有炼油厂必须增产410万吨/年丙烯才能满足石化工业对丙烯的需求,这主要将来自催化裂化装置。
石化工业对炼油厂催化裂化(FCC)增产丙烯的需求,使石化与炼油实施了更紧密的结合。
典型的FCC装置每生产1吨车用汽油约副产0.03~0.06吨丙烯。
近年,FCC装置发展了多种增产丙烯的工艺技术,主要有:中国石化石油化工研究院(RIPP)的DCC工艺,凯洛格-布朗路特(KBR)公司的Maxofin工艺、Superflex工艺,UOP 公司的PetroFCC工艺,罗姆斯公司的SCC工艺。
图1示出蒸汽裂解、常规FCC与DCC、Maxofin、Superflex等工艺生产丙烯的产率比较。
1. 中国石化石油化工科研院(RIPP)的DCC工艺该深度催化装化(DCC)工艺又称催化裂解工艺,它可看作是常规FCC操作与蒸汽裂解的组合。
DCC装置在538~582℃、10%~30%蒸汽条件下操作,而FCC装置在493~549℃、1%~3%蒸汽条件下操作。
催化裂解(DCC)新技术的开发与应用王巍谢朝钢(中国石化集团石油化工科学研究院,北京,100083)摘要:文章介绍了DCC技术的主要特点、原料油和催化剂、典型工业试验结果,并重点介绍催化裂解技术的最新工业应用情况。
对于石蜡基常压渣油原料,DCC-Ⅰ型技术的丙烯质量收率可以达到24.8%,DCC-Ⅱ型技术的丙烯质量收率可以达到14.6%。
另外对新开发的高丙烯选择性催化裂解催化剂的工业应用情况进行了总结。
关键词:催化裂解丙烯催化剂工业化随着石油化学工业的快速发展,我国丙烯产量大幅增长。
2001年我国丙烯产量为4.75 Mt,2002年达到5.32 Mt,2003年则达到5.93 Mt,年增长率达到12%左右。
预计2005年丙烯产量可以达到6.75 Mt,丙烯表观消费量为7.92 Mt左右,而2010年丙烯表观消费量将达到10.49 Mt,2005-2010年年均增长率为5.8%。
丙烯平衡存在大量缺口,大力发展我国的丙烯生产技术具有很重要的现实意义。
目前丙烯的生产主要依靠蒸汽裂解和催化裂化的副产,全球丙烯产量中70%来源于蒸汽裂解,28%来源于催化裂化和2%来源于丙烷脱氢等技术。
在我国,催化裂化生产的丙烯占总产量的比例为39%左右,而蒸汽裂解生产的丙烯占总产量的比例约为61%。
由于我国原油偏重,轻烃和石脑油资源贫乏,而催化裂化生产丙烯技术具有原料重质化、产品中丙烯/乙烯比值高以及生产成本低的优点,因此发展多产丙烯的催化裂化技术是适合我国国情的一条丙烯生产技术路线。
20世纪80年代末,石油化工科学研究院成功地开发出了以重油为原料、以生产丙烯为主要目的的催化裂解(Deep Catalytic Cracking-DCC)新工艺[1~2]。
该技术在生产丙烯的同时,兼产异丁烯及高辛烷值汽油组分。
DCC技术分别获得中国、美国、欧洲和日本专利,并于1991年获中国专利金奖,1992年获中国石化科技进步特等奖,1995年获国家发明一等奖。
催化裂化( LTAG+MIP)技术工业应用摘要:某炼化企业新建催化裂化装置,采用LTAG工艺技术,配置有催化柴油加氢改质装置,双反应器共用再生器,主反应器进料为加氢蜡油与低硫渣油混合进料,副反应器进料为加氢后催化柴油。
主反应器采用MIP技术,提升管分第一、第二反应区。
LTAG+MIP技术的应用,多生产高辛烷值汽油组分及化工原料,提高轻油收率,全厂柴汽比降至1以下。
关键词:催化裂化双器柴汽比轻油收率化工原料目前,汽油需求增长缓慢,柴油需求有下降趋势,航空煤油需求保持相对稳定增长,化工原料需求增长迅速,炼油产能过剩,为可持续发展,提高经济效益,需要炼化企业提高轻油收率,减少柴油生产,多生产化工原料。
向“油产化、油转化、油转特”方向发展。
根据公司自身状况,合理利用原有装置流程,选用(LTAG+MIP)技术催化裂化装置,灵活调整产品结构,以适应市场需求。
1装置概况及技术特点某炼化公司新建120×104t/a催化裂化装置,同时配置65×104t/a催化柴油加氢改质装置。
采用中国石化股份有限公司石油化工科学研究院的MIP技术和LTAG技术,以生产高辛烷值低烯烃的汽油、富含丙烯的液化气为主,催化剂为CGP专用催化剂。
再生部分采用单段逆流高效再生技术。
重油沉降器、柴油沉降器、再生器并列式三器布置。
重油提升管加工加氢蜡油与低硫渣油,加工规模80×104t/a。
柴油提升管加工加氢后催化柴油,加工规模40×104t/a。
主副反应器顶反应油气管线合并后进入分馏塔。
主要产出物料有干气、液化气、稳定汽油、柴油、油浆。
简要流程见图1。
图1 反应再生系统简图2原料性质装置3股原料,其中柴油及蜡油2股原料经过加氢处理,渣油原料采用低硫渣油,原料性质提高,大幅降低原料硫含量、多环芳烃、残碳、金属含量等指标,在催化剂及高温条件下尽量向预想方向进行反应,既可达到理想收率,又能提高产品性质。
低硫原料也降低催化装置烟气脱硫设施负担。
1、C4烯烃催化裂解制丙烯工艺C4烯烃催化裂解制丙烯是近年来发展的新技术。
该技术以炼油厂或乙烯厂副产的C4烯烃为原料,通过催化裂解将其转化为以丙烯为主的低碳烯烃。
具有代表性的C4烯烃催化裂解制丙烯工艺过程主要包括Lurgi公司的Propylur工艺、ARCO化学公司的Superflex工艺、ATOFINA与UOP公司的OCP工艺和Mobil公司的MOI工艺。
1.1、Propylur工艺Lurgi公司开发的Propylur工艺是一种以不含丁二烯的混合C4及以上烯烃为原料、以最大化生产丙烯为目的的催化裂化工艺。
工艺原料可采用抽提丁二烯、移除异丁烯或选择加氢后的抽余液后的抽余液-Ⅱ,产物粗丙烯则可利用乙烯蒸气裂解装置的蒸馏设备提纯。
据称,该工艺可以采用各种原料,无论烷烃、环烷烃、环烯烃还是芳烃均不会影响烯烃转化率,上述组分通过催化剂时只发生轻微的变化或完全没有改变。
Propylur工艺所用催化剂由德国南方化学公司(Sud-Chemie)提供,采用硅铝物质的量比为10-200的ZSM-5分子筛催化剂。
该工艺将蒸气裂解装置中的低值C4~C6烯烃馏分转化成丙烯。
反应工艺条件为:500℃,(0.1-0.2)MPa,空速(1~3)h-1,水蒸汽与烃的质量比为0.5~3。
轻烯烃转化率为83%,通常生成42%的丙烯、31%的丁烯和10%的乙烯。
如果将丁烯馏分进行循环,丙烯和乙烯的收率可以分别提高到60%和15%。
催化剂单程操作周期为1 000 h,寿命为15个月,在完成9000h中试后,在德国Cologne-Worringen地区的BP公司采用Propylur工艺生产丙烯的一套工业化示范装置成功投入运转。
采用与Claus装置相类似的卧式绝热固定床,其催化剂床层较短,约为1m,以避免产生较大的压降。
工艺特点是在原料中加入一定量的水蒸汽,降低原料的分压,使反应平稳向产物方向移动,提高反应的选择性。
同时可以减少积炭和胶质化合物的生成,提高催化剂的稳定性。
石油催化裂化技术的原理和应用石油催化裂化技术是炼油行业中一项重要的工艺技术,它通过催化剂的作用将重质石油馏分转化为轻质产品,具有广泛的应用价值。
本文将从原理和应用两个方面来探讨石油催化裂化技术。
一、原理石油催化裂化技术的原理是通过将重质石油馏分与催化剂接触,在适宜的温度和压力条件下,进行化学反应,将长链烃转化为较短的烃链。
这一过程主要包括裂化和重整两个步骤。
裂化是指将长链烷烃分子断裂为较短的碳链烃分子,主要通过催化剂的酸性中心吸附和吸热裂化的方式进行。
在裂化过程中,催化剂的酸性中心能够提供活性吸附位,吸附长链烷烃分子,并将其断裂为较短碳链。
裂化反应生成的低碳数烷烃则被释放出来,形成轻质产品。
重整是指将低碳数烷烃进一步转化为稳定的芳烃化合物,提高汽油辛烷值。
重整反应通过催化剂的酸中心和金属中心的协同作用来进行,将低碳烷烃分子进行重排和重构,生成含有苯、甲苯和二甲苯等芳烃分子,提高汽油的辛烷值,并使其具备较高的抗爆震性能。
二、应用石油催化裂化技术在炼油行业有着广泛的应用,主要体现在以下几个方面:1. 生产高辛烷值汽油:催化裂化技术可以将重质石油馏分中的长链烷烃分子分解为较短的烷烃,使得产生的汽油具有较高的辛烷值,提高了汽油的质量和性能。
2. 产生丙烯等化工原料:催化裂化技术可以将重质石油馏分中的部分烷烃分子转化为丙烯等化工原料,具有重要的经济价值和应用前景。
3. 减少重质燃料的生产:石油催化裂化技术能够将重质石油馏分转化为轻质产品,减少了重质燃料(如柴油和燃油)的生产,从而提高了石油产品的利用效率。
4. 生产石化装置的补充燃料:催化裂化技术还可以生产具有较高热值的低碳数烷烃,作为石化装置的补充燃料,提高了整个炼油过程的能量利用效率。
总而言之,石油催化裂化技术的原理和应用具有重要的意义。
通过催化剂的作用,将重质石油馏分转化为轻质产品,既提高了石油产品的质量,又降低了能源消耗和环境污染,具有广阔的发展前景。
催化裂解(DCC)新技术的开发与应用王巍谢朝钢(中国石化集团石油化工科学研究院,北京,100083)摘要:文章介绍了DCC技术的主要特点、原料油和催化剂、典型工业试验结果,并重点介绍催化裂解技术的最新工业应用情况。
对于石蜡基常压渣油原料,DCC-Ⅰ型技术的丙烯质量收率可以达到24.8%,DCC-Ⅱ型技术的丙烯质量收率可以达到14.6%。
另外对新开发的高丙烯选择性催化裂解催化剂的工业应用情况进行了总结。
关键词:催化裂解丙烯催化剂工业化随着石油化学工业的快速发展,我国丙烯产量大幅增长。
2001年我国丙烯产量为4.75 Mt,2002年达到5.32 Mt,2003年则达到5.93 Mt,年增长率达到12%左右。
预计2005年丙烯产量可以达到6.75 Mt,丙烯表观消费量为7.92 Mt左右,而2010年丙烯表观消费量将达到10.49 Mt,2005-2010年年均增长率为5.8%。
丙烯平衡存在大量缺口,大力发展我国的丙烯生产技术具有很重要的现实意义。
目前丙烯的生产主要依靠蒸汽裂解和催化裂化的副产,全球丙烯产量中70%来源于蒸汽裂解,28%来源于催化裂化和2%来源于丙烷脱氢等技术。
在我国,催化裂化生产的丙烯占总产量的比例为39%左右,而蒸汽裂解生产的丙烯占总产量的比例约为61%。
由于我国原油偏重,轻烃和石脑油资源贫乏,而催化裂化生产丙烯技术具有原料重质化、产品中丙烯/乙烯比值高以及生产成本低的优点,因此发展多产丙烯的催化裂化技术是适合我国国情的一条丙烯生产技术路线。
20世纪80年代末,石油化工科学研究院成功地开发出了以重油为原料、以生产丙烯为主要目的的催化裂解(Deep Catalytic Cracking-DCC)新工艺[1~2]。
该技术在生产丙烯的同时,兼产异丁烯及高辛烷值汽油组分。
DCC技术分别获得中国、美国、欧洲和日本专利,并于1991年获中国专利金奖,1992年获中国石化科技进步特等奖,1995年获国家发明一等奖。