基于蚁群算法的无线传感网络稳定簇路由研究
- 格式:pdf
- 大小:1.64 MB
- 文档页数:5
蚁群算法在无线传感器网络路由能量均衡中的应用摘要本文将蚁群算法应用于无线传感器路由中,将蚁群的信息素与网络节点的能量结合起来,在蚁群算法收敛的同时,在网络最短路径和传感器节点能量均衡消耗之间进行平衡。
通过仿真实验证明,该算法和基本蚁群算法相比,节点能量均衡消耗,延长了网络寿命。
关键词无线传感器网络;能量均衡;蚁群算法无线传感器网络由众多具有感知、通信和计算能力的传感器节点,以无线的方式连接起来,在军事、灾难救援、环境监测、医疗健康、家庭监护以及其他众多领域都有广泛的应用前景。
但是在实际情况中,无线传感器的能量是有限的并且在采集数据的过程中有能量消耗,所以节点能量消耗快慢对于网络寿命的长短有极为关键的作用。
很多研究者在研究无线传感器路由算法的时候仅仅考虑了节点间距离因素,使得数据沿着最短路径传输和采集,这样会导致最短路径上的传感器节点能量消耗过快而降低到正常工作值以下,缩短了网络的寿命。
因此,需要设计一种新的路由算法,均衡各传感器节点的能量消耗,才能延长网络的寿命,保证数据传输的连续性和持久性。
蚁群算法因为具有自组织、动态多路径和鲁棒性而特别适合于无线传感器网络路由的应用。
基于蚁群算法的各种优势,本文提出了一种基于蚁群算法的无线传感器网络路由能量均衡算法,在传感器节点传输数据的时候既考虑了节点间的距离因素,又考虑了节点的剩余能量和传输数据的能量消耗,延长的网络的寿命。
1基本蚁群算法模型1991年,M.dorigo等人将蚁群算法应用于求解TSP问题,提出了基本蚁群算法的数学模型。
TSP问题是求在N个城市中确定一条最短的遍历所有城市有且仅有一次的回路。
设m为蚂蚁的数量,N个城市中蚂蚁的数量为,其中bi(t)表示在t时刻位于城市i的蚂蚁数量,τij(t)表示t时刻城市i与j之间的信息素浓度,在初始状态时各城市间的信息素浓度相同都为一常数const,用Pijk(t)来计算蚂蚁在t时刻从城市i选择移动到城市j的概率,Pijk(t)的计算表达式为:= (1)在式(1)中,参数α代表蚂蚁运动过程中信息素起的作用程度,β代表启发因子作用,τij表示i与j两城市之间路径的信息素浓度,ηij表示两城市的能见度,与两城市间的距离相关,allowedk表示蚂蚁k下一步允许选择的城市。
基于蚁群优化的无线传感器网络路由算法
邬欢欢;张任
【期刊名称】《智能计算机与应用》
【年(卷),期】2014(004)003
【摘要】路由技术是无线传感器网络(WSNs)的关键技术.基于蚁群优化的无线传感器网络路由算法具有蚁群算法的自组织、正反馈和并行性的特点,在构造WSNs 的最优路由时有很好的性能.介绍了蚁群算法的数学模型,着重从启发因子的构建方式上描述了当前典型的基于蚁群的路由算法,并比较分析了这些算法的特点及存在问题,在此基础上给出了设计启发因子的方法,为进一步研究提供了一些解决思路.【总页数】3页(P67-69)
【作者】邬欢欢;张任
【作者单位】塔里木大学信息工程学院,新疆阿拉尔843300;塔里木大学信息工程学院,新疆阿拉尔843300
【正文语种】中文
【中图分类】TP393
【相关文献】
1.基于蚁群优化的无线传感器网络路由算法 [J], 赵丽萍
2.基于蚁群优化的无线传感器网络路由算法 [J], 邬欢欢;张任;
3.基于改进蚁群优化算法的无线传感器网络路由研究 [J], 祝加祥;吴勇
4.基于蚁群优化算法的无线传感器网络路由研究 [J], 宋杰;吴勇;陈明明
5.基于改进蚁群优化策略的无线传感器网络路由算法 [J], 蔡燕; 陈加林
因版权原因,仅展示原文概要,查看原文内容请购买。
基于量子蚁群算法的无线传感器网络路由吴俊;罗永红;潘丽姣【摘要】无线传感器网络路由是无线传感器网络研究领域的一个研究热点;针对能最控制在无线传感器网络路由上的特殊要求,为了促使网络节点能量消耗相对均衡,研究者将蚁群算法应用于无线传感器网络的路由,但是蚁群算法在求解无线传感器路由问题时存在易于陷入局部最优和收敛速度慢等问题,将量子蚁群算法应用于无线传感器网络路由,用量子比特的概率幅表示蚂蚁当前位置信息,用量子旋转门更新蚂蚁携带的量子比特,用量子非门实现蚂蚁所在位置的变异;仿真实验表明该方法具有收敛速度快,解的质量高、稳定性好等优点,为蚁群算法在无线传感器网络中应用提出了一种新的解决方案.%Wireless sensor network routing in wireless sensor networks, a research focus areas of research. For energy control in wireless sensor network routing on the special requirements of network nodes in order to facilitate relatively balanced energy consumption, ant colony algorithm is applied to wireless sensor network routing, but the ant colony algorithm in solving the routing problem in wireless sensor there is easy to fall into local optimum and the convergence speed is slow and other issues, this article will quantum ant colony algorithm.Simulation results show that the method has fast convergence and solution quality, high stability and good for the ant colony algorithm applied in wireless sensor networks presents a new solution.【期刊名称】《计算机测量与控制》【年(卷),期】2011(019)002【总页数】3页(P487-489)【关键词】无线传感器网络;蚁群算法;路由;量子蚁群【作者】吴俊;罗永红;潘丽姣【作者单位】义乌工商职业技术学院机电信息分院,浙江义乌,322000;义乌工商职业技术学院机电信息分院,浙江义乌,322000;义乌工商职业技术学院机电信息分院,浙江义乌,322000【正文语种】中文【中图分类】TP3930 引言无线传感器网络(w ireless sensor netw orks,WSN)是由大量具有信息感知,数据处理和无线通讯能力的传感器构成的无线自组织网络[1]。
1RGH 3DXVH 7LPH V3D F N H W ' H O L Y H U \ 5D W L R1RGH 6SHHG P V无线传感器网络中基于蚁群算法的路由韩韧摘要大量的具有无线通信和数据处理能力传感器器件通过一定的协议构成自组织网络-无线传感器网络。
这种网络可以有效的进行传感数据收集和传输。
然而由于无线传感器网络具有自身的特点比如:通信、存储和处理能力较弱,有限的能量等,使得关于无线传感器网络的路由研究成为热点。
本文中对该网络的特点以及路由算法要考虑的影响因素进行了分析,然后给出蚁群优化算法在无线传感器网络路由中的应用。
该路由方法易于实现、基于局部信息、将多种影响因素以信息素形式表现出来。
该路由方法的自组织、动态和多路径的特性比较适合应用于无线传感器网络的路由。
关键词无线传感器网络;蚁群算法;路由算法;信息素 1 引言随着微电子技术,计算技术和无线通信技术的进步,制造低功耗的传感器在技术上和成本上已经成为可能。
传感器具有信息采集、数据处理和无线通信多种功能。
通常传感器探测它周围的环境并生成电信号,并且处理这些信号使它们表现为传感器监测的目标或发生事件的属性。
无线传感器网络(Wireless Sensor Network包含了很多传感器节点,这些传感器可以相互通信或是与外部的基站通信。
大量的传感器可以保证精确探测一个很大的区域。
如图1所示, 通常传感器节点有传感器模块、处理模块、无线通信模块和能量模块。
传感器模块负责监测信息的采集和数据转换;处理模块负责传感器的操作,存储和处理自身采集的数据以及其他节点发来的数据;无线通信模块负责与其他传感器节点进行无线通信,交换控制消息和首发采集数据;能量供应模块为传感器节点提供所需的能量 [1]。
它传感器节点或是基站。
基站一边连接传感器网络, 一边连接相应的设备,使用户可以访问和使用传感器网络探测并传输过来的数据。
・传感器节点的能量和带宽都比较小,在一个有许多传感器节点的网络里如何高效的使用每个传感器接点的能量和带宽来传输数据是一个挑战。
基于改进蚁群优化的无线传感器网络路由算法舒期梁;赵丽萍【期刊名称】《计算机测量与控制》【年(卷),期】2011(19)5【摘要】For wireless sensor network node energy, communication ability is limited, etc.So Proposed an improved ant colony optimization routing algorithm , full consideration of the communication between nodes from the distance between the nodes may increase the energy dissipation of nonlinear growth, and energy consumption and the next hop communication residual energy node.Make the wireless sensor network routing in communications, energy consumption and network survival, approximate periodic optimal value.The simulation results show that this algorithm can effectively reduce the energy consumption and network node number and data transmission path length, prolong the wireless sensor network survival period.%针对无线传感器网络节点能量、通信能力有限等特点,提出了一种改进蚁群优化的路由算法,算法对下一节点的选择充分考虑了通信距离和剩余能量等因素,将蚂蚁搜索行为集中到最优解附近,为避免早熟收敛行为的发生,将信息素轨迹的值域范围进行限制,通过对信息素轨迹的平滑化,快速逼近无线传感器网络最优路径;仿真结果证明,该算法有效地减少了网络能量消耗、节点死亡数量和链路长度,延长了网络生命期.【总页数】4页(P1253-1256)【作者】舒期梁;赵丽萍【作者单位】景德镇陶瓷学院信息工程学院,江西,景德镇,333001;景德镇陶瓷学院信息工程学院,江西,景德镇,333001【正文语种】中文【中图分类】TP393【相关文献】1.基于改进蚁群优化算法的无线传感器网络路由研究 [J], 尚兴宏;钱焕延;高德民2.基于蚁群优化的无线传感器网络路由算法 [J], 邬欢欢;张任3.基于改进蚁群优化算法的无线传感器网络路由研究 [J], 祝加祥;吴勇4.基于蚁群优化算法的无线传感器网络路由研究 [J], 宋杰;吴勇;陈明明5.基于改进蚁群优化策略的无线传感器网络路由算法 [J], 蔡燕; 陈加林因版权原因,仅展示原文概要,查看原文内容请购买。