高考数学总复习配套教案:选修4-2逆变换与逆矩阵、矩阵的特征值与特征向量
- 格式:doc
- 大小:523.00 KB
- 文档页数:9
2015届高考数学总复习:矩阵与变换逆变换与逆矩阵、矩阵的特征值与特征向量(含答案)选修4-2 矩阵与变换第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)1. 若 x 2y 2-11=x x y -y ,求x +y 的值.解:x 2+y 2=-2xy x +y =0.2. 用几何变换的观点,判断并求出矩阵01-10的逆矩阵.解:因为矩阵01-10表示的是绕原点顺时针旋转90°的旋转变换,所以它有逆变换,对应的逆矩阵为0-11 0.3. 已知矩阵A =12c 1的一个特征值为λ,10是A 的属于λ的特征向量,求矩阵A的逆矩阵A -1.解:∵ Aα=λα,12c 110=λ10,∴ 1=λ,c =λ,解得?λ=1,c =1.A =1211,则A -1=1-10 1.4. 已知二阶矩阵A 的属于特征值-1的一个特征向量为1-3,属于特征值3的一个特征向量为11,求矩阵A . 解:设A =a b c d ,由题知a b cd 1-3=-1 3,a b c d 11=311.即a -3b =-1,c -3d =3,a +b =3,c +d =3,解得a =2,b =1,c =3,d =0,所以A =??2130. 5. 已知二阶矩阵A 有两个特征值1、2,求矩阵A 的特征多项式.解:由特征多项式的定义知,特征多项式是一个首项系数为1的二次三项式.因此不妨设f(λ)=λ2+bλ+c.因为1,2是A 的特征值,所以f(1)=f(2)=0,即1,2是λ2+bλ+c =0的根.由根与系数的关系知:b =-3,c =2,所以f(λ)=λ2-3λ+2.6. 矩阵M =3652有属于特征值λ1=8的一个特征向量e 1=65,及属于特征值λ2=-3的一个特征向量e 2=1-1.对向量α=38,计算M 3α.解:令α=m e 1+n e 2,将具体数据代入,有m =1,n =-3,所以a =e 1-3e 2.M 3α=M 3(e 1-3e 2)=M 3e 1-3(M 3e 2)=λ31e 1-3(λ32e 2)=8365-3×(-3)3 1-1=3 1532 479 ,M 3α=3 1532 479.7. 求下列矩阵的特征值和特征向量.(1) M =??6244; (2) M =?2541. 解:(1) 矩阵M 的特征多项式为f(λ)=λ-6-2-4λ-4=(λ-8)(λ-2),令f(λ)=0得λ1=2,λ2=8.λ1=2对应的一个特征向量为1-2,λ2=-8对应的一个特征向量为11.(2) 矩阵M 的特征多项式为f(λ)=λ-2-5-4λ-1=(λ+3)·(λ-6),令f(λ)=0得λ1=-3,λ2=6.λ1=-3对应的一个特征向量为-1 1,λ2=6对应的一个特征向量为541.8. 利用逆矩阵的知识解方程MX =N ,其中M =5241,N =5-8. 解:设M -1=x y z w , 5241????x y z w = 5x +2z 5y +2w 4x +z 4y +w =1001, 5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解得x =-13,y =23,z =43,w =-53,所以M-1=?-132343-53. 可得X =M-1N =-132343-535-8=-720. 所以原方程的解为-720. 9. 已知矩阵M =10012,N =12001,试求曲线y =cosx 在矩阵M -1N 变换下的函数解析式.解:由M -1=1002,得M -1N =??100212001=12002,即在矩阵M -1N 的变换下有如下过程,x y→x′y′=12x 2y ,则12y ′=cos2x ′,即曲线y =cosx 在矩阵M -1N 的变换下的解析式为y =2cos2x.10. 设M 是把坐标平面上点的横坐标不变、纵坐标沿y 方向伸长为原来5倍的伸压变换.求:(1) 直线4x -10y =1在M 作用下的方程; (2) M 的特征值与特征向量.。
人教版高中选修4-2一逆变换与逆矩阵课程设计一、课程设计说明1.1 课程设计背景逆变换和逆矩阵是高中数学中的重要概念之一,是线性代数的基础知识。
逆变换和逆矩阵在工程、物理、经济等领域中有广泛的应用。
在高中数学选修课程中,逆变换和逆矩阵是必须掌握的知识点之一。
1.2 设计目标本课程设计旨在通过理论讲解、模型建立和题型讲解等多种方式,使学生掌握逆变换和逆矩阵的基本概念、性质和特点,培养学生运用逆变换和逆矩阵解决实际问题的能力。
1.3 设计内容本课程设计分为以下三个部分:1.逆变换的基本概念和性质2.矩阵的逆3.运用逆变换和逆矩阵解决实际问题二、课程设计实施计划2.1 教学目标在完成本课程设计后,学生应达到以下目标:1.掌握逆变换和逆矩阵的基本概念、性质和特点。
2.熟练掌握求解矩阵的逆的方法。
3.运用逆变换和逆矩阵解决实际问题的能力。
2.2 教学计划本课程设计分为以下三个部分:2.2.1 逆变换的基本概念和性质•介绍逆变换的定义和性质。
•介绍逆变换的求解方法。
•练习选择题和填空题。
2.2.2 矩阵的逆•介绍矩阵的逆的定义和性质。
•介绍求解矩阵的逆的方法。
•练习选择题和填空题。
2.2.3 运用逆变换和逆矩阵解决实际问题•给出具体的实际问题。
•引导学生将实际问题转化为数学问题。
•通过逆变换和逆矩阵求解实际问题。
•练习计算题。
三、教学方法3.1 教学理念本课程设计采用启发式教学法,注重知识的系统性、普遍性和实际性。
以应用为导向,以培养学生的数学思维能力和创新能力和发展学生综合实践能力为目标。
3.2 实施方式•讲授:采用板书、幻灯片等方式进行理论讲解。
•练习:采用大量的习题和例题进行练习巩固。
•互动:采用问答、讨论等方式提高学生的参与度。
四、考核方式4.1 考核方式以期中期末为主要考核方式,包含选择题、填空题、计算题等多个类型的考试题目。
比例约为30%的总课时。
4.2 考核标准根据学生的学习成果和教学要求,采用标准答案和量化评价相结合的方式,确保考核公正、透明、科学。
4.4.2特征值与特征向量变换的不变量(1)掌握矩阵特征值与特征向量的定义,能从几何变换的角度说明特征向量的意义。
(2)会求二阶方阵的特征值与特征向量(只要求特征值是两个不同实数的情形)。
引例:根据下列条件试判断M α是否与α共线:⑴M=⎢⎣⎡03 ⎥⎦⎤30,非零向量α=⎥⎦⎤⎢⎣⎡y x ⑵ M=⎢⎣⎡21- ⎥⎦⎤32,非零向量α=⎥⎦⎤⎢⎣⎡2-3 ⑶M =10⎡⎢⎢⎢⎣ 012⎤⎥⎥⎦,非零向量 =10⎡⎤⎢⎥⎣⎦,01⎡⎤⎢⎥⎣⎦ 解:⑴ M α=⎢⎣⎡03 ⎥⎦⎤30⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡3y 3x =3⎥⎦⎤⎢⎣⎡y x ,所以M α与α共线。
⑵ M α=⎢⎣⎡21- ⎥⎦⎤32 ⎥⎦⎤⎢⎣⎡2-3=⎥⎦⎤⎢⎣⎡07-,而⎥⎦⎤⎢⎣⎡07-与⎥⎦⎤⎢⎣⎡2-3不共线。
即此时M α与α不共线。
⑶M α与α共线。
二、特征向量与特征值设二阶矩阵A ,对于实数 ,存在一个非零向量 ,使得A = ,那么 称为A 的一个特征值,而 称为A 的属于特征值 的一个特征向量。
几何观点:特征向量的方向经过变换矩阵A 的作用后,保持在同一直线上。
>0方向不变; <0方向相反; =0,特征向量就被变换成零向量。
代数方法:特征多项式例2 求初等变换矩阵的特征值与特征向量,并作出几何解释。
例3 求矩阵M=⎢⎢⎣⎡251- ⎥⎥⎦⎤32的特征值和特征向量: 解:矩阵M 的特征值λ满足方程25-1+λ 3-2-λ=(λ+1)(λ-3)-(-25)(-2)=λ2-2λ-8=0 解得,矩阵M 的两个特征值λ1=4,λ2=-2⑴设属于特征值λ1=4的特征向量为⎥⎦⎤⎢⎣⎡y x ,则它满足方程:(λ1+1)x+(-2)y=0 即:(4+1)x+(-2)y=0 也就是 5x-2y=0 ,则可取⎥⎦⎤⎢⎣⎡52为属于特征值λ1=4的一个特征向量。
⑵设属于特征值λ1=-2的特征向量为⎥⎦⎤⎢⎣⎡y x ,则它满足方程:(λ2+1)x+(-2)y=0 即:(-2+1)x+(-2)y=0 也就是x+2y=0 则可取⎥⎦⎤⎢⎣⎡12-为属于特征值λ2=-2的一个特征向量。
《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量 【考情分析】考试要求 1. 二阶逆矩阵,B 级要求;2. 二阶矩阵的特征值与特征向量,B 级要求;3. 二阶矩阵的简单应用,B 级要求.理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件,会利用矩阵求解方程组.掌握矩阵特征值与特征向量的定义,会求二阶矩阵的特征值与特征向量,利用矩阵A 的特征值、特征向量给出A n α的简单表示,并能用它来解决问题.理解矩阵的简单应用. 【知识清单】 1. 逆变换与逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n ,其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 2.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量. (3)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为X =⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy , 故⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*) 则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征方程. (4)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2.则AX 1=λ1X 1、AX 2=λ2X 2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征值,X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.【课前预习】1. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式. 解析:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4. 2. (选修4-2P 65习题2.4第7题)已知可逆矩阵A =⎣⎢⎡⎦⎥⎤a 273的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a ,求a 、b 的值. 解析:由题意,知AA -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a=⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3.(选修4-2P 54例4改编)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解析:因为 AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d , 所以 (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎡⎦⎥⎤ 012-10. 4. (选修4-2P 73习题第1题改编)求矩阵M =⎣⎢⎡⎦⎥⎤16-2 -6 的特征值.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.,求矩阵A .解析:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1.同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1. 【典型例题】目标1 求逆矩阵与逆变换例1求矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 35 6的逆矩阵. 解析:(法一)设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w , 则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-2 153 -23. (法二)注意到2×6-3×5=-3≠0,故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-3 2-3=⎣⎢⎡⎦⎥⎤-2 153 -23. 【借题发挥】变式1 (2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤102-2,矩阵B 的逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -122,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 14012. ∴AB =⎣⎢⎡⎦⎥⎤120-2·⎣⎢⎢⎡⎦⎥⎥⎤1 14012=⎣⎢⎡⎦⎥⎤1540 -1. 解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d ⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d c d ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d ⎧⎪⎪=⎪⎪=⎨⎪=⎪⎪⎪=⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121440210102AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦. 变式2 已知关于直线y =2x 的反射变换对应的矩阵为A =⎣⎢⎢⎡⎦⎥⎥⎤-35 45 4535,切变变换对应的矩阵为B =⎣⎢⎡⎦⎥⎤1 0-2 1,试求出(AB )-1. 解析:反射变换和切变变换对应的矩阵都是可逆的,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35,B -1=⎣⎢⎡⎦⎥⎤1 02 1,(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1021⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35=⎣⎢⎢⎡⎦⎥⎥⎤-35 45-25115. 【规律方法】求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤a b c d : ①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 【同步拓展】(2017·常州期末)已知矩阵,列向量,若AX=B ,直接写出A ﹣1,并求出X .解析:解法一∵矩阵,∴A ﹣1=,∵AX=B ,∴X=A ﹣1B==.解法二:∵矩阵,∴A ﹣1=,∵AX=B , ∴=,∴,解得,∴X=.目标2 特征值与特征向量的计算与应用例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解析:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0,x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.【借题发挥】变式1 已知二阶矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-1 3,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 即⎩⎪⎨⎪⎧ a -3b =-1,c -3d =3,a +b =3,c +d =3.解得⎩⎪⎨⎪⎧a =2,b =1,c =3,d =0.∴A =⎣⎢⎡⎦⎥⎤2 13 0. 变式2 (2015·江苏高考)已知R y x ∈,,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.解析:由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-1 2 , 则⎩⎪⎨⎪⎧x -1=-2,y =2,,即⎩⎪⎨⎪⎧x =-1,y =2,,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式()()()21f λλλ=+-,所以矩阵A 的另一个特征值为1.【规律方法】1.求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量.2.根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.【同步拓展】已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 目标3 根据A ,α计算A n α(n ∈N *)例3 给定的矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,B =⎣⎢⎡⎦⎥⎤32. (1)求A 的特征值λ1,λ2及对应的特征向量α1,α2; (2)求A 4B .解析: (1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=0,即(λ-2)(λ-3)=0,∴λ1=2,λ2=3. 当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11.(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【规律方法】已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为:(1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=s α1+t α2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.【同步拓展】已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.【归纳分析】1.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b c d 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.逆矩阵的性质:(1)若二阶矩阵A 存在逆矩阵B ,则逆矩阵是惟一的.(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .3.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量α共线,故t α也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.4. 由于特征向量的存在,求矩阵幂的作用结果,可以转化成求数的幂的运算结果. 【课后作业】 1.已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-. 解析:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1, 故a =-1,b =0,c =0,d =21∴矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 00 12. 所以B A1-=⎣⎢⎡⎦⎥⎤-1 00 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3 . 2. 求矩阵M =⎣⎢⎡⎦⎥⎤2 41-1的特征值及对应的特征向量. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-4-1λ+1=λ2-λ-6=(λ-3)(λ+2),令f(λ)=0,得到M 的特征值λ1=3,λ2=-2.当λ1=3时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤41;当λ2=-2时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.3. 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值. 解析:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1434 12 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4. 已知矩阵M =⎣⎢⎡⎦⎥⎤10012,N =⎣⎢⎡⎦⎥⎤12001,试求曲线y =cos x 在矩阵M-1N 变换下的函数解析式.解析:由M -1=⎣⎢⎡⎦⎥⎤1002,得M -1N =⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤1201=⎣⎢⎡⎦⎥⎤12002,即在矩阵M -1N 的变换下有如下过程,⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤12x 2y ,则12y ′=cos2x ′,即曲线y =cos x 在矩阵M -1N 的变换下的解析式为y =2cos2x .5. 已知二阶矩阵A 的属于特征值-2的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d , 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-2 6,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,即⎩⎪⎨⎪⎧a -3b =-2,c -3d =6,a +b =2,c +d =2,解得⎩⎪⎨⎪⎧a =1,b =1,c =3,d =-1,∴A =⎣⎢⎡⎦⎥⎤1 13 -1. 6. 已知α是矩阵M 的属于特征值λ=3的一个特征向量,其中M =⎣⎢⎡⎦⎥⎤a m 2b ,α=⎣⎢⎡⎦⎥⎤-1 5,且a +b +m =3,求a ,b ,m 的值. 解析:因为α是矩阵M 的属于特征值λ=3的一个特征向量,所以Mα=λα,即⎣⎢⎡⎦⎥⎤a m 2 b ⎣⎢⎡⎦⎥⎤-1 5=3⎣⎢⎡⎦⎥⎤-1 5,所以⎩⎪⎨⎪⎧-a +5m =-3,-2+5b =15,由a +b +m =3,解得a =16,b =175,m =-1730.7. (2016·泰州期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2 n m 1的一个特征值为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值; (2) 求A -1.解析:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2.(2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1, 所以 ⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,所以 A-1=⎣⎢⎡⎦⎥⎤120-11. 8. 已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解析:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知 M-1=⎣⎢⎡⎦⎥⎤12 0-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2, 同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y ·e 2)=x M 100e 1+y M 100e 2=x λ1001e 1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y.9. 已知矩阵M =⎣⎢⎡⎦⎥⎤2 13 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解析:(1)因为2×4-1×3=5≠0,所以M 存在逆矩阵M -1,所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 45 -15-35 25. (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1-3 λ-4=(λ-2)(λ-4)-3=λ2-6λ+5, 令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎪⎨⎪⎧-x -y =0,-3x -3y =0,得x +y =0,令x=1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1.当λ=5时,由二元一次方程⎩⎪⎨⎪⎧3x -y =0,-3x +y =0,得3x -y =0, 令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.10.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M 的逆矩阵M -1;(2)设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解析:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4.所以M =⎣⎢⎡⎦⎥⎤1 23 4,从而M -1=⎣⎢⎡⎦⎥⎤-2 132-12. (2)设直线l 上任意一点(x ,y ),在变换M 作用下对应直线m 上任意一点(x ′,y ′),因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y ,且m :2x ′-y ′=4, 所以2(x +2y )-(3x +4y )=4,即直线l 的方程为x +4=0.11. 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解析:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6244. (2) 由(1)知,矩阵M 的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0. 【提优训练】1.利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤ 5-8. 解析:设M-1=⎣⎢⎡⎦⎥⎤x yz w,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤5x +2z 5y +2w 4x +z 4y +w=⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解之得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53.。
高中数学苏教版选修4-2矩阵与变换2.5特征值与特征向量教学
设计
【名师授课教案】
(板演与口答)学生口述,任课老师多媒体展示结果,并提出问题:以上等式有什么共同特征? (生):二阶矩阵列矩阵=一个数列矩阵
(师):列矩阵一般表示? 向量故
这样我们就有了特征值与特征向量的概念.
合作释疑一:小组合作讨论特征值与特征向量的定义共同解疑.
1.特征值与特征向量的定义
设A是一个二阶矩阵,如果对于实数 ,存在一个非零向量 ,使___________,那么称为A的___________________________, 称为A的_______________________________.
注:①关键词:非零向量
②定义的核心
③从几何的角度理解此核心:
>0 <0
=0
合作释疑二:小组再次合作讨论如何求例中矩阵的特征值与特征向量(结合下面例题)
例求矩阵的特征值与特征向量. (温馨提示:紧抓定义核心)
设计意图:让学生紧抓定义,结合定义求特征值与特征向量。
找个学生板书,大部分学生会求出 ,特征值应是非零向量。
学生讨论,解决此难题。
学生提出D=0(解决本题的关键)
学生口述,教师板书,规范解题格式。
最后再总结求矩阵特征值与特征向量的步骤
特征多项式。
选修42 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. 已知矩阵M =⎣⎢⎡⎦⎥⎤11-12,MX =Y 且Y =⎣⎢⎡⎦⎥⎤12,求矩阵X . 解:设X =⎣⎢⎡⎦⎥⎤x y ,则⎣⎢⎡⎦⎥⎤ 1 1-1 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ x +y -x +2y =⎣⎢⎡⎦⎥⎤12,所以由⎩⎪⎨⎪⎧x +y =1,-x +2y =2,得⎩⎪⎨⎪⎧x =0,y =1,故X =⎣⎢⎡⎦⎥⎤01. 2. 点(-1,k )在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m ,k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4, 解得⎩⎪⎨⎪⎧m =2,k =-4. 3. 已知在一个二阶矩阵M 对应的变换作用下,将点(1,1),(-1,2)分别变换成(1,1),(-2,4),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤11,即⎩⎪⎨⎪⎧a +b =1,c +d =1. 由题意可得⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,即⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4, 联立两个方程组,解得⎩⎪⎪⎨⎪⎪⎧a =43,b =-13,c =-23,d =53.即矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ 43-13-23 53. 4. 已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1 210所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y )在矩阵A =⎣⎢⎡⎦⎥⎤1210对应的变换作用下得到点Q(x′,y ′),则⎣⎢⎡⎦⎥⎤121 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即x +2y =x′,x =y′, 所以x =y′,y =x′-y′2.代入x 2+2xy +2y 2=1,得y′2+2y′·x′-y′2+2⎝ ⎛⎭⎪⎫x′-y′22=1,即x′2+y′2=2,所以曲线C 1的方程为x 2+y 2=2. 5. 求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1 00 2M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M . 解:设M =⎣⎢⎡⎦⎥⎤a b cd ,⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤a b 2c 2d, ∴ ⎣⎢⎡⎦⎥⎤a b 2c 2d ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤a -b2c -2d . ∴ ⎣⎢⎡⎦⎥⎤1 234=⎣⎢⎡⎦⎥⎤a -b 2c-2d ,∴ ⎩⎪⎨⎪⎧1=a ,2=-b ,3=2c ,4=-2d ,∴ ⎩⎪⎨⎪⎧a =1,b =-2,c =32,d =-2,∴ M =⎣⎢⎢⎡⎦⎥⎥⎤1-232-2.1. 二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤231 5,⎣⎢⎡⎦⎥⎤1 3 42 0 -1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2) 行矩阵与列矩阵的乘法规则[a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(3) 二阶矩阵与列向量的乘法规则⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0,且k≠1)确定的变换T M 称为(垂直)伸压变换.(3) 反射变换是轴反射变换、中心反射变换的总称. (4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)绕某个定点逆时针旋转角度θ.(5) 将一个平面图形投影到某条直线(或某个点)的变换称为投影变换. (6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或M =⎣⎢⎡⎦⎥⎤10k 1(k∈R ,k ≠0)确定的变换称为切变变换. 3. 线性变换的基本性质(1) 设向量α=⎣⎢⎡⎦⎥⎤x y ,则λα=⎣⎢⎡⎦⎥⎤λx λy .(2) 设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,则α+β=⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2.(3) A 是一个二阶矩阵,α,β是平面上任意两个向量,λ是任一实数,则A (λα)=λAα,A (α+β)=Aα+A β.(4) 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).4. 二阶矩阵的乘法(1) A =⎣⎢⎡⎦⎥⎤a 1 b 1c 1 d 1,B =⎣⎢⎡⎦⎥⎤a 2b 2c 2d 2,则AB =⎣⎢⎡⎦⎥⎤a 1a 2+b 1c 2 a 1b 2+b 1d 2c 1a 2+d 1c 2 c 1b 2+d 1d 2.(2) 矩阵乘法满足结合律:(AB )C =A (BC ). [备课札记]1 二阶矩阵的运算1 已知矩阵A =⎣⎢⎡⎦⎥⎤-12 1x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y .若Aα=Bα,求实数x ,y 的值.解:Aα=⎣⎢⎡⎦⎥⎤2y -22+xy ,B α=⎣⎢⎡⎦⎥⎤2+y 4-y , 由Aα=Bα,得⎩⎪⎨⎪⎧2y -2=2+y ,2+xy =4-y ,解得⎩⎪⎨⎪⎧x =-12,y =4. 变式训练已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 -2-2 -1,B =⎣⎢⎡⎦⎥⎤ 5-15,满足AX =B ,求矩阵X .解:设X =⎣⎢⎡⎦⎥⎤a b ,由⎣⎢⎡⎦⎥⎤ 1 -2-2 -1⎣⎢⎡⎦⎥⎤a b =⎣⎢⎡⎦⎥⎤5-15,得⎩⎪⎨⎪⎧a -2b =5,-2a -b =-15, 解得⎩⎪⎨⎪⎧a =7,b =1,此时X =⎣⎢⎡⎦⎥⎤71., 2 求变换前后的点的坐标与曲线方程), 2) (1) (2017·苏北四市期中)求椭圆C :x 29+y24=1在矩阵A =⎣⎢⎡⎦⎥⎤13012对应的变换作用下所得的曲线的方程.(2) 设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sin x 在矩阵MN 对应的变换作用下的曲线方程.解:(1) 设椭圆C 上的点(x 1,y 1)在矩阵A 对应的变换作用下得到点(x ,y ),则⎣⎢⎡⎦⎥⎤130012⎣⎢⎡⎦⎥⎤x 1y 1=⎣⎢⎢⎡⎦⎥⎥⎤13x 112y 1=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧x 1=3x ,y 1=2y ,代入椭圆方程x 29+y 24=1,得x 2+y 2=1,所以所求曲线的方程为x 2+y 2=1.(2) MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y )是曲线y =sin x 上的任意一点,在矩阵MN 对应的变换作用下对应的点为(x′,y ′).则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sin x ,得12y ′=sin 2x ′,即y′=2sin 2x ′.即曲线y =sin x 在矩阵MN 对应的变换作用下的曲线方程为y =2sin 2x. 变式训练在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-10 0 1对应的变换作用下得到点A′,将点B (3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.解:设B′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A′(1,2). 则A′B →=(2,2),A′B′→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎡⎦⎥⎤x -1y -2,解得⎩⎪⎨⎪⎧x =-1,y =4, 所以点B′的坐标为(-1,4)., 3 根据变换前后的曲线方程求矩阵) , 3) 已知矩阵A =⎣⎢⎡⎦⎥⎤a11a ,直线l :x -y +4=0在矩阵A 对应的变换作用下变为直线l′:x -y +2a =0.(1) 求实数a 的值; (2) 求A 2.解:(1) 设直线l 上任一点M 0(x 0,y 0)在矩阵A 对应的变换作用下变为l′上的点M (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a 11 a ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤ax 0+y 0x 0+ay 0, 所以⎩⎪⎨⎪⎧x =ax 0+y 0,y =x 0+ay 0.代入l′方程得(ax 0+y 0)-(x 0+ay 0)+2a =0, 即(a -1)x 0-(a -1)y 0+2a =0. 因为(x 0,y 0)满足x 0-y 0+4=0, 所以2a a -1=4,解得a =2.(2) 由A =⎣⎢⎡⎦⎥⎤211 2,得A 2=⎣⎢⎡⎦⎥⎤2 112⎣⎢⎡⎦⎥⎤2 11 2=⎣⎢⎡⎦⎥⎤5 445.变式训练(2017·镇江期末)已知实数a ,b ,矩阵A =⎣⎢⎡⎦⎥⎤-1a b 3对应的变换将直线x -y -1=0变换为自身,求a ,b 的值.解:设直线x -y -1=0上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P′(x′,y ′),由⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y′,得⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y. 因为P′(x′,y ′)在直线x -y -1=0上,所以x′-y′-1=0,即(-1-b )x +(a -3)y -1=0. 因为P (x ,y )在直线x -y -1=0上,所以x -y -1=0.因此⎩⎪⎨⎪⎧-1-b =1,a -3=-1,解得⎩⎪⎨⎪⎧a =2,b =-2.备选变式(教师专享)已知直线l :x +y =1在矩阵A =⎣⎢⎡⎦⎥⎤m n 0 1对应的变换作用下变为直线l′:x -y =1,求矩阵A .解:设直线l :x +y =1上任意一点M (x ,y )在矩阵A 对应的变换作用下,变换为点M′(x′,y ′).由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤m n 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤mx +ny y ,得⎩⎪⎨⎪⎧x′=mx +ny ,y ′=y.又点M′(x′,y ′)在l′上,所以x′-y′=1, 即(mx +ny )-y =1.依题意⎩⎪⎨⎪⎧m =1,n -1=1,解得⎩⎪⎨⎪⎧m =1,n =2,所以A =⎣⎢⎡⎦⎥⎤1 20 1. , 4 平面变换的综合应用), 4) 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.求证: (1) (MN )α=M (Nα); (2) 这两个矩阵不满足MN =NM .证明:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012, 所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52.因为Nα=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (Nα)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (Nα).(2) 由(1)知MN =⎣⎢⎢⎡⎦⎥⎥⎤112012, NM =⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤1101=⎣⎢⎢⎡⎦⎥⎥⎤1112, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (-1,2),C (0,3).求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-11 0对应的变换作用下所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A (0,0),B (-1,2),C (0,3)在矩阵⎣⎢⎡⎦⎥⎤0 -11 0对应的变换作用下所得到的三个顶点坐标分别为A ′(0,0),B ′(-2,-1),C ′(-3,0).故S △A ′B ′C ′=12A ′C ′·|y B ′|=32.1. (2017·南京、盐城模拟)设a ,b ∈R ,若直线l :ax +y -7=0在矩阵A =⎣⎢⎡⎦⎥⎤30-1b 对应的变换作用下,得到的直线为l′:9x +y -91=0.求实数a ,b 的值.解:(解法1)取直线l :ax +y -7=0上点A (0,7),B (1,7-a ).因为⎣⎢⎡⎦⎥⎤ 30-1b ⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤07b ,⎣⎢⎡⎦⎥⎤ 30-1b ⎣⎢⎡⎦⎥⎤17-a =⎣⎢⎡⎦⎥⎤3b (7-a )-1,所以A (0,7),B (1,7-a )在矩阵A 对应的变换作用下分别得到点A′(0,7b ),B ′(3,b (7-a )-1).由题意,知A′,B ′在直线l′:9x +y -91=0上,所以⎩⎪⎨⎪⎧7b -91=0,27+b (7-a )-1-91=0,解得⎩⎪⎨⎪⎧a =2,b =13.(解法2)设直线l 上任意一点P (x ,y ),点P 在矩阵A 对应的变换作用下得到点Q (x′,y ′).因为⎣⎢⎡⎦⎥⎤ 30-1b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=3x ,y ′=-x +by. 因为点Q (x′,y ′)在直线l′上,所以9x′+y′-91=0. 即27x +(-x +by )-91=0,也即26x +by -91=0. 又点P (x ,y )在直线l 上,所以有ax +y -7=0. 所以26a =b 1=-91-7,解得a =2,b =13.2. 已知在矩阵A =⎣⎢⎡⎦⎥⎤a 10b 对应的变换作用下把点(1,1)变换成点(2,2).(1) 求a ,b 的值,(2) 求曲线C :x 2+y 2=1在矩阵A 的变换作用下对应的曲线方程.解:(1) 由⎣⎢⎡⎦⎥⎤a 10b ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,得⎩⎪⎨⎪⎧a +1=2,b =2,∴ ⎩⎪⎨⎪⎧a =1,b =2. (2) 设曲线C 上任一点M′(x 0,y 0)在矩阵A 对应的变换作用下得到点M (x ,y ),∵ A =⎣⎢⎡⎦⎥⎤1102,∴ ⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x =x 0+y 0,y =2y 0,∴ ⎩⎪⎨⎪⎧x 0=x -12y ,y 0=12y.∵ 点M′在曲线C 上,∴ ⎝ ⎛⎭⎪⎫x -12y 2+⎝ ⎛⎭⎪⎫12y 2=1.故所求曲线方程为x 2-xy +12y 2=1.3. 已知a ,b ∈R ,若在矩阵M =⎣⎢⎡⎦⎥⎤-1 a b3所对应的变换作用下把直线2x -y =3变换成自身,试求实数a ,b.解:设直线2x -y =3上任意一点A (x ,y )在矩阵M 对应的变换作用下得到点A 0(x 0,y 0),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=-x +ay ,y 0=bx +3y. ∵ 2x 0-y 0=3,∴ 2(-x +ay )-(bx +3y )=3. 即(-2-b )x +(2a -3)y =3.此直线即为2x -y =3,∴ ⎩⎪⎨⎪⎧-2-b =2,2a -3=-1,解得⎩⎪⎨⎪⎧a =1,b =-4. 4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在矩阵M 对应的变换作用下得到了直线m :x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,-2a +b =0,-2c +d =-2.解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. 设直线l 上任一点P (x ,y )在矩阵M 对应的变换作用下得到点P ′(x′,y ′).因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,所以⎩⎪⎨⎪⎧x′=x +2y ,y ′=3x +4y.又m :x′-y′=4,所以直线l 的方程为(x +2y )-(3x +4y )=4, 即x +y +2=0.1. 求曲线|x|+|y|=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10013对应的变换作用下得到的曲线所围成图形的面积.解:设点(x 0,y 0)为曲线|x|+|y|=1上的任意一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10013对应的变换作用下得到的点为(x′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤10013⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x 0=x′,y 0=3y′. 所以曲线|x|+|y|=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤10013对应的变换作用下得到的曲线为|x|+3|y|=1,所围成的图形为菱形,其面积为12×2×23=23.2. 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by=1.(1) 求实数a ,b 的值;(2) 若点P (x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解: (1) 设直线l 上一点(x ,y )在矩阵A 对应的变换作用下得点(x′,y ′),则⎣⎢⎡⎦⎥⎤2301⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, ∴ ⎩⎪⎨⎪⎧x′=2x +3y ,y ′=y.代入直线l′,得2x +(b +3)y =1,∴ a =2,b =-2.(2) ∵ 点P (x 0,y 0)在直线l 上,∴ 2x 0+y 0=1.由⎣⎢⎡⎦⎥⎤2301⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=2x 0+3y 0,y 0=y 0, ∴ ⎩⎪⎨⎪⎧x 0=35,y 0=-15,∴ P ⎝ ⎛⎭⎪⎫35,-15.3. 设数列{a n },{b n }满足a n +1=2a n +3b n ,b n +1=2b n ,且满足⎣⎢⎡⎦⎥⎤a n +4b n +4=M ⎣⎢⎡⎦⎥⎤a nb n ,求二阶矩阵M .解: 依题设有⎣⎢⎡⎦⎥⎤a n +1b n +1=⎣⎢⎡⎦⎥⎤230 2⎣⎢⎡⎦⎥⎤a n b n , 令A =⎣⎢⎡⎦⎥⎤2302,则M =A 4,A 2=⎣⎢⎡⎦⎥⎤2 30 2⎣⎢⎡⎦⎥⎤2 30 2=⎣⎢⎡⎦⎥⎤4 120 4. M =A 4=(A 2)2=⎣⎢⎡⎦⎥⎤4 120 4⎣⎢⎡⎦⎥⎤4 120 4=⎣⎢⎡⎦⎥⎤16 96 0 16. 4. 已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.解:设P (x ,y )为直线l 上任意一点,在矩阵A 对应的变换作用下变为直线l′上的点P′(x′,y ′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤0112⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x′=y ,y ′=x +2y ,∴ ⎩⎪⎨⎪⎧x =-2x′+y′,y =x′. 代入ax -y =0,整理,得-(2a +1)x′+ay′=0. 将点(1,1)代入上述方程,解得a =-1.几种特殊的变换 反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x ,-y ),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y ),变换前后关于y 轴对称; M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y ),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y ,x ),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x ,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y ); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x ,x );M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y ,y );M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.第2课时 逆变换与逆矩阵、矩阵的特征值与 特征向量(对应学生用书(理)194~197页)1. 设二阶矩阵A ,B 满足A -1=⎣⎢⎡⎦⎥⎤1234,BA =⎣⎢⎡⎦⎥⎤1001,求B -1.解:∵ B =BAA -1=⎣⎢⎡⎦⎥⎤1001⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤1 23 4, 设B -1=⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤1 234⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤a +2c b +2d 3a +4c 3b +4d =⎣⎢⎡⎦⎥⎤1001,∴ ⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1.解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12.∴ B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 32-12.2. 已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B .解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1002⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,所以a =-1,b =c =0,d =12,从而矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10012, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-20 3.3. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-12 52x 的一个特征值为-2,求M 2. 解:将λ=-2代入⎪⎪⎪⎪⎪⎪⎪⎪λ+1-2-52λ-x =λ2-(x -1)λ-(x +5)=0,得x =3. ∴ 矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-12 523,∴ M 2=⎣⎢⎡⎦⎥⎤64514.4. 设⎣⎢⎡⎦⎥⎤23是矩阵M =⎣⎢⎡⎦⎥⎤a 232的一个特征向量,求实数a 的值.解:设⎣⎢⎡⎦⎥⎤23是矩阵M 属于特征值λ的一个特征向量,则⎣⎢⎡⎦⎥⎤a 232⎣⎢⎡⎦⎥⎤23=λ⎣⎢⎡⎦⎥⎤23,故⎩⎪⎨⎪⎧2a +6=2λ,12=3λ,解得⎩⎪⎨⎪⎧λ=4,a =1. 5. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 24b 的属于特征值8的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,点P (-1,2)在M 对应的变换作用下得到点Q ,求点Q 的坐标.解:由题意知⎣⎢⎡⎦⎥⎤a 24b ⎣⎢⎡⎦⎥⎤11=8×⎣⎢⎡⎦⎥⎤11,故⎩⎪⎨⎪⎧a +2=8,4+b =8,解得⎩⎪⎨⎪⎧a =6,b =4. ∴ ⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,∴ 点Q 的坐标为(-2,4).1. 逆变换与逆矩阵(1) 对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵. (2) 若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量经过矩阵A 对应的变换作用后,与原向量保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就被变换成了零向量., 1 求逆矩阵与逆变换), 1) 已知矩阵A =⎣⎢⎡⎦⎥⎤2113,B =⎣⎢⎡⎦⎥⎤1 10-1.求矩阵C ,使得AC =B .解: 因为det (A )=2×3-1×1=5,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤35-15-1525=⎣⎢⎢⎡⎦⎥⎥⎤ 35-15-1525. 由AC =B ,得(A -1A )C =A -1B , 所以C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 35-15-1525⎣⎢⎡⎦⎥⎤1 10-1=⎣⎢⎢⎡⎦⎥⎥⎤ 3545-15-35. 变式训练(2017·常州期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2132,列向量X =⎣⎢⎡⎦⎥⎤x y ,B =⎣⎢⎡⎦⎥⎤47.若AX =B ,直接写出A -1,并求出X.解:由A =⎣⎢⎡⎦⎥⎤2132,得A -1=⎣⎢⎡⎦⎥⎤ 2-1-3 2.由AX =B ,得X =A -1B =⎣⎢⎡⎦⎥⎤ 2-1-3 2⎣⎢⎡⎦⎥⎤47=⎣⎢⎡⎦⎥⎤12., 2 求特征值与特征向量) , 2) 求矩阵⎣⎢⎡⎦⎥⎤3113的特征值及对应的特征向量. 解:特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-3-1-1λ-3=(λ-3)2-1=λ2-6λ+8. 由f (λ)=0,解得λ1=2,λ2=4.将λ1=2代入特征方程组,得⎩⎪⎨⎪⎧-x -y =0,-x -y =0⇒x +y =0,可取⎣⎢⎡⎦⎥⎤1-1为属于特征值λ1=2的一个特征向量.同理,当λ2=4时,由⎩⎪⎨⎪⎧x -y =0,-x +y =0⇒x -y =0,所以可取⎣⎢⎡⎦⎥⎤11为属于特征值λ2=4的一个特征向量.综上所述,矩阵⎣⎢⎡⎦⎥⎤3113有两个特征值λ1=2,λ2=4; 属于λ1=2的一个特征向量为⎣⎢⎡⎦⎥⎤ 1-1,属于λ2=4的一个特征向量为⎣⎢⎡⎦⎥⎤11.变式训练(2017·苏北三市模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤a 32d ,若A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤84,求矩阵A 的特征值.解: 因为A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a 32d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤a +62+2d =⎣⎢⎡⎦⎥⎤84,所以⎩⎪⎨⎪⎧a +6=8,2+2d =4, 解得⎩⎪⎨⎪⎧a =2,d =1.所以A =⎣⎢⎡⎦⎥⎤2321. 所以矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f (λ)=0,解得矩阵A 的特征值为λ1=-1,λ2=4. , 3 根据特征值或特征向量求矩阵) , 3) 已知矩阵A =⎣⎢⎡⎦⎥⎤33c d .若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2,求矩阵A ,并写出A 的逆矩阵. 解:由矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,可得⎣⎢⎡⎦⎥⎤33c d ⎣⎢⎡⎦⎥⎤11=6⎣⎢⎡⎦⎥⎤11,即c+d =6 ①.由矩阵A 属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤ 3-2,可得⎣⎢⎡⎦⎥⎤33c d ⎣⎢⎡⎦⎥⎤ 3-2=⎣⎢⎡⎦⎥⎤3-2,即3c -2d =-2 ②.联立①②解得⎩⎪⎨⎪⎧c =2,d =4,即A =⎣⎢⎡⎦⎥⎤3 32 4,所以A 的逆矩阵是⎣⎢⎢⎡⎦⎥⎥⎤23-12-1312. 备选变式(教师专享)已知二阶矩阵M 有特征值λ=3及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且在矩阵M 对应的变换作用下将点(-1,2)变换成(9,15),求矩阵M .解: 设M =⎣⎢⎡⎦⎥⎤a bc d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 故⎩⎪⎨⎪⎧a +b =3,c +d =3. ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15. 联立以上两个方程组解得⎩⎪⎨⎪⎧a =-1,b =4,c =-3,d =6,故M =⎣⎢⎡⎦⎥⎤-14-36., 4 特征值与特征向量的综合应用), 4) 已知矩阵A =⎣⎢⎡⎦⎥⎤12-14,向量α=⎣⎢⎡⎦⎥⎤53,计算A 5α. 解:因为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-4=λ2-5λ+6.由f (λ)=0,得λ=2或λ=3.当λ=2时,对应的一个特征向量为α1=⎣⎢⎡⎦⎥⎤21;当λ=3时,对应的一个特征向量为α2=⎣⎢⎡⎦⎥⎤11. 设⎣⎢⎡⎦⎥⎤53=m ⎣⎢⎡⎦⎥⎤21+n ⎣⎢⎡⎦⎥⎤11,解得⎩⎪⎨⎪⎧m =2,n =1.所以A 5α=2×25⎣⎢⎡⎦⎥⎤21+1×35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤371307.变式训练已知矩阵M =⎣⎢⎡⎦⎥⎤2 m n 1的两个特征向量α1=⎣⎢⎡⎦⎥⎤10,α2=⎣⎢⎡⎦⎥⎤01.若β=⎣⎢⎡⎦⎥⎤12,求M 2β. 解:设矩阵M 的特征向量α1对应的特征值为λ1,特征向量α2对应的特征值为λ2, 则由⎩⎪⎨⎪⎧Mα1=λ1α1,M α2=λ2α2,可解得⎩⎪⎨⎪⎧m =0,n =0,λ1=2,λ2=1.又β=⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤10+2⎣⎢⎡⎦⎥⎤01=α1+2α2,所以M 2β=M 2(α1+2α2)=λ21α1+2λ22α2=4⎣⎢⎡⎦⎥⎤10+2⎣⎢⎡⎦⎥⎤01=⎣⎢⎡⎦⎥⎤42.1. (2017·苏州期初)已知α=⎣⎢⎡⎦⎥⎤21为矩阵A =⎣⎢⎡⎦⎥⎤1a -14属于λ的一个特征向量,求实数a ,λ的值及A 2.解:由条件可知,⎣⎢⎡⎦⎥⎤ 1a -14⎣⎢⎡⎦⎥⎤21=λ⎣⎢⎡⎦⎥⎤21,所以⎩⎪⎨⎪⎧2+a =2λ,-2+4=λ,解得⎩⎪⎨⎪⎧a =2,λ=2. 因此A =⎣⎢⎡⎦⎥⎤ 12-14,所以A 2=⎣⎢⎡⎦⎥⎤ 12-14⎣⎢⎡⎦⎥⎤ 12-14=⎣⎢⎡⎦⎥⎤-110-514.2. (2017·苏州期中)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 将点(-1,3)变换为(0,8).(1) 求矩阵M ;(2) 求曲线x +3y -2=0在矩阵M 对应的变换作用下的新曲线方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11及⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 3=⎣⎢⎡⎦⎥⎤08,得⎩⎪⎨⎪⎧a +b =8,c +d =8,-a +3b =0,-c +3d =8,解得⎩⎪⎨⎪⎧a =6,b =2,c =4,d =4,∴ M =⎣⎢⎡⎦⎥⎤6244.(2) 设原曲线上任一点P (x ,y )在矩阵M 对应的变换作用下的对应点为P ′(x′,y ′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x′=6x +2y ,y ′=4x +4y , 解得⎩⎪⎨⎪⎧x =2x′-y′8,y =-2x′+3y′8,代入x +3y -2=0并整理得x′-2y′+4=0,即曲线x +3y -2=0在矩阵M 对应的变换作用下得到的新曲线方程为x -2y +4=0. 3. (2017·南京、盐城期末)设矩阵M =⎣⎢⎡⎦⎥⎤m 22-3的一个特征值λ对应的一个特征向量为⎣⎢⎡⎦⎥⎤1-2,求实数m 与λ的值. 解:由题意得⎣⎢⎡⎦⎥⎤m 22-3⎣⎢⎡⎦⎥⎤ 1-2=λ⎣⎢⎡⎦⎥⎤ 1-2,则⎩⎪⎨⎪⎧m -4=λ,2+6=-2λ,解得⎩⎪⎨⎪⎧m =0,λ=-4. 4. (2017·无锡期末)已知变换T 将平面内的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换成点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M.(1) 求矩阵M ; (2) 求矩阵M 的特征值.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a bc d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤ 94-2, ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-32 4, 得a =3,b =-32,c =-4,d =4,∴ M =⎣⎢⎢⎡⎦⎥⎥⎤3-32-4 4.(2) 设矩阵M 的特征多项式为f (λ),∴ f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3324λ-4=(λ-3)(λ-4)-6=λ2-7λ+6. 令f (λ)=0,则λ1=1,λ2=6.1. 已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成点(3,4).(1) 求a ,b 的值;(2) 若矩阵A 的逆矩阵为B ,求B 2. 解:(1) 由题意,得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34, 故⎩⎪⎨⎪⎧6+3a =3,2b -6=4,解得⎩⎪⎨⎪⎧a =-1,b =5. (2) 由(1),得A =⎣⎢⎡⎦⎥⎤3 -15 -2. 由矩阵的逆矩阵公式得B =⎣⎢⎡⎦⎥⎤2 -15 -3. 所以B 2=⎣⎢⎡⎦⎥⎤-1 1-5 4. 2. (2017·南通、泰州模拟)设矩阵A 满足:A ⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3,求矩阵A 的逆矩阵A -1.解:(解法1)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3,所以a =-1,2a +6b =-2,c =0,2c +6d =3.解得b =0,d =12,所以A =⎣⎢⎢⎡⎦⎥⎥⎤-10 012.根据逆矩阵公式得A -1=⎣⎢⎡⎦⎥⎤-10 02. (解法2)在A ⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3两边同时左乘逆矩阵A -1,得⎣⎢⎡⎦⎥⎤1206=A -1⎣⎢⎡⎦⎥⎤-1-2 0 3.设A -1=⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1-2 0 3, 所以-a =1,-2a +3b =2,-c =0,-2c +3d =6.解得a =-1,b =0,c =0,d =2,从而A -1=⎣⎢⎡⎦⎥⎤-10 02. 3. 已知矩阵M =⎣⎢⎡⎦⎥⎤1 022,求逆矩阵M -1的特征值. 解:设M -1=⎣⎢⎡⎦⎥⎤a b c d ,则MM -1=⎣⎢⎡⎦⎥⎤1 02 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,所以⎣⎢⎡⎦⎥⎤a b 2a +2c 2b +2d =⎣⎢⎡⎦⎥⎤1 001, 所以⎩⎪⎨⎪⎧a =1,b =0,2a +2c =0,2b +2d =1,解得⎩⎪⎨⎪⎧a =1,b =0,c =-1,d =12.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 10-112. M -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-101λ-12=(λ-1)⎝ ⎛⎭⎪⎫λ-12,令f (λ)=0,解得λ=1或λ=12. 所以矩阵M 的逆矩阵M -1的特征值为1和12. 4. 已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β. 解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f (λ)=0,解得λ1=3,λ2=-1,对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1. 令β=m α1+n α2,得m =4,n =-3.M 6β=M 6(4α1-3α2)=4(M 6α1)-3(M 6α2)=4×36⎣⎢⎡⎦⎥⎤11-3×(-1)6⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤2 9132 919. 错误![备课札记]。
逆变换与逆矩阵教学目标1.理解逆矩阵的概念,了解逆变换的概念2.能判断一个矩阵是否存在逆矩阵,掌握六种变换除了投影变换不存在逆变换,其他的都有逆变换的结论3.能求一个二阶矩阵以及两个二阶矩阵乘积的逆矩阵4.理解二阶矩阵消去律的条件一.回顾复习,引入新课1.矩阵乘法的简单性质2.矩阵乘法的几何意义3.初等变换,初等变换矩阵,初等变换的复合问题:对于下列给出的变换对应的矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先A T 后B T )的结果与恒等变换的结果相同?(1)以y 轴为反射轴作反射变换;(2)绕原点逆时针旋转︒30作旋转变换;(3)纵坐标不变,沿x 轴方向将横坐标压缩为原来的21作伸压变换; (4)沿x 轴方向,将y 轴作投影变换;(5)横坐标x 不变,纵坐标依横坐标的比例增加,且)2,(),(y x x y x +→作切变变换.二.建构数学,新授内容1.逆变换2.逆矩阵3.相关结论(1)(2)(3)思考:M 的逆矩阵M 1-和函数)(x f y =的反函数)(1x fy -=有什么异同?三.应用示例,例题分析例1.用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请把它求出来;若不存在,请说明理由. (1)A ⎥⎦⎤⎢⎣⎡-=1001;(2)B ⎥⎦⎤⎢⎣⎡=3001;(3)C ⎥⎦⎤⎢⎣⎡=1000;(4)D ⎥⎥⎦⎤⎢⎢⎣⎡=12101例2.求矩阵A ⎥⎦⎤⎢⎣⎡=1223的逆矩阵.例3.求下列矩阵AB 的逆矩阵. (1)A ⎥⎦⎤⎢⎣⎡=2001,B ⎥⎥⎦⎤⎢⎢⎣⎡=10211; (2)A ⎥⎦⎤⎢⎣⎡=0211,B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=021210.思考:1.已知A,B,C为二阶矩阵,且AB=AC,若矩阵A存在逆矩阵,B=C是否成立?2.已知A,B,C为二阶矩阵,且BA=CA,若矩阵A存在逆矩阵,B=C是否成立?四.小结。
2.逆变换与逆矩阵-湘教版选修4-2矩阵与变换教案一、逆变换在矩阵与变换中,逆变换是一种重要的变换。
逆变换的本质是将原变换的作用反转,即将输出值映射回原输入值。
在这个过程中,需要寻找一个新的变换,使得先作用原来的变换再作用新的变换后,得到的结果是原来的输入值。
考虑一个简单的例子:将一个点绕原点旋转α角度,在用一个向量β将其平移后得到新的点。
我们可以用一个组合变换来描述这个过程:T(x,y) = (x,y)Rα(β1,β2) = (x,y)(cosα, sinα, -sinα, cosα)(1,0,0,1)+ (β1,β2)其中,Rα(β1,β2)表示先将点绕原点旋转α角度,再将其平移β1单位水平方向,β2单位垂直方向。
现在,我们想要逆转这个变换,将终点坐标(x’,y’)反向还原回起始坐标(x,y),也就是满足下面的等式:(x', y') = (x,y)Rα(β1,β2)这个等式求解出来即可得到新的逆变换:(x,y) = (x', y')R-α(-β1,-β2) = (x', y')(cosα, -sinα, sinα, cosα)(-β1,-β2)其中,R-α(-β1,-β2)表示先将点绕原点旋转-α角度,将其平移β1单位水平方向,β2单位垂直方向,即反向执行原来的变换。
二、逆矩阵逆变换的本质是求解一个矩阵的逆矩阵。
对于任意一个可逆矩阵A,存在一个和A相乘等于单位矩阵的矩阵B,使得两个矩阵相乘的结果为单位矩阵:A ×B = B × A = I其中,A和B的乘积顺序并不影响结果,因此称A和B互为逆矩阵。
逆矩阵也满足以下性质:•对于任意可逆矩阵A和其逆矩阵B,A × B = B × A = I•对于任意可逆矩阵A,它的逆矩阵唯一对于一个2x2矩阵A = [a, b; c, d],其逆矩阵可以通过以下公式求解:B = 1/(ad - bc) × [d, -b; -c, a]如果一个矩阵不可逆,则其行列式等于0。
选修4-2 矩阵与变换第2课时逆变换与逆矩阵、矩阵的特征值与特征向量(对应学生用书(理)189~191页)考情分析考点新知①掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算.②求二阶矩阵的特征值和特征向量, 利用特征值和特征向量进行矩阵运算.①理解逆矩阵的意义,掌握二阶矩阵存在逆矩阵的条件,并能进行矩阵的运算. ②会求二阶矩阵的特征值和特征向量,会利用矩阵求解方程组.会利用特征值和特征向量进行矩阵运算.1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN . 解:MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤ 12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[16-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎡⎦⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8,当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1,故特征值λ1=-3的一个特征向量为⎣⎢⎡⎦⎥⎤-1 1;当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎡⎦⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组.2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎡⎦⎥⎤1101;(2) M =⎣⎢⎡⎦⎥⎤1221. 解:(1) 设M -1=⎣⎢⎡⎦⎥⎤a b c d , 则由定义知⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎡⎦⎥⎤1-10 1. (2) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,则由定义知⎣⎢⎡⎦⎥⎤1221⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎡⎦⎥⎤-132323-13.备选变式(教师专享) 已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3,故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3). 题型2 求特征值与特征向量例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0, 得2-2a =-4 a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0 x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.变式训练 已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1. 令β=m α1+n α2,则m =4,n =-3. M 5β=M 5(4α1-3α2) =4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.题型3 根据特征值或特征向量求矩阵例3 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10,(1) 求e 1和e 2对应的特征值; (2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α. 解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1→=⎣⎢⎡⎦⎥⎤10,e 2→=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎡⎦⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1.(2) 因为α→=⎣⎢⎡⎦⎥⎤x y =xe 1→+ye 2→,所以M 100α→=M 100(xe 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=xλ1001e 1→+yλ2100e 2→=⎣⎢⎡⎦⎥⎤2100x y .1. 求函数f(x)=⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎡⎦⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎡⎦⎥⎤-143412-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A-1=⎣⎢⎡⎦⎥⎤-143412-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2013·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B .解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-10 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001, 故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012, ∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值; (2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上, 所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2 a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021 |A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤ 10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值;(2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9. (2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4. 2. 已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎡⎦⎥⎤x y z w ,据题意有⎣⎢⎡⎦⎥⎤2-1-43⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1.(解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎡⎦⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. 3. 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤1-2=⎣⎢⎡⎦⎥⎤-40,∴ 2-2a =-4 a =3. ∴ M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为 f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4 令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 2x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤120013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤dad -bc -b ad -bc-c ad -bc a ad -bc.2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y ,则当D ≠0时,方程组的解为⎩⎨⎧x =D xD,y =D y D.请使用课时训练(B )第2课时(见活页).[备课札记]。