七年级数学期末考试模拟测试
- 格式:doc
- 大小:112.50 KB
- 文档页数:4
七年级上学期期末模拟考试数学试卷-附含有答案学校:班级:姓名:考号:一.选择题(共10小题,满分30分,每小题3分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021的相反数是()A.2021B.﹣2021C.−12021D.120212.(3分)数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨C.1.86×1010吨D.1.86×1011吨3.(3分)已知代数式−13x b y a−1与22x2y是同类项,则a+b的值为()A.2B.4C.3D.1 4.(3分)下列各式中,去括号正确的是()A.1﹣(a2﹣2ab+b2)=1﹣a2+2ab+b2B.x﹣2(y﹣1)=x+2y+2C.﹣5(﹣a+3)﹣ab=﹣5a﹣15﹣abD.﹣[(x﹣z)﹣y2]=﹣x+z+y25.(3分)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱6.(3分)下列各式中,哪个是多项式()A.3a B.0C.12mD.7m﹣8n7.(3分)如图,从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是()A.两点确定一条直线B.两点之间线段最短C.经过一点可以画无数条直线D.两点之间线段的长度,叫做这两点之间的距离8.(3分)已知C、D、E三点在直线AB上,P为直线AB外一点,PC=1,PD=2,PE=3,则点P到直线AB的距离()A.小于1B.不小于1C.大于1D.不大于19.(3分)如图,AB为⊙O的直径,点C,D在圆上,若∠D=64°,则∠BAC的度数为()A.64°B.34°C.26°D.24°10.(3分)已知M=79a﹣1,N=a2−119a(a≠1),则M,N的大小关系为()A.M=N B.M<N C.M>N D.不能确定二.填空题(共6小题,满分18分,每小题3分)11.(3分)若min{m,n}表示m,n两数中较小的数,则min{−12,−13}的值为.12.(3分)用度来表示78°29′24″=.13.(3分)一辆汽车行走的路程为5,所用的时间为t,则它的速度为.14.(3分)如图,AE∥CD,若∠1=37°,∠DAC=89°,∠DBC=46°,则∠AEC的度数为.15.(3分)如图,点C,D在线段AB上.若C是线段AB中点,CD=14AC,AB=16,则BD长为.16.(3分)观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…,则第15个图形中有个三角形.三.解答题(共12小题,满分72分) 17.(4分)计算:(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5); (2)(+456)﹣(+335)﹣(﹣316)﹣(+125).18.(4分)小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f (3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f (4,﹣2). (1)直接写出计算结果,f (4,12)= ,f (5,3)= ;(2)关于“有理数的除方”下列说法正确的是 .(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算:f (5,3)×f (4,13)×f (5,﹣2)×f (6,12).19.(5分)计算:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2. 20.(5分)化简: (1)3a ﹣2a +(﹣a ); (2)3a 2+2a ﹣4a 2﹣7a . (3)13(9x −3)+2(x +1).(4)4x +2y ﹣(2x ﹣y ).21.(6分)先化简,后求值:2xy2﹣[3xy﹣(2xy﹣2xy2)],其中x=−12,y=2.22.(6分)如图所示的方格纸中,每小方格的边长都为1cm.请在方格纸上画图并回答问题:(1)在点A的正东方向取一点B,使A、B两点间的距离为4cm.(2)过点A画直线AB的垂线.(3)在点A的正北方向取点C,使AC=AB.(4)以点A为端点,画A点的北偏东45°方向的射线交BC于D点.(5)过点D画直线AB的平行线交AC于点E.(6)在线段AB上取一点F,使得AF=3FB,并画射线EF.(7)写出图中∠ACD的一个同位角,点B到直线AC的距离.(8)用数字1在图上标出∠CDE的对顶角,用数字2标出∠EFB的一个邻补角.23.(6分)如图,直线AB和CD交于点O,OE平分∠DOB.(1)在∠BOC内部,过点O作射线OF⊥CD;(2)在(1)的条件下,若∠EOF=63°,求∠BOF的度数.24.(6分)某学校深入开展足球进校园活动,为了提高足球运动员快速转身抢断能力,体育老师设计了折返跑训练.在足球场上画一条东西方向的直线,如果约定向东为正,向西为负,一运动员折返跑训练的记录如下(单位:米):+15,﹣19,+16,﹣18,+21,﹣30,+35,﹣25,+25,﹣10.请解答下列问题:(1)该运动员最后到达的地方在出发点的哪个方向?距出发点多远?(2)该运动员本次训练结束,共跑了多少米?25.(7分)如图:AB∥CD,AE、DF分别是∠BAO、∠CDO的平分线,求证:AE∥DF.26.(7分)观察下列表格中两个代数式及其相应的值,回答问题:x…﹣2﹣1012…﹣2x+5…9753a…2x﹣7…﹣11﹣9﹣7﹣5b…【初步感知】(1)根据表中信息可知:a=;b=;【归纳规律】(2)表中﹣2x+5的值的变化规律是:x的值每增加1,﹣2x+5的值就都减少2.类似地,2x﹣7的值的变化规律是:;【问题解决】(3)请直接写出一个含x的代数式,要求x的值每增加1,代数式的值就都减小5,且当x=0时,代数式的值为﹣7.27.(8分)如图,AB∥CD,点P为平面内一点.(1)如图①,当点P在CD与之间时,若∠A=20°,∠C=45°,则∠P=°;(2)如图②,当点P在点B右上方时,∠ABP、∠CDP、∠BPD之间存在怎样的数量关系?请证明;(3)如图③,EB平分∠PEG,FP平分∠GFD,若∠PFD=40°,则∠G+∠P=°.28.(8分)如图,数轴上点A表示的数是﹣4,点B表示的数是6,动点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动,运动时间为t秒(t>0).(1)直接写出线段AB的长度;(2)当点P运动到点B的右侧时,直接写出线段BP的长度(用含t的代数式表示);(3)当t=3秒时,点M到点A,点P的距离相等;点N到点B,点P的距离相等,求此时线段MN 的长度;(4)当点P从点A出发时,另一个动点Q同时从B点出发,以每秒1个单位长度的速度沿数轴向右运动.①点P表示的数为:(用含t的代数式表示);点Q表示的数为:(用含t的代数式表示);②请直接写出B,P,Q三点中有一点恰好到另外两点的距离相等时的t值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:2021的相反数是:﹣2021.故选:B.2.【解答】解:186亿吨=186****0000吨=1.86×1010吨.故选:C.3.【解答】解:由题意知,b=2,a﹣1=1解得a=2∴a+b=4故选:B.4.【解答】解:A、1﹣(a2﹣2ab+b2)=1﹣a2+2ab﹣b2,故本选项错误,不符合题意;B、x﹣2(y﹣1)=x﹣2y+2,故本选项错误,不符合题意;C、﹣5(﹣a+3)﹣ab=5a﹣15﹣ab,故本选项错误,不符合题意;D、﹣[(x﹣z)﹣y2]=﹣x+z+y2,故本选项正确,符合题意;故选:D.5.【解答】解:∵圆锥的侧面展开图是扇形∴判断这个几何体是圆锥故选:A.6.【解答】解:A、3a是单项式,不合题意;B、0是单项式,不合题意;C、12m是分式,不合题意;D、7m﹣8n是多项式,符合题意;故选:D.7.【解答】解:从教学楼到图书馆有三条道路,从上到下依次记为①,②,③,小明认为走第②条道路最近,其理由是两点之间,线段最短.故选:B.8.【解答】解:∵垂线段最短∴点P到直线AB的距离不大于PC、PD、PE又∵PC=1,PD=2,PE=3∴点P到直线AB的距离不大于1故选:D.9.【解答】解:连接BC∵∠D=64°∴∠D=∠B=64°∵AB为⊙O的直径∴∠ACB=90°∴∠BAC=90°﹣∠B=26°故选:C.10.【解答】解:∵M=79a﹣1,N=a2−119a(a≠1)∴M﹣N=79a﹣1﹣(a2−119a)=79a﹣1﹣a2+119a=﹣a 2+2a ﹣1 =﹣(a ﹣1)2∵任何数的平方为非负数,且a ≠1 所以N >M . 故选:B .二.填空题(共6小题,满分18分,每小题3分) 11.【解答】解:∵12=36,13=26,36>26∴−12<−13 ∴min {−12,−13}=−12故答案为:−12.12.【解答】解:∵24″=(2460)′=0.4′,29.4′=(29.460)°=0.49°∴78°29'24''=78.49°. 故答案为:78.49°.13.【解答】解:根据题意得,速度为5t .读答案为:5t.14.【解答】解:在△ACD 中,∠1=37°,∠DAC =89° ∴∠D =180°﹣∠DAC ﹣∠1=54° ∵AE ∥CD∴∠BAE =∠D =54°∵∠DBC +∠BAE +∠AEB =180°,∠DBC =46° ∴∠AEB =180°﹣54°﹣46°=80°∴∠AEC =180°﹣∠AEB =180°﹣80°=100° 故答案为:100°.15.【解答】解:∵点C ,D 在线段AB 上.C 是线段AB 中点 ∴AC =CB =12AB ∵CD =14AC ,AB =16∴BD =34AC =38AB =38×16=6.故答案为:6.16.【解答】解:第1个图形中一共有1个三角形 第2个图形中一共有1+4=5个三角形 第3个图形中一共有1+4+4=9个三角形 …第n 个图形中三角形的个数是1+4(n ﹣1)=(4n ﹣3)个 当n =15时,4n ﹣3=4×15﹣3=57 故答案为:57.三.解答题(共12小题,满分72分)17.【解答】(1)(+18)﹣(+6)﹣(+19)﹣(﹣20)﹣(﹣5) =18﹣6﹣19+20+5 =12﹣19+20+5 =﹣7+20+5 =13+5 =18;(2)(+456)﹣(+335)﹣(﹣316)﹣(+125)=+456−335+316−125=+456+316−125−335=8﹣(125+335)=8﹣5 =3.18.【解答】解:(1)f (4,12)=12÷12÷12÷12=4f (5,3)=3÷3÷3÷3÷3=127; 故答案为:4;127.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16 ∴f (6,3)≠f (3,6),故错误; ②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误; ④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为:②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(1a)n ﹣2(n 为正整数,a ≠0,n ≥2).(4)f (5,3)×f (4,13)×f (5,﹣2)×f (6,12)=127×9×(−18)×16 =−23.19.【解答】解:−12+16[−22+(−3)2×(−2)+(−3)]÷(−52)2 =﹣1+16×[﹣4+9×(﹣2)+(﹣3)]÷254 =﹣1+16×(﹣4﹣18﹣3)×425 =﹣1+16×(﹣25)×425 =﹣1+(−23) =−53.20.【解答】解:(1)3a ﹣2a +(﹣a ) =3a ﹣2a ﹣a =0;(2)3a 2+2a ﹣4a 2﹣7a =(3﹣4)a 2+(2﹣7)a =﹣a 2﹣5a ;(3)13(9x −3)+2(x +1)=3x ﹣1+2x +2 =5x +1;(4)4x +2y ﹣(2x ﹣y ) =4x +2y ﹣2x +y =2x +3y .21.【解答】解:原式=2xy 2﹣(3xy ﹣2xy +2xy 2)=2xy2﹣3xy+2xy﹣2xy2=﹣xy当x=−12,y=2时原式=﹣(−12)×2=1.22.【解答】解:(1)如图,线段AB即为所求;(2)如图,直线l即为所求;(3)如图,线段AC即为所求(4)如图,射线AD,点D即为所求;(5)如图,直线DE即为所求;(6)如图,射线EF即为所求;(7)图中∠ACD的一个同位角∠AEF,点B到直线AC的距离4.故答案为:∠AEF(答案不唯一),4;(8)如图,∠1,∠2即为所求.23.【解答】解:(1)作图如下:(2)∵OF⊥CD∴∠DOF=90°∵∠EOF=63°∴∠DOE=90°﹣63°=27°∵OE平分∠DOB∴∠BOD=2∠DOE=2×27°=54°∴∠BOF=∠DOF﹣∠BOD=90°﹣54°=36°.24.【解答】解:(1)15﹣19+16﹣18+21﹣30+35﹣25+25﹣10=10(米)∴最后到达的地方在出发点的东边,距出发点10米.(3)|+15|+|﹣19|+|+16|+|﹣18|+|+21|+|﹣30|+|+35|+|﹣25|+|+25|+|﹣10|=15+19+16+18+21﹣30+35+25+25+10=214(米)∴该运动员本次训练结束,共跑了214米.25.【解答】证明:∵AB∥CD∴∠BAO=∠CDO又∵AE、DF分别是∠BAO、∠CDO的平分线∴∠EAO=12∠BAO=12∠CDO=∠FDO∴AE∥DF.26.【解答】解:(1)用2替换代数式中的xa=﹣2×2+5=1b=2×2﹣7=﹣3.故答案为:1;﹣3;(2)观察表格中第三行可以看出,x的值每增加1,2x﹣7的值都增加2故答案为:x的值每增加1,2x﹣7的值都增加2.(3)∵x的值每增加1,代数式的值就都减小5∴x的系数为﹣5.∵当x=0时,代数式的值为﹣7∴代数式的常数项为﹣7.∴这个含x的代数式是:﹣5x﹣7.27.【解答】解:(1)过点P作MN∥AB∵AB∥CD∴AB∥CD∥MN又∵∠A=20°,∠C=45°∴∠APM=∠A=20°∠MPC=∠C=45°∴∠P=∠APM+∠MPC=20°+45°=65°;故答案为:65;(2)∠ABP=∠CDP+∠BPD;理由如下:延长AB交PD于点H∴∠ABP是△PBH的一个外角∵AH∥CD∴∠CDP=∠BHP∴在△PBH,∠BPD+∠BHP=∠ABP∴∠ABP、∠CDP、∠BPD之间存在的数量关系为:∠ABP=∠CDP+∠BPD;(3)延长AB交PF于点H,过点G,作MN∥AB∵AB ∥CD∴MN ∥AB ∥CD∴∠HEG =EGM ,∠EHF =∠PFD ,∠MGF =∠GFD∵EB 平分∠PEG ,FP 平分∠GFD ,若∠PFD =40°∴∠PEH =∠HEG ,∠PFD =∠PFG =40°,∠GFD =80°∴∠G =∠EGM +∠MGF =∠HEG +∠GFD =∠PEH +80°,∠P +∠PEH =∠EHF =∠PFD =40° ∴∠P =40°﹣∠PEH∴∠G +∠P =∠PEH +80°+40°﹣∠PEH =120°.故答案为:120.28.【解答】解:(1)6﹣(﹣4)=10线段AB 的长度是10;(2)P 点表示的数为﹣4+3t线段BP 的长度为﹣4+3t ﹣6=3t ﹣10;(3)当t =3秒时AP =3×3=9点M 表示的数是0.5BP =AB ﹣AP =10﹣9=1点N 表示的数是5.5所以线段MN 的长度是5.5﹣0.5=5;(4)①点P 表示的数为﹣4+3t点Q 表示的数为6+t故答案为:﹣4+3t ,6+t②当B 是P 、Q 中点时,6﹣(﹣4+3t )=6+t ﹣6解得:t =52当P 是B 、Q 的中点时,﹣4+3t ﹣6=6+t ﹣(﹣4+3t )解得:t =4当Q 是B 、P 的中点时,6+t ﹣6=﹣4+3t ﹣(6+t )解得:t =10B ,P ,Q 三点中有一点恰好到另外两点的距离相等时的t 值为52、4或10.。
第一学期期末模拟考试七年级数学试卷一,填空题(每小题3分,共36分)1,-3的相反数是 ( ) A ,-3 B ,3 C ,±3, D ,1/32,在数轴上与数3距离为5单位的点所表示的数为 ( ) A 3 B , 8 C ,-2 D ,-2或83,下列说法错误的是 ( ) A .275万精确到万位 B .3.46精确到百分位C .0.0320有四个有效数字D .1000保留三个有效数字为1.00×1034,下列说法中,正确的有 ( ) ①52xy 的系数为52 ;②—2²b a 2的次数是5;③多项式1332-+-n mn n m 的次数是3;④x y -和12a都是整式.A .1个B .2个C .3个D .4个5,下面计算正确的是 ( ) A ,3x ²—x ²=3 B ,3a ²+2 a ³=5 a5 C , 3+x=3x D -0.25ab+0.25ba=0 6,方程213x +=与2-03a x -=的解相同,则a 的值是( ) A.7 B.0 C.3 D.57,某测绘装置上一枚指针原来指向南偏西50°如图,把这枚指 针按逆时针方向旋转90°,则指针的指向为 ( )A 南偏东50°B 西偏北50°C 南偏东40°D 东南方向8,把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是 ( ) A 线段可以比较大小 B 线段有两个端点 C 两点之间线段最短 D 过两点有且只有一条直线 9,如图,O 为直线AB 上一点,OC 平分AOE ∠,DOE ∠=90º,.则以下结论正确的是 ( ) ①AOD ∠与BOE ∠互为余角; ②COE AOD ∠=∠21;③COD BOE ∠=∠2;④若BOE ∠=57º50′,则COE ∠=61º5′ A 、①④ B 、①③④ C 、③④ D 、①②③④10.有m 辆客车及n 个人, 若每辆客车坐40人, 则还有10人不能上车, 若每辆客车坐43人, 则只有1人不能上车.有下列四个等式: ①40m +10=43m -1; ②4314010+=+n n ; ③4314010-=-n n ;④40m +10=43m +1.其中正确的是 ( ) A .①② B .②④ C .①③ D .③④11 ,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,则MN :PQ 等于 ( ). A .1 B .2 C .3 D .412.下列说法:①平方等于64的数是8;②若a 、b 互为相反数,则ab=-1:③若︱-a ︱=a ,则(-a )3的值为负数;④若ab ≠o ,则aa +bb 的取值在0,1,2,-2这四个数中,不可取的值是0.其中正确的个数为 ( ) A .0个 B .1个 C .2个 D .3个二,填空题(每小题3分,共12分)13,长江水位高于正常水位5.7m ,记作+5.7m ,那么低于正常水位3.2m 记为 。
七年级数学期末模拟考试试卷6。
9一、选择题:(本大题共8小题.每小题3分,共24分.在每小题给出的四个选项中,只有一个是符合题目要求的,请将答案直接填在题后的括号中)。
1、最近,美国科学家成功研制出了纳米汽车“Nanodragster”。
这辆世界上最小的汽车为研发未来新一代分子机器铺平了道路。
1纳米等于0.000000001米,0.000000001用科学记数法表示为 ( ) A 、1×10-8 B 、1×10-9 C 、1×10-10 D 、 0.1×10-82、若多项式23x mx +-因式分解的结果为(1)(3)x x -+,则m 的值为 ( )A 、-2B 、2C 、0D 、1 3、如图,A B//CO,且AB=CD ,AC 交DB 于点O,过点O 的直线EF 分 别交AB 、CD 与点E 、F,则图中全等的三角形有( ) A .6对 B .5对 C .4对 D .3对 4、下列运算中,结果正确的是( ) A 、a 3+a 3=a 6 B 、(a 2)3=a 5 C 、a 2· a 4=a 8 D 、a 4 ÷a 3=a5、下列命题中,正确的是 ( )A .三个角对应相等的两个三角形全等 B .面积相等的两个三角形全等 C .全等三角形的面积相等 D .两边和其中一边的对角对应相等的两个三角形全等6、如图,AB=AC ,点D 、E 分别是AB 、AC 上的点。
若再添加一个条件使得⊿ABE ≌⊿ACD ,则以下四个选项不能..作为添加的条件的是 ( )A 、AE=ADB 、∠B=∠C C 、BE=CD D 、∠AEB=∠ADC 7、下列事件中,属于必然事件的是( )A 、打开电视机,它正在播放新闻节目;B 、随机掷一枚硬币,正面朝上;C 、小明在百米赛跑中,用时5秒而夺冠;D 、地球上,太阳东升西落。
8、如图,是一个染有红、黄、蓝、绿四色的八等分转盘,若随机转动一次转盘, 待转盘停止后,指针所指的颜色中,可能性大小相等的两种颜色是 ( ) A 、红、绿 B 、红、蓝 C 、黄、蓝 D 、黄、红 二、填空题:(本题共有11小题,第19小题每空8分,其它每小题3分,共38分) 9、已知方程23x y +=,用含x 的代数式表示y ,则y=________。
七年级数学上册期末考试模拟卷(附答案解析)一.选择题(共8小题,满分24分,每小题3分)1.﹣3的相反数是()A.3B.﹣3C.D.﹣2.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆3.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1034.下列说法正确的是()A.绝对值最小的数是0B.若|a|=﹣a,则a<0C.﹣a一定是负数D.多项式3xy2﹣4x3y+12的次数为75.根据如图所示的流程图中的程序,当输入数据x=﹣2,y=1时,m值为()A.5B.3C.﹣2D.46.如图所示,点M,N是线段AB上的两个点,且M是AB的中点,N是MB的中点,若AB =a,NB=b,下列结论:①AM=a②AN=a﹣b③MN=a﹣b④MN=a.其中正确的有()A.1个B.2个C.3个D.4个7.超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.88.若a,b在数轴上的位置如图所示,则下列选项不正确的是()A.ab<0B.|a|>|b|C.a+b>0D.a<﹣b<b<﹣a二.填空题(共8小题,满分24分,每小题3分)9.﹣﹣(用>,<,=填空).10.关于m、n的单项式﹣2m a n b与3m2(a﹣1)n的和仍为单项式,则这两个单项式的和为.11.如图是一、二两组同学将本组最近5次数学平均成绩分别绘制成的折线统计图,由统计图可知组进步较大(填“一”或“二”).12.某校下午第一节2:30下课,这时钟面上时针与分针的夹角是度.13.如图,已知O是直线AB上一点,OC平分∠BOD,OE平分∠AOD,则与∠DOE互余的角有个.14.在一个边长为a的正方形地块上,辟出一部分作为花坛,小明设计一种方案,请你写出花坛(图中阴影部分,其中中间阴影部分为一小正方形)面积S的表达式.15.如图所示的图形都是由大小相同的黑点按照一定规律所组成的,其中第①个图形中一共有1个黑点,第②个图形中共有5个黑点,第③个图形中一共有13个黑点,…,按此规律排列下去,第n个图形中黑点的个数为.(用含n的代数式表示)16.数轴上点M表示﹣1,将它先向右移动5个单位长度,再向左移动3个单位长度到达点N,则点N表示的数是,点M,N的距离是.三.解答题(共8小题,满分72分)17.如图,从正面、左面、上面观察此几何体,分别画出你所看到的几何体的形状.18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).20.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)[发现]:当正方形AEFG绕点A旋转,如图2,线段DG与BE之间的数量关系是;位置关系是;(2)[探究]:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,猜想DG与BE的数量关系与位置关系,并说明理由;(3)[应用]:在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB=,AE=1,求线段DG的长.22.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.24.(12分)【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a ﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).参考答案与解析一.选择题1.【解答】解:﹣3的相反数是3.故选:A.2.【解答】解:由题意得:只有D选项符合题意.故选:D.3.【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.4.【解答】解:A、绝对值最小的数是0,原说法正确,故此选项符合题意;B、若|a|=﹣a,则a≤0,原说法错误,故此选项不符合题意;C、﹣a不一定是负数,原说法错误,故此选项不符合题意;D、多项式3xy2﹣4x3y+12的次数为4,原说法错误,故此选项不符合题意;故选:A.5.【解答】解:∵当x=﹣2,y=1时;xy=﹣2×1=﹣2<0;∴m=x2﹣y2=(﹣2)2﹣12=3;故选:B.6.【解答】解:∵M是线段AB的中点;∴AM=MB=AB=a,故①正确;AN=AB﹣BN=a﹣b,故②正确;MN=MB﹣NB=AB﹣BN=a﹣b,故③正确;∵M是线段AB的中点,N是AM的中点;∴AM=BM=AB=a,MN=MB=×a=a,故④正确;故选:D.7.【解答】解:设该商品每件的进价为x元;依题意,得:125×0.8﹣x=15.故选:A.8.【解答】解:根据图示,可得a<0<b,且|a|>|b|;∴ab<0,a+b<0,a<﹣b<b<﹣a;∴选项A、B、D不符合题意;选项C符合题意.故选:C.二.填空题9.【解答】解:|﹣|=,|﹣|=;∵>;∴﹣<﹣.故答案为:<.10.【解答】解:∵﹣2m a n b与3m2(a﹣1)n的和仍为单项式;∴﹣2m a n b与3m2(a﹣1)n是同类项;∴a=2(a﹣1),b=1;∴a=2a﹣2,b=1;∴a=2,b=1;∴﹣2m a n b+3m2(a﹣1)n=﹣2m2n+3m2n=m2n.故答案为:m2n.11.【解答】解:一组的成绩变化从70到85,二组的成绩变化是从70到90,所以二组进步更大.故答案为:二.12.【解答】解:2点30分相距3+=份;2点30分,此时钟面上的时针与分针的夹角是30×=105°;故答案为:105.13.【解答】解:∵∠AOD+∠BOD=180°,OC、OE分别平分∠BOD和∠AOD;∴∠AOE=∠DOE=∠AOD,∠BOC=∠DOC=∠BOD;∴∠DOC+∠DOE=90°,∠BOC+∠DOE=90°;∴与∠DOE互余的角有∠DOC和∠BOC;故答案为:2.14.【解答】解:S阴影=(a﹣)(a﹣)﹣(﹣)()=(a﹣)2﹣(﹣)2=a2﹣+﹣(﹣+)=a2﹣+﹣+﹣=;故答案为:.15.【解答】解:∵①1=1;②5=2+1+2;③13=3+2+3+2+3;④25=4+3+4+3+4+3+4;…;∴第n个图的黑点的个数为:n+n﹣1+n+n﹣1+…+n﹣1+n,其中有n个n,(n﹣1)个(n﹣1).即第n个图的黑点的个数为n2+(n﹣1)2=2n2﹣2n+1.故答案为:2n2﹣2n+1.16.【解答】解:由题意得:点N表示的数是﹣1+5﹣3=1,点M,N的距离是1﹣(﹣1)=2.故答案为:1,2.三.解答题17.【解答】解:如图所示:18.(18分)计算:(1)[1﹣(+﹣)×24]÷(﹣5);(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣);(3)先化简,再求值.①5(a2b﹣ab2)﹣(ab2+3a2b),其中|a+1|+(b﹣)2=0;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)],其中x=﹣2.【解答】解:(1)[1﹣(+﹣)×24]÷(﹣5)=(1﹣×24﹣×24+×24)×(﹣)=(1﹣9﹣4+18)×(﹣)=(+5)×(﹣)=×(﹣)+5×(﹣)=﹣﹣1=﹣;(2)﹣14+(﹣5)×[(﹣1)3+2]﹣(﹣3)2÷(﹣)=﹣1+(﹣5)×(﹣1+2)﹣9×(﹣2)=﹣1+(﹣5)+18=12;(3)①5(a2b﹣ab2)﹣(ab2+3a2b)=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2;∵|a+1|+(b﹣)2=0;∴a+1=0,b﹣=0;解得:a=﹣1,b=;当a=﹣1,b=时,原式=2×(﹣1)2×﹣6×(﹣1)×()2=1+=;②﹣(3x2﹣4xy)﹣[x2﹣2(4x﹣4xy)]=﹣3x2+4xy﹣x2+4x﹣4xy=﹣x2+4x;当x=﹣2时,原式=﹣×(﹣2)2+4×(﹣2)=﹣14﹣8=﹣22.19.解方程:(1)2(x﹣1)=2﹣5(x+2);(2).【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10;移项得:2x+5x=2﹣10+2;合并得:7x=﹣6;解得:x=﹣;(2)去分母得:2(5x+1)﹣(7x+2)=4;去括号得:10x+2﹣7x﹣2=4;移项得:10x﹣7x=4﹣2+2;合并得:3x=4;解得:x=.20.【解答】解:(1)根据题意得:1﹣(40%+18%+7%)=35%;则“玩游戏”对应的圆心角度数是360°×35%=126°;故答案为:35%,126;(2)根据题意得:40÷40%=100(人);∴3小时以上的人数为100﹣(2+16+18+32)=32(人);补全图形如下:;(3)根据题意得:2100×=1344(人);则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.21.【解答】解:(1)DG=BE,DG⊥BE,理由如下:∵四边形ABCD和四边形AEFG是正方形;∴AE=AG,AB=AD,∠BAD=∠EAG=90°;∴∠BAE=∠DAG;∴△ABE≌△ADG(SAS);∴BE=DG;如图2,延长BE交AD于Q,交DG于H;∵△ABE≌△DAG;∴∠ABE=∠ADG;∵∠AQB+∠ABE=90°;∴∠AQB+∠ADG=90°;∵∠AQB=∠DQH;∴∠DQH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;故答案为:DG=BE,DG⊥BE;(2)DG=2BE,BE⊥DG,理由如下:如图3,延长BE交AD于K,交DG于H;∵四边形ABCD与四边形AEFG都为矩形;∴∠BAD=∠EAG;∴∠BAE=∠DAG;∵AD=2AB,AG=2AE;∴==;∴△ABE∽△ADG;∴==,∠ABE=∠ADG;∴DG=2BE;∵∠AKB+∠ABE=90°;∴∠AKB+∠ADG=90°;∵∠AKB=∠DKH;∴∠DKH+∠ADG=90°;∴∠DHB=90°;∴BE⊥DG;(3)如图4,(为了说明点B,E,F在同一条线上,特意画的图形)设EG与AD的交点为M;∵EG∥AB;∴∠DME=∠DAB=90°;在Rt△AEG中,AE=1;∴AG=2AE=2;根据勾股定理得:EG==;∵AB=;∴EG=AB;∵EG∥AB;∴四边形ABEG是平行四边形;∴AG∥BE;∵AG∥EF;∴点B,E,F在同一条直线上,如图5;∴∠AEB=90°;在Rt△ABE中,根据勾股定理得,BE===2;由(2)知,△ABE∽△ADG;∴==;即=;∴DG=4.22.【解答】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x﹣5)×25=25x+375;乙:0.9×100×5+0.9x×25=22.5x+450;当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.23.观察下列等式:=1﹣,=﹣,=将以上三个等式两边分别相加得:++=1﹣+=1﹣=.(1)猜想并写出:=﹣;(2)直接写出下列各式的计算结果:①=;②+++…+=;(3)探究并计算:.【解答】解:(1)=﹣;故答案为:﹣;(2)①=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;(3)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.24.【解答】解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度;当点A在点B左侧时;依题意列式,得3t+2t=18﹣4;解得t=2.8;当点A在点B右侧时;3t+2t=18+4;解得t=4.4;答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合;根据题意列方程,可得=0;解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点;由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.。
四川省大竹县文星中学2021-2022学年七年级下学期期末考试数学模拟测试题一、单选题(共14题;共56分)1.下列图案中,不是轴对称图形的是( )A.B. C. D.2.下列式子正确的是( )A 、(-0.2)-2=25B 、(-21)-3=-81C 、()823-=--D 、271313-=⎪⎭⎫ ⎝⎛-- 3.下列说法正确..的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛两次就有一次正面朝上C .成语“一箭双雕”是一个确定事件D .“抛一枚均匀的正方体骰子,朝上的点数是2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在61附近4.若()682b a b a n m =,那么m 2-2n 的值是( ) A 、10 B 、52 C 、20 D 、325.如图,已知∠CAB=∠DBA ,添加一个条件使△CAB ≌△DBA ,以下错误的是( )A. ∠CBA=∠DABB. ∠C=∠DC. AC=BDD. CB=DA6.下列长度的三条线段,能组成三角形的是( )A .1cm ,1 cm ,3 cm B. 2 cm ,3 cm ,5 cmC. 3 cm ,4 cm ,9 cmD. 5 cm ,6 cm ,8 cm7.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( )A.50°B.65°C.65°或25°D.50°或40°8.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB=90°,若∠1=40°,则∠2的度数为( )A.140°B.130°C.120°D.110°9.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间 20 分钟 B.公园离小丽家的距离为 2000 米C.小丽在便利店时间为 15 分钟 D.便利店离小丽家的距离为 1000 米10.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A. 4个 B. 3个 C. 2个 D. 1个11.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过2017的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.25502412.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形.(a>0)剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙)则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm2二.填空题(共6小题)13.在福安市组织的“中国红”演讲比赛中,小颖等25人进入总决赛,赛制规定,13人早上参赛,12人下午参赛,小颖抽到上午比赛的概率是________________.14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为. 15.已知(x+y)2=25,xy=,求x﹣y的值.16.如图,OP平分∠AOB,∠BCP=40°,CP∥OA,PD⊥OA于点D,则∠OPD=________ °.17.如图,把一张长方形的纸条ABCD沿EF折叠,若∠BFC′比∠BFE多6°,则∠EFC= .18.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=9,则S1﹣S2的值为________.三.解答题(共66分)19.(6分)计算:(1)-(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)20.(6分)(1)已知a+b=0,求代数式a(a+4b)﹣(a+2b)(a﹣2b)的值.(2)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(本题满分6分)如图,此为计算机“扫雷”游戏的画面,在9×9个小方格的雷区中,随机地埋藏着10颗地雷,每个小方格最多能埋藏1颗地雷.小明游戏时先踩中一个小方格,显示数字3,它表示与这个方格相邻的8个小方格(图中黑框所围区域,设为A区域)中埋藏着3颗地雷.为了尽可能不踩中地雷,小明的第二步应踩在A区域内的小方格上还是应踩在A区域外的小方格上?请说明理由。
N M EDCBA七年级数学上册期末考试模拟试题数学试卷一、选择题1.右图为张先生家的一张存折的一部分, 从图中可知,截止2009年1月3日, 此张存折还结余( )A.2300元B.500元C.4100元D.1800元 2.0.5-的相反数是( )A.0.5B.-0.5C.-2D.2 3.下列说法正确的是( )A.23vt -的系数是-2 B.233ab 的次数是6次 C.5x y +是多项式 D.21x x +-的常数项为14.四川汶川发生里氏8.0级地震后,半月内,社会各界纷纷向灾区捐款约43 681 000 000元人民币。
这笔款额用科学计数法表示(保留两个有效数字)正确的是( )A.104.310⨯ B. 94.410⨯ C. 104.410⨯ D.110.4410⨯ 5.已知关于x 的方程432x m -=的解是x=m ,则m 的值是( )A.2B.-2C.2或7D.-2或7 6.下列变形中,不正确的是( )A.()a b c d a b c d ++-=++-B.()a b c d a b c d --+=-+-C.()a b c d a b c d ---=---D.()a b c d a b c d +---=+++ 7.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB=12∠MFE.则∠MFB=( )A.30°B.36°C.45°D.72°8.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )A.只有图①B.图①、图②C.图②、图③D.图①、图③9.已知 2(1)25a +=,且0a <,3214a b +++=,且0ab >,则a b +=( )A.-19B.-9C.13D.310.下列说法:①若a 为有理数,则a -表示负有理数;②()22a a =-;③若a b >,则22a b >;④若0a b +=,则330a b +=.其中正确的个数有( )A.1个B.2个C.3个D.4个11.某个体商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,另一件亏本25%,则在这次买卖中,他( )A.不赚不赔B.赔12元C.赔18元D.赚18元 12.如图,∠AOB 为角,下列说法:①∠AOP=∠BOP ;②∠AOP=12∠AOB ; ③∠AOB=∠AOP+∠BOP ;④∠AOP=∠BOP=12∠AOB.其中能说明射线OP BOA一定是∠AOB 的平分线的有( )A.①②B.①③④C.①④D.只有④ 二、填空题13.写出322x y -的一个同类项_______________________.14.已知∠AOC=60°,∠AOB ︰∠AOC=2︰3,则∠BOC 的度数是______________.15.今年七月,为迎接奥运圣火在武汉传递,某校在汉口江滩广场举行了“我爱奥运,祝福圣火”的万人签名活动。
人教版七年级数学上册期末模拟考试卷及答案考试时间:80分钟;满分:100分学校:___________姓名:___________班级:___________分数:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)地球距太阳约有120000000千米,数120000000用科学记数法表示为( )A .0.12×109B .1.2×108C .12×107D .1.2×1092.(3分)下列方程中,是一元一次方程的是( )A .3﹣2x =4B .2x −1x =0C .x 2+1=5D .2x +y =33.(3分)如果﹣2x m y 和5x 2y n +1是同类项,那么m ﹣n =( )A .2B .1C .0D .﹣14.(3分)有理数a 、b 在数轴上的对应的位置如图所示,则( )A .a <﹣bB .a >﹣bC .a =bD .a >b5.(3分)下列说法中正确的是( )A .−23πx 的系数是−23B .多项式12a 2﹣7a +9的次数是3C .a+b 2是一个单项式D .24abc 的次数是36.(3分)下列变形符合等式性质的是( )A .如果2x ﹣3=7,那么2x =7﹣3B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣27.(3分)已知点C 是线段AB 的中点,下列说法:①AB =2AC ;②BC =12AB ;③AC =BC .其中正确的个数是( )A .0B .1C .2D .3 8.(3分)某班级劳动时,将全班同学分成x 个小组,若每小组9人,则余下3人;若每小组10人,则有一组少4人.按下列哪个选项重新分组,能使每组人数相同?( )A .4组B .5组C .6组D .7组9.(3分)如图,∠AOC 和∠BOD 都是直角,如果∠DOC =38°,那么∠AOB 的度数是( )A .128°B .142°C .38°D .152°10.(3分)一个角的补角比这个角的余角大( )A .70°B .80°C .90°D .100°二.填空题(共7小题,满分28分,每小题4分)11.(4分)−2πa 2x 23的系数是 .12.(4分)若盈余3万元记作+3万元,则﹣1万元表示 .13.(4分)若(m ﹣1)x |m |=7是关于x 的一元一次方程,则m = .14.(4分)如图线段AB =3cm ,延长线段AB 到C ,使BC =2AB ,那么AC = cm .15.(4分)若关于x 的一元一次方程2x ﹣k +4=0的解是x =3,则k = .16.(4分)已知4a 2+3b =1,则整式3﹣16a 2﹣12b 的值是 .17.(4分)如图所示,∠AOC =90°,点B ,O ,D 在同一直线上,若∠1=26°,则∠2的度数为 .三.解答题(共7小题,满分42分)18.(3分)计算:(﹣4)2÷2+9×(−13)﹣|﹣5|.19.(3分)解方程:x−24=1−4−3x 6. 20.(4分)先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣2ab 2+3a 2b ),其中a =﹣1,b =﹣2.21.(6分)如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点,若AB=15,CE=4.5,求出线段AD的长度.22.(8分)如图,O为直线AB上一点,OC为射线,OD,OE分别为∠AOC,∠BOC的平分线.(1)判断射线OD,OE的位置关系,并说明理由;(2)若∠AOD=30°,试说明OC为∠AOE的平分线.23.(9分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度0.8超过150度的部分1(1)若该市某居民7月交电费100元,则该居民7月份用电多少度?(2)若该市某居民8月用电250度,则该居民需交多少电费?(3)若该市某居民9月用电x度,则该居民需交多少电费?(用含x的代数式表示)24.(9分)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)地球距太阳约有120000000千米,数120000000用科学记数法表示为()A.0.12×109B.1.2×108C.12×107D.1.2×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120000000=1.2×108.故选:B.2.(3分)下列方程中,是一元一次方程的是()A.3﹣2x=4B.2x−1x=0C.x2+1=5D.2x+y=3【分析】根据一元一次方程的定义逐个判断即可.【解答】解:A.是一元一次方程,故本选项符合题意;B.是分式方程,不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元二次方程,不是一元一次方程,故本选项不符合题意;D.是二元一次方程,不是一元一次方程,故本选项不符合题意;故选:A.3.(3分)如果﹣2x m y和5x2y n+1是同类项,那么m﹣n=()A.2B.1C.0D.﹣1【分析】根据同类项的概念分别求出m、n,计算即可.【解答】解:∵﹣2x m y和5x2y n+1是同类项∴m=2,n+1=1解得m=2,n=0∴m﹣n=2﹣0=2.故选:A.4.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a<﹣b B.a>﹣b C.a=b D.a>b【分析】根据a ,b 两数在数轴的位置,依次判断所给选项的正误即可.【解答】解:a <0<b ,|a |>|b |∴a <﹣b ,故A 正确,B 错误;由数轴可得a <b ,故C 、D 错误故选:A .5.(3分)下列说法中正确的是( )A .−23πx 的系数是−23B .多项式12a 2﹣7a +9的次数是3C .a+b 2是一个单项式D .24abc 的次数是3【分析】根据单项式的系数与次数,多项式的次数与项数的确定方法,可得此题的正确结果为D .【解答】解:∵−23πx 的系数是−23 故选项A 不符合;∵多项式12a 2﹣7a +9的次数是2故选项,B 不符合;∵a+b 2=a 2+b 2 故a+b 2是多项式∴选项C 不符合;∵24abc 的次数是3故选项D 符合;故选:D .6.(3分)下列变形符合等式性质的是( )A .如果2x ﹣3=7,那么2x =7﹣3B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、等式2x﹣3=7的两边都加3,可得2x=7+3,原变形错误,故此选项不符合题意;B、等式−13x=1的两边都乘﹣3,可得x=﹣3,原变形正确,故此选项符合题意;C、等式﹣2x=5的两边都除以﹣2,可得x=−52,原变形错误,故此选项不符合题意;D、等式3x﹣2=x+1的两边都加﹣x+2,可得3x﹣x=1+2,原变形错误,故此选项不符合题意.故选:B.7.(3分)已知点C是线段AB的中点,下列说法:①AB=2AC;②BC=12AB;③AC=BC.其中正确的个数是()A.0B.1C.2D.3【分析】由线段的中点定义可得AC=BC=12AB,由此可求解.【解答】解:∵点C是线段AB的中点∴AC=BC=12AB∴AB=2AC故①②③正确;故选:D.8.(3分)某班级劳动时,将全班同学分成x个小组,若每小组9人,则余下3人;若每小组10人,则有一组少4人.按下列哪个选项重新分组,能使每组人数相同?()A.4组B.5组C.6组D.7组【分析】根据全班同学人数不变以及“将全班同学分成x个小组,若每小组9,则余下3;若每小组10,则有一组少4人”列出方程,求解即可.【解答】解:设将全班同学分成x个小组,根据题意得9x+3=10x﹣4解得x=7有:9x+3=9×7+3=6666=11×6则将全班同学分成6个小组,能使每组人数相同.故选:C.9.(3分)如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是()A.128°B.142°C.38°D.152°【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【解答】解:∵∠AOC=∠DOB=90°,∠DOC=38°∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣38°=142°.故选:B.10.(3分)一个角的补角比这个角的余角大()A.70°B.80°C.90°D.100°【分析】根据余角与补角的定义解决此题.【解答】解:设这个角为x,则这个角的余角为90°﹣x,补角为180°﹣x.∵180°﹣x﹣(90°﹣x)=180°﹣x﹣90°+x=90°∴一个角的补角比这个角的余角大90°.故选:C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)−2πa2x23的系数是−2π3.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式−2πa2x23的系数是−2π3.故答案为:−2π3.12.(4分)若盈余3万元记作+3万元,则﹣1万元表示亏损1万元.【分析】由于“盈余”与“亏损”为相反意义的量,根据正数和负数的意义可得﹣1万表示出亏损1万元.【解答】解:若盈余3万元记作+3万元,则﹣1万元表示亏损1万元.故答案为:亏损1万元.13.(4分)若(m﹣1)x|m|=7是关于x的一元一次方程,则m=﹣1.【分析】根据一元一次方程的定义得出m﹣1≠0且|m|=1,再求出答案即可.【解答】解:∵方程(m﹣1)x|m|=7是关于x的一元一次方程∴m﹣1≠0且|m|=1解得:m=﹣1故答案为:﹣1.14.(4分)如图线段AB=3cm,延长线段AB到C,使BC=2AB,那么AC=9cm.【分析】根据BC=2AB,可得BC的长,根据线段的和差,可得答案.【解答】解:∵AB=3cm,BC=2AB∴BC=3×2=6(cm)∴AC=AB+BC=3+6=9(cm).故答案为:9.15.(4分)若关于x的一元一次方程2x﹣k+4=0的解是x=3,则k=10.【分析】把x=3代入方程计算即可求出k的值.【解答】解:把x=3代入方程得:6﹣k+4=0解得:k=10故答案为:10.16.(4分)已知4a2+3b=1,则整式3﹣16a2﹣12b的值是﹣1.【分析】观察题中的两个代数式x﹣2y和3﹣16a2﹣12b,可以发现,3﹣16a2﹣12b=3﹣4(4a2+3b),因此可整体代入求值.【解答】解:∵3﹣16a2﹣12b=3﹣4(4a2+3b)当4a2+3b=1时原式=3﹣4×1=﹣1.故答案为:﹣1.17.(4分)如图所示,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为116°.【分析】由图示可得,∠1与∠BOC 互余,结合已知可求∠BOC ,又因为∠2与∠COB 互补,即可求出∠2的度数.【解答】解:∵∠1=26°,∠AOC =90°∴∠BOC =64°∵∠2+∠BOC =180°∴∠2=116°.故答案为:116°.三.解答题(共7小题,满分42分)18.(3分)计算:(﹣4)2÷2+9×(−13)﹣|﹣5|.【分析】利用有理数的混合运算的法则对式子进行运算即可.【解答】解:(﹣4)2÷2+9×(−13)﹣|﹣5|=16÷2+(﹣3)﹣5=8﹣3﹣5=0.19.(3分)解方程:x−24=1−4−3x 6. 【分析】方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:x−24=1−4−3x 6去分母,得3(x ﹣2)=12﹣2(4﹣3x )去括号,得3x ﹣6=12﹣8+6x移项,得3x ﹣6x =4+6合并同类项,得﹣3x =10系数化为1,得x =−103.20.(4分)先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣2ab 2+3a 2b ),其中a =﹣1,b =﹣2.【分析】先去括号、合并同类项把所求式子化简,再将a =﹣1,b =﹣2代入即可求值.【解答】解:原式=12a 2b ﹣4ab 2+6ab 2﹣9a 2b=3a2b+2ab2把a=﹣1,b=﹣2代入得:原式=3×(﹣1)2×(﹣2)+2×(﹣1)×(﹣2)2=3×1×(﹣2)+2×(﹣1)×4=﹣6﹣8=﹣14.21.(6分)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB=15,CE=4.5,求出线段AD的长度.【分析】根据中点的性质,可得BC的长,根据线段的和差,可得BE的长,AE的长,根据中点的性质,可得答案.【解答】解:∵点C为线段AB的中点,AB=15∴AC=12AB=7.5∴AE=AC+CE=7.5+4.5=12∵点D为线段AE的中点∴AD=12AE=6.22.(8分)如图,O为直线AB上一点,OC为射线,OD,OE分别为∠AOC,∠BOC的平分线.(1)判断射线OD,OE的位置关系,并说明理由;(2)若∠AOD=30°,试说明OC为∠AOE的平分线.【分析】(1)由角平分线的定义可求得∠COD=12∠AOC,∠COE=12∠BOC,结合平角的定义可求得∠DOE=90°,进而可说明OD与OE的关系;(2)由角平分线的定义可求解∠AOC的度数,利用∠AOE=∠AOD+∠DOE可求解∠AOE的度数,进而可得∠AOE=2∠AOC,即可证明结论.【解答】解:(1)OD⊥OE.理由:∵OD,OE分别为∠AOC,∠BOC的平分线∴∠COD=12∠AOC,∠COE=12∠BOC∵∠AOC+∠BOC=180°∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=90°∴OD⊥OE.(2)∵∠AOD=30°,OD平分∠AOC∴∠AOC=2∠AOD=60°∵∠DOE=90°∴∠AOE=∠AOD+∠DOE=30°+90°=120°∴∠AOE=2∠AOC∴OC为∠AOE的平分线.23.(9分)某市对居民生活用电实行“阶梯电价”收费,具体收费标准见表.一户居民一个月用电量的范围电费价格(单位:元/度)不超过150度0.8超过150度的部分1(1)若该市某居民7月交电费100元,则该居民7月份用电多少度?(2)若该市某居民8月用电250度,则该居民需交多少电费?(3)若该市某居民9月用电x度,则该居民需交多少电费?(用含x的代数式表示)【分析】(1)根据题意,该居民用电在第一梯度,设该居民7月份用电a度,则0.8a=100,解之即可;(2)根据题意,该居民用电在第二梯度,则8月份电费为150×0.8+(250﹣150)×1,计算即可.【解答】解:(1)若用电150度,则需要交电费150×0.8=120(元).设该居民7月份用电a度,则0.8a=100,解得a=125∴该居民7月份用电125度.(2)由题意可得,8月份电费:150×0.8+(250﹣150)×1=220(元)∴该居民需交220元电费.(3)当0<x≤150时,需交电费:0.8x(元)当x>150时,需交电费150×0.8+(x﹣150)×1=(x﹣30)(元).综上可知,当0<x≤150时,需交电费:0.8x元,当x>150时,需交电费(x﹣30)元.24.(9分)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=3.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①ab﹣2b2=﹣3②①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9。
广东省惠州市博罗县2023-2024学年七年级上学期期末考试数学模拟试题一、选择题:(本大题共10小题,每小题3分,共30分).1.我国古代数学名著《九章算术》中最早出现正负数的概念。
如果粮库把运进30吨粮 食记为 “”,则“”表示( )30+30-A.运出30吨粮食 B .亏损30吨粮食C.卖掉30吨粮食 D .吃掉30吨粮食2.在2,+3.5,0,,﹣0.7,11中,正数有( )32-A .1个B .2个C .3个D .4个3.今年以来,惠州市经济持续恢复,工业生产持续提速,1-10月,规模以上工业增加值2058.02亿元,数据“2058.02”用科学记数法表示为( )A.31005802.2⨯2105802.20 B.⨯410205802.0 C. ⨯41005802.2 D.⨯4. 设,,是有理数,下列说法不正确的是( )x yA .若,则B .若,则x y =x c y c+=+x y =xc yc=C .若,则D .若,则x y ==x y c c=x yc c x y =5.若有理数a 、b 、c 在数轴上的位置如图所示,则将−a 、−b 、c 按从小到大的顺序为( )A.−b<c<−aB.−b<−a<cC.−a<c<−bD.−a<−b<c6. 整式﹣3xy 2的系数是( )A .3xB .3C .﹣3xD .﹣37.已知关于x 的方程2m-3x+5=0的解是x=1,则m 的值是( )A .2B .1C .D .1-2-8.若,则的补角的度数是( )70α=︒αA .B .C .D .130︒110︒30°20︒9 .如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是( )A .垂线段最短 B .两点之间线段最短C .两点确定一条直线D .经过一点有无数条直线10.在数学文化节游园活动中,被称为“数学小王子”的小明参加了“智取九宫格”比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m .小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=( ) .A. 38B. 39C. 40D. 41二、填空题:(本大题共5小题,每小题3分,共15分.)11. 已知2x n+1y 3与x 4y 3是同类项,则n 的值是12. 有理数0,6,﹣5,,9中整数有;负数有722-13.如图,线段AB ,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.AB =8,AC =3,则线段MN 的长为14.一件衣服先按成本提高50%标价,再以8折出售,结果获利5元,则这件衣服的成本是元。
人教版七年级上册数学期末模拟考试(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .68.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是_______.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.因式分解:34a a-=_____________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32137x y x y +=⎧⎨-=-⎩ (2)()45113812x y y x y ⎧+=+⎪⎨+=⎪⎩2.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,已知AB ∥CD ,AD ∥BC ,∠DCE =90°,点E 在线段AB 上,∠FCG =90°,点F 在直线AD 上,∠AHG =90°.(1)找出图中与∠D 相等的角,并说明理由;(2)若∠ECF =25°,求∠BCD 的度数;(3)在(2)的条件下,点C(点C 不与B ,H 两点重合)从点B 出发,沿射线BG 的方向运动,其他条件不变,求∠BAF 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、A6、B7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、-4π3、4332a ≤≤ 4、205、(2)(2)a a a +-6、54°三、解答题(本大题共6小题,共72分)1、(1)12x y =-⎧⎨=⎩;(2)140x y ⎧=⎪⎨⎪=⎩ 2、653、(1)35°;(2)36°.4、(1)与∠D 相等的角为∠DCG ,∠ECF ,∠B (2)155°(3)25°或155°5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。
人教版七年级上册数学期末模拟考试(含答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.在关于x、y的方程组2728x y mx y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y>0,那么m的取值范围是_________________.4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、D5、D6、D7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、105°3、-2≤m<34、2m≤-5、24.6、2或-8三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、m=4,n=﹣1.3、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)证明略;(2)∠AED+∠D=180°,略;(3)110°5、(1)75,54;(2)补图见解析;(3)600人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
七年级数学期末考试模拟测试
班级_________ 姓名___________成绩___________
一.选择题(每小题3分,计30分)
1、若代数式7—2x 和5—x 的值互为相反数,则x 的值为( ) A 4 B 2 C
29 D 2
7 2、如图,AB ∥ED ,则∠A +∠C +∠D =( ) A .180° B .270° C .360° D .540°
3、下列条件中,不能判定三角形全等的是 (
) A 、三条边对应相等 B 、两边和一角对应相等 C 、两角的其中一角的对边对应相等 D 、两角和它们的夹边对应相等 4、小明用一枚均匀的硬币试验,前7次掷得的结果都是下面向上,如果将第8次掷得下面向上的概率记为P ,则 ( ) A 、P=1/2 B 、P <1/2 C 、P >1/2 D 、无法确定 5、某班在组织学生议一议:测量1张纸大约有多厚。
出现了以下四种观点,你认为较合理且可行的观点是( ) A 、 直接用三角尺测量1张纸的厚度 B 、 先用三角尺测量同类型的2张纸的厚度 C 、 先用三角尺测量同类型的100张纸的厚度 D 、 先用三角尺测量同类型的1000张纸的厚度 6、下列说法中错误的是( )
A 、三角形的中线、角平分线、高线都是线段;
B 、任意三角形的内角和都是180°;
C 、三角形按边分可分为不等边三角形和等腰三角形;
D 、三角形的一个外角大于任何一个内角。
7、已知三角形的三边分别为2,1-a ,4那么a 的取值范围是( )
A 、51<<a
B 、62<<a
C 、73<<a
D 、64<<a 8、在一个三角形,若︒=∠=∠40B A ,则ABC ∆是( )
A 、直角三角形
B 、锐角三角形
C 、钝角三角形
D 、以上都不对
9、一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s (千米)与所用的时间t (时)的关系表达式为( ) A 、t s +=60 B 、t s 60=
C 、60
t s = D 、t s 60= 10、正五边形的对称轴共有( )
A 、2条 B. 4条 C. 5条 D.无数条
11、等腰三角形的一边等于3,一边等于6,则它的周长等于( ) A 、12 B 、12或15 C 、15或18 D 、15
12、下列图形中,不是轴对称图形的是 ( )
一、
填空题(每小题
3分,计30分) 1、多项式3a 2
b + 2b 2
3
1ab -
–1第三项的系数是____________,次数是____________. 2、等腰三角形一个底角为36°,则此等腰三角形顶角为___________。
3、以下四个事件,它们的概率分别为多少,填在后面的横线上。
事件A :在一小时内,你步行可以走80千米,则P (A )=___;
事件B :一个普通的骰子,你掷出2次,其点数之和大于10,则P (B )=___; 事件C :两数之和是负数,则其中必有一数是负数,则P (C )=___。
4、在“变量之间的关系”一章中,我们学习的“变量”是指自变量和因变量,而表达它们之间关系的通常有三种方法,这
A B
C
D E
三种方法是指_______、_______和_______。
5、如图,有一块三角形的土地,现在要求过三 角形的某个顶点画一条线段,将它的面积平均分
成两份,你认为这条线段应该如何画_______
__________________;为什么?_____________________。
6、把一张写有“A 、B 、C 、D 、E 、1、2、3、4、5”字母和数字字样的长方形纸条,平放在一张平面镜前的桌子上,则镜子里纸条上的字母和数字不改变的是__________。
7、如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,则ΔABD 的周长为____cm 。
8、如图,∠A=200,∠C=400,∠ADB=800
,
则∠ABD=___,∠DBC=___,图中共有
等腰三角形___个。
9、如图,点P 关于OA 、OB 的对称点分别为C 、D ,连结CD ,交OA 于M ,交OB 于N ,若∆PMN
的周长=8厘米,则CD 为 ___厘米。
10、将一个30厘米⨯5厘米的长方形纸片折成3厘米⨯5厘米的手风琴状,这样此纸片共有___条折痕,再将手风琴中挖去一个任意的三角形,则这个长方形的纸片最多可数出___个轴对称图形。
8一根竹竿长3.649米。
精确到十分位是 米;银原子的直径为0 .0003微米,相当于 米
9今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2
+3xy-21y 2)-(-21x 2+4xy-23y 2)=-2
1x 2_____+y 2
空格的地方被钢笔水弄污了,请你帮他补上!
三、作图题(本题5分) 如图(三—2),台球桌上有一球A ,怎样去 击打球A 依次撞击边框MN 、NP 反射后,撞击 到B 球。
(画出示意图,不写画法,保留画图 痕迹)(本题A 班做)
1、
四、解答题(1)、(2)各4分、2题5分,计13分
1、(1)2(m +1)2
-(2m +1)(2m -1) (2))32)(32(42
--+--x x x
(3)[]x y
y x y x y x 25)3)(()2(2
2
÷--+-+,其中
1,2=-=y x
2、 如图(四—1)在△ABC 中,∠B=400
,
∠BCD=1000
,EC 平分∠ACB ,求∠A 与∠ACE 的度数。
A B D
C A
E D C B
五、证明题(每小题6分,计12分)
1、如图(五—1),点B 、F 、C 、E 在同一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,
求证:AB=DE 、AC=DF
2、如图,已知,ADE ABC ∆∆和均
为等边三角形,BD 、CE 交于点F 。
(1)求证:BD=CE
(2)求锐角BFC ∠的度数。
六、探究题(本题10分)
甲、乙两人(甲骑摩托车,乙骑自行车)从A 城出发到100千米处的B 城旅游,如右图表示甲、乙两人离开A 城路程与时间之间的关系图象。
1、 分别求出甲、乙两人这次旅程的平均速度是多
少?
2、 根据图
象,你能得出关于甲、乙两
人旅行的那些信息? 注:回答2
时注意以下要求:
(1)
请至少提供三条相关信息,如由图象可知,乙比甲早出发4小时(或甲比乙晚出发4小时)等;(2)不要再提供(1)列举的信息。
28、(本题11分)乘法公式的探究及应用.
(
1)如左图,可以求出阴影部分的面积是
(写成两数平方差的形式);
(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是
(写成多项式乘法的形式)
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达) (4)运用你所得到的公式,计算下列各题:
①)2)(2(p n m p n m +--+ ② 7.93.10⨯。