在学习物理中有关临界极值问题的处理
- 格式:doc
- 大小:385.50 KB
- 文档页数:7
物理临界极值问题归纳总结在物理学中,临界极值问题是一类重要而常见的问题,涉及到各种自然现象和物理过程。
在本文中,我们将对一些典型的临界极值问题进行归纳总结,探讨其背后的物理原理和应用。
1. 能量最小问题当一个物体在受到外力作用下移动时,其可能存在最小能量的位置。
例如,在沿着一条曲线从A点到B点的过程中,求物体在这条曲线上,哪个位置可以实现最小的势能状态。
这种求解问题可以使用变分法或者利用物理原理进行分析。
2. 速度最大问题速度最大问题在机械运动学中经常出现。
例如,一个物体自由下落,求其在离地面一定高度时的速度达到最大值。
这类问题可以通过求解速度函数的导数为零的点,找到极值点,并验证其是否是最大值。
3. 加速度最大问题加速度最大问题与速度最大问题类似,但是关注的是物体的加速度达到最大值的情况。
例如,在自由下落的过程中,求物体离地面一定高度时其加速度达到最大值。
可以通过求解加速度函数的导数为零的点来找到极值点。
4. 碰撞问题碰撞问题是临界极值问题中的一个重要分支,涉及到两个或多个物体之间的相互作用。
例如,求两个物体碰撞后的速度以及碰撞瞬间的能量损失。
这类问题可以通过守恒定律和碰撞动量定律来分析,从而得到系统的临界极值情况。
5. 光线折射问题光的折射现象也涉及到一种临界极值问题。
例如,光线从一个介质进入另一个介质时,求解光线的入射角和折射角之间的关系。
这类问题可以利用斯涅尔定律和临界角的概念来解决。
6. 流体力学中的临界极值问题流体力学研究中也存在临界极值问题。
例如,在管道中液体流动速度达到最大值的问题,或者通过调整管道中的形状,使得流体的流量达到最大值。
这类问题可以通过应用伯努利方程和连续性方程来解决。
通过对上述几类典型的临界极值问题进行总结与归纳,我们可以看到它们在物理学研究和应用中的重要性。
在实际问题中,临界极值问题的解决可以帮助我们了解自然现象背后的物理规律,并且为工程设计和科学研究提供有力支持。
在动力学中临界极值问题的处理佛山市高明第一中学(528500)周兆富物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。
在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。
一.解决动力学中临界极值问题的基本思路所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。
至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。
动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。
在解决临办极值问题注意以下几点:错误!未指定书签。
临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。
错误!未指定书签。
临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。
错误!未指定书签。
许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。
错误!未指定书签。
有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。
物理学中临界问题的分析方法作者:周玉美来源:《中国校外教育·理论》2008年第03期[摘要]在物理问题中临界问题很常见,如何解答临界问题往往是比较难的问题。
本文以牛顿运动定律的临界问题为例来探讨临界问题的求解方法。
[关键词]物理学临界问题求解方法一、什么是临界问题我们在解答物理力学问题时,经常碰到这样的词语,作用力的最大或最小值、速度的最大或最小值、加速度的最大或最小值等等.我们把物体由一种运动状态转变到另一种运动状态,由一种物理现象转变为另一种物理现象,在发生转变的时刻一些物理量的最大或最小值,叫做临界值.如何求得临界值,有时是解答物理题的关键,它不仅要对题中的物理情景作深入的研究,而且要熟练地应用数学知识去作解答。
二、分析临界问题的一般方法在有关牛顿运动定律的临界问题涉及的物理量主要是力、加速度、速度、位移。
在分析此类问题的时候,我们主要抓住分析“力”的变化。
因为力是决定物体运动的主要因素。
着重要分析力的大小的变化规律、方向变化、受力数目的变化、力的性质的变化(比如,静摩擦力转化为动摩擦力)。
这些变化往往蕴含着临界状态的出现,此时有利于我们找到临界条件。
在追击类问题中要注意物体的速度关系,特别是速度相等往往是一个重要条件。
三、分析临界问题所要用到的数学工具临界问题经常涉及到一些极值问题。
求解临界问题往往伴随的不等式的应用,自燃也就会牵涉到一些与相关的数学知识。
如三角函数,定积求和或定和求积,二次方程判别式等。
例题如下:例1.图1所示,一个质量为m =10kg的物体,放在粗糙的水平面上,物体与水平面的静摩擦因数为.25,今对物体施以向右上方的拉力F,求:物体开始滑动时F的最小值和此时F与水平方向的夹角(g值取)解析:使物体开始滑动的含义是物体与水平面由静止转变为相对运动,可见物体存在一个处于转折的临界状态,构成一个临界问题;如果在F达到某一值,物体开始运动,因此,F此时为临界作用力,要求的就是F的临界值.例题 2.在光骨的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间距离大于L(L比2r大得多)时,两球之间无相互作用力;当两球心间距离等于或小于L时,两球间存在相互作用的是恒定斥力F。
物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。
1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。
2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。
(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。
(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。
一带电粒子的质量为m,电荷量为q(q>0)。
粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。
已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
不计重力。
粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。
则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。
物理临界和极值问题总结
物理临界和极值问题是物理学中常见的一类问题,涉及到系统在特定条件下达到某种临界状态或取得极值的情况。
下面是对这两类问题的总结:
1. 物理临界问题:
- 物理临界指系统在某些参数达到临界值时出现突变或重要性质发生显著改变的情况。
- 临界问题常见于相变、相平衡和相变点等领域。
- 典型的物理临界问题包括:磁场的临界温度、压力、电流等;化学反应速率的临界浓度;相变时的临界温度和压力等。
2. 极值问题:
- 极值问题涉及到通过调整系统的参数找到使目标函数取得最大值或最小值的条件。
- 极值问题在物理学中广泛应用于优化、动力学和力学等领域。
- 典型的极值问题包括:能量最小原理和哈密顿原理,用于求解经典力学问题;费马原理,用于求解光路最短问题;鞍点问题,用于求解多元函数的极值等。
无论是物理临界还是极值问题,通常需要使用数学工具进行分析和求解。
对于物理临界问题,常用的方法包括热力学、统计物理和相变理论等;而对于极值问题,则常用的方法包括微积分、变分法和最优化等。
总结起来,物理临界和极值问题是物理学中重要的一类问题,涉及到系统在特定条件下达到临界状态或取得最值的情况。
这些问题需要使用数学工具进行分析和求解,以揭示系统的性质和寻找最优解。
高三物理复习学案:临界与极值问题解决此类问题的关键是:找准临界点.方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R 和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v 变化时,圆周角越大,运动时间越长.一,磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v0从O 点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d ,板长为d ,O 点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e ,质量为m).二,偏角的极值问题例2 在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T ,一个带正电的粒子以初速度v 0=1×106 m/s 从磁场边界上直径ab的一端a 射入磁场,已知该粒子的比荷q m=1×108 C/kg ,不计粒子重力. (1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v 0与ab 的夹角θ及粒子的最大偏转角.三,时间的极值问题例3 如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q ,质量为m(不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.四,面积的极值问题例4 如图所示,质量为m,电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0.现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:(1)电子从y轴穿过的范围;(2)荧光屏上光斑的长度;(3)所加磁场范围的最小面积.专题二巩固练习1.如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S.某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC射出磁场.已知∠AOC=60°,从边界OC射出的粒子在磁场中运动的最长时间等于T/2(T为粒子在磁场中运动的周期),则从边界OC射出的粒子在磁场中运动的时间可能为( )A.T 3B.T 4C.T 6D.T 82.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直纸面向外,比荷为e /m 的电子以速度v 0从A 点沿AB 方向射入,现欲使电子能经过BC 边,则磁感应强度B 的取值应为( )A .B >3mv 0ae B .B <2mv 0aeC .B <3mv 0aeD .B >2mv 0ae3,,如图所示,在半径为R 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直于圆平面(未画出).一群比荷为q m的负离子体以相同速率v 0(较大),由P 点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)( )A .离子飞出磁场时的动能一定相等B .离子在磁场中运动半径一定相等C .由Q 点飞出的离子在磁场中运动的时间最长D .沿PQ 方向射入的离子飞出时偏转角最大4.如图所示,半径为r =0.1 m 的圆形匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感应强度B =0.332T ,方向垂直纸面向里.在O 处有一放射源,可沿纸面向各个方向射出速率均为v =3.2×106 m/s 的α粒子.已知α粒子质量m =6.64×10-27 kg ,电荷量q =3.2×10-19 C ,不计α粒子的重力.求α粒子在磁场中运动的最长时间.5.,如图所示是某离子速度选择器的原理示意图,在横截面半径r =10 cm 的圆形区域内有磁感应强度B=1×10-4 T 的匀强磁场,磁场方向平行于柱形圆筒的轴线,在圆柱形筒壁上某一直径两端开有两个小孔a 、b ,分别作为离子的入射孔和出射孔.现有一束比荷为q m=2×1011 C/kg 的正离子,从a 孔射入,正离子射入的角度不同,最后能从b 孔射出的离子速度大小就不同,其中入射角θ=30°,且不与筒壁碰撞而从出射孔射出的离子的速度大小为多少?6,如图(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0.一电荷量为+q,质量为m的粒子从内圆上的A 点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小.(2)若撤去电场,如图10(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.(3)在图10(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?。
中学物理 Vol . 39 No . 03 2021年2月•解题指南•採析高中物理汐学中的临界与权值问题邓贤彬(四川省资中县教研室四川资中641200)摘要:临界与极值问题是高中物理中最难、最重要的知识,例举若干例题从极值问题的产生原因、情景过程和数 学手段等方面加以分析.关键词:力学;临界与极值问题;例析中图分类号:G 633.7文献标识码:B临界和极值问题,是高中物理中最重要、最典型 的一类问题,也是学生学习物理中最头痛的问题.这 类问题,往往因过程、情景复杂,条件隐藏较深,数学 技巧要求高,经常成为高考考查学生综合能力的重要切入点.学生遇到这类问题,往往不知如何下手,得分 率较低.本文尝试从此类问题的产生原因、情景过程、 数学手段等方面进行归类研究.1追及问题的临界和极值问题 1.1物理情景分析假设甲、乙两物体在同一直线上向同一方向运 动,且甲在后面追乙.两物体相对位置变化的原因和 两物体的速度关系见表1.表1速度条件位置关系能否相遇”甲 >以乙甲乙两物体间距离越来越小能V 甲乙甲乙两物体间距离保持不变两物体相距最近或者最远甲乙两物体间距离越来越大不能结论:速度是两物体相对位置变化的根本原因, 是追及问题中的关键条件,速度相等是两物体追得 上、追不上或者刚好追上的临界条件.1.2 分析技巧1.2. 1—个临界条件二者速度相等,它既是物体能否追上、追不上或 者刚好追上的临界条件,也是物体间相距最近或者最 远的条件.1.2.2两个等量关系时间关系和位移关系,利用这两个关系可以列方 程或者方程组求解.1.3 常用数学方法1.3. 1图像法画出两物体的《图像,利用两图像的交点和所文章编号:1008 - 4134(2021)03 - 0057 - 03围成图形的“面积”判断.1.3.2数学极值法设相遇时间为^根据条件列方程,得到关于位移 *与时间《的函数关系,由此判断两物体的追及或相 遇情况,并求出最大值或者最小值.例题1在平直的公路上,一辆小汽车在路口等待交通灯,绿灯亮时一辆道路维护车在前方以= 10m /S 的速度匀速前进,小汽车立即以a , =2m /s 2的 加速度启动,启动时,两车相距% =75m .求:(1)汽车启动后经过多长时间从道路维护车 旁边经过?(2)相遇前两车相距的最远距离是多少?解析:图像法:(1)由条件知:当|x 2 x 彳=10f , + 75时,两物体相遇,即q = 15s .(2)由图1,当《 =5s 时两物体速度相等,且相距最远•最远距离10 x 5 +75 = 100m .数学极值法:(1)设经过 <,时间小汽车和维护车相遇,由位移关系7[守丨+ X 。
在动力学中临界极值问题的处理佛山市高明第一中学(528500) 周兆富物理学中的临界和极值问题牵涉到一定条件下寻求最佳结果或讨论其物理过程范围的问题,此类问题通常难度较大技巧性强,所涉及的内容往往与动力学、电磁学密切相关,综合性强。
在高考命题中经常以压轴题的形式出现,临界和极值问题是每年高考必考的内容之一。
一.解决动力学中临界极值问题的基本思路所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。
至于是“出现”还是“不出现”,需视具体问题而定。
极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。
临界问题往往是和极值问题联系在一起的。
解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。
动力学中的临界和极值是物理中的常见题型,同学们在刚刚学过的必修1中匀变速运动规律、共点力平衡、牛顿运动定律中都涉及到临界和极值问题。
在解决临办极值问题注意以下几点:○1临界点是一个特殊的转换状态,是物理过程发生变化的转折点,在这个转折点上,系统的一些物理量达到极值。
○2临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。
○3许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。
○4有时,某些临界问题中并不包含常见的临界术语,但审题时发现某个物理量在变化过程中会发生突变,如运动中汽车做匀减速运动类问题,则该物理量突变时物体所处的状态即为临界状态。
○5临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。
○6确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。
解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。
二.匀变速运动规律中与临界极值相关问题的解读在质点做匀变速运动中涉及到临界与极值的问题主要有“相遇”、“追及”、“最大距离”、“最小距离”、“最大速度”、“最小速度”等。
【例1】速度大小是5m/s 的甲、乙两列火车,在同一直线上相向而行。
当它们相隔2000m 时,一只鸟以10m/s 的速度离开甲车头向乙车头飞去,当到达乙车车头时立即返回,并这样连续在两车间来回飞着。
问:(1) 当两车头相遇时,这鸟共飞行多少时间? (2) 相遇前这鸟飞行了多少路程?【灵犀一点】甲、乙火车和小鸟运动具有等时性,要分析相遇的临界条件。
【解析】飞鸟飞行的时间即为两车相遇前运动的时间,由于飞鸟在飞行过程中速率没有变化,可用s=vt 求路程。
(1)设甲、乙相遇时间为t ,则飞鸟的飞行时间也为t ,甲、乙速度大小相等v 甲= v 乙=5m/s ,同相遇的临界条件可得:s = (v 甲+v 乙)t则:2000=20010s ts s v v ==+乙甲(3) 这段时间,鸟飞行的路程为:10200s vt m '==⨯【思维总结】本题难度不大,建立物理情景,分清运动过程,找到相遇的临界条件、三个运动物体运动具有等时性和小鸟速率不变是解题的切入点。
【例2】在平直公路上一汽车的速度为15m/s ,从某时刻汽车开始刹车,在阻力作用下,汽车以2m/s 2的加速度做匀减速运动,则刹车后第10s 末车离刹车点的距离是 m.【灵犀一点】在汽车刹车问题中,汽车速度为0后将停止运动,不会反向运动。
在分析此类问题时,应先确定刹车停下来这个临界状态所用的时间,然后在分析求解。
【解析】 设汽车从刹车到停下来所用时间为t 0, 由运动学规律得:0000150,7.52t tv v v v at t s s a --=-=== 由于t 0<10s ,所以在计算时应将t=7.5s 代入公式求解。
则有:22011(157.527.5)56.2522sv t at m m =-=⨯-⨯⨯=【思维总结】本题经常犯的错误是不考虑汽车刹车后速度为零所需时间这一临界状态,直接把题目中所给的时间代入公式。
汽车刹车后不可能再倒行,此类问题应注意验证结果的合理性,若给定的时间内汽车仍未停下,则可直接套用运动学公式;若给定时间汽车早以停下,就应先计算刹车时间,然后再把这一时间代入位移公式求解。
【例3】A 、B 两车停在同一点,某时刻A 车以2m/s 2的加速度匀加速开出,2s 后B 车同向以3m/s 2的加速度开出。
问:B 车追上A 车之前,在启动后多长时间两车相距最远,距离是多少? 【灵犀一点】速度相等是解决追及和相遇问题的临界点。
【解析】〖解法1〗由于当A 车的加速度度小于B 车的加速度,B 车后启动,则B 车一定能追上A 车,在追上前当两车的速度相等时,两车相距最远。
设当A 车运动t 时间时,两车速度相等,则有,(3)AB A B v v a t a t ==-解得:39BA Ba t s a a ==-把t 代入两车之间距离差公式得:2211(3)2722A B A B ss s a t a t m ∆=-=--= 〖解法2〗设A 启动ts 两车相距最远,A 车的位移:212A s at =,B 车的位移:21(3)2B s a t =-两车间距离为22211(3)0.5913.522A B A B s s s a t a t t t ∆=-=--=-+-由数学知识可知,当992(0.5)ts s =-=⨯-时,两车间有最大距离:2211(3)2722A B A B ss s a t a t m ∆=-=--= 【思维总结】在追及问题中,常常要求最远距离或最小距离,常用的方式有物理方法和数学方法,应用物理方法时,应分析物体的具体运动情况,两物体运动速度相等时,两物体间有相对距离的极大值和极小值。
应用数学的方法时,应先列出函数表达式,再求表达式的极大值或极小值。
三.在共点力动态平衡中与临界极值相关问题的解读物体在多个共点力作用下的动态平衡问题中,常涉及到什么时候受力“最大”或“最小”,那个绳先断等问题。
【例4】如图1所示,质量为m 的物体,置于水平长木板上,物体与木板间的动摩擦因数为μ。
现将长木板的一端缓慢抬起,要使物体始终保持静止,木板与水平地面间的夹角θ不能超过多少?设最大静摩擦力等于滑动摩擦力。
【灵犀一点】这是一个斜面问题。
当θ增大时,重力沿斜面的分力增大。
当此分力增大到等于最大静摩擦力时,物体处于动与不动的临界状态。
此时是θ最大。
【解析】依题意可知,当 mgsin θ=μmgcos θ 物体处于临界状态,即 tan θ=μ图1则 θ≤arc ot μ讨论:tan θ=μ是一重要临界条件。
其意义是:tan θ<μ时,重力沿斜面向下的分力小于滑动摩擦力,物体相对于长木板静止;tan θ=μ时,重力沿斜面向下的分力等于滑动摩擦力,当物体没有获得初速度时,物体相对于长木板静止;tan θ>μ时,重力沿斜面向下的分力大于滑动摩擦力,物体将向下做加速运动。
【思维总结】对于此题的动态是否处于动态平衡问题讨论如下:①、将物体静止置于斜面上,如tan θ≤μ,则物体保持静止;如tan θ>μ,则物体不能保持静止,而加速下滑。
②、将物体以一初速度置于斜面上,如tan<μ,则物体减速,最后静止;如tan θ=μ,则物体保持匀速运动;如tan θ>μ,则物体做加速运动。
因此,tan θ=μ这一临界条件是判断物体在斜面上会如何运动的一个条件。
【例5】如图2所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体B 和斜面间动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体静止在斜面上,求物体B 质量的取值范围.【灵犀一点】摩擦力可能有两个方向 【解析】以B 为研究对象,由平衡条件得:B Tm g =再以A 为研究对象,它受重力、斜面对A 的支持力、绳的拉力和斜面对A 的摩擦作用.假设A 处于临界状态,即A 受最大静摩擦作用,方向如图所示,根据平衡条件有:cos N mg θ=0,m m Tf mg f N μ--==或:0,m m T f mg f N μ+-==综上所得,B 的质量取值范围是:(sin cos )(sin cos )B m m m θμθθμθ-≤≤+【思维总结】本题关键是要注意摩擦力的方向及大小与物体所受外力有关,故在处理问题时.要在物体临界条件下确定可能的运动趋势.【例6】如图3所示,将一物体用两根等长OA 、OB 悬挂在半圆形架子上,B 点固定不动,在悬挂点A 由位置C 向位置D 移动的过程中,物体对OA 绳的拉力变化是()A.由小变大B.由大变小C.先减小后增大D.先增大后减小【灵犀一点】在进行动态分析时,要找到不变的因素和力发生变化的临界点 【解析】悬挂点A 由位置C 移动的过程中,每个位置都处在平衡状态,合力为零。
以结点O 为研究对象,受三个力的作用而处于平衡状态,因此三个力必构成一个闭合矢量三角形。
因重力的大小和方向始终不变,BO 绳的拉力方向不变,在AO 绳由位置C 到D 移动过程中可以做出一系列的闭合的三角形,如图4所示。
由图可知OB 绳的拉力由小变大,OA 绳的拉力由大变小,当OA 垂直于OB 时绳OA 的拉力达到最小值,此时,绳OA 的接力由减小到增大的临界点。
则C 正确。
【思维总结】作矢量图时,每个三角形所表示重力边的长度、方向都不变,T B 的方向不变,然后比较做出的各个三角形表示有哪些不同。
要特别注意是否存在极值和临界点,这是判断力变化的切入点。
四.动力学中的临界极值问题的解读在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。
此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。
【例7】如图5所示,一质量为0.2kg 的小球系着静止在光滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜图2图6图5图3 T A2T B图4T A1GT A3T A4面以10m/s 2加速度水平向右作匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力。
(g=10m/s 2) 【灵犀一点】要考虑到小球可能离开斜面的情况,用极限法把加速度推到两个极端进行分析。