2017年福建省福州市高考数学一模试卷(理科)
- 格式:doc
- 大小:473.50 KB
- 文档页数:21
2017年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一.选择题1.已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D . 2.已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】3,a A B =⇒⊆2A B a ⊆⇒=,或3.因此是充分不必要条件.3.双曲线2214x y -=的顶点到其渐近线的距离等于( )A .25 B .45CD【答案】C【解析】 2214x y -=的顶点坐标为(2,0)±,渐近线为2204x y -=,即20x y ±=.带入点到直线距离公式d =. 4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480C .450D .120【答案】B【解析】由图知道60分以上人员的频率为后4项频率的和,由图知道(0.030.0250.0150.01)*100.8P =+++=故分数在60以上的人数为600*0.8=480人.5.满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10 【答案】B【解析】方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是( )A .计算数列{}12n -的前10项和 B .计算数列{}12n -的前9项和 C .计算数列{}21n -的前10项和 D .计算数列{}21n -的前9项和【答案】C【解析】第一循环:1,2S i ==,10i <第二条:3,3,10S i i ==<第三条:7,4,10S i i ==< …..第九循环:921,10,10S i i =-==.第十循环:1021,11,10S i i =-=>,输出S .根据选项,101(12)12S -=-,故为数列12n -的前10项和.故答案A .7.在四边形ABCD 中,(1,2)AC =,(4,2)BD =-,则四边形的面积为( )A B . C .5 D .10【答案】C【解析】由题意,容易得到AC BD ⊥.设对角线交于O 点,则四边形面积等于四个三角形面积之和 即S=11(****)(*)22AO DO AO BO CO DO CO BO AC BD +++=.容易算出,则算出S=5.故答案C8.设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 【答案】D【解析】A .0,()()x R f x f x ∀∈≤,错误.00(0)x x ≠是()f x 的极大值点,并不是最大值点. B .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于y 轴的对称图像,故0x -应是()f x -的极大值点C .0x -是()f x -的极小值点.错误.()f x -相当于()f x 关于x 轴的对称图像,故0x 应是()f x -的极小值点.跟0x -没有关系.D .0x -是()f x --的极小值点.正确.()f x --相当于()f x 先关于y 轴的对象,再关于x 轴的对称图像.故D 正确9.已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2mq C .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【答案】C【解析】等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙112...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙故选C 10.设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .*,A N B N == B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C .{|01},A x x B R =<<= D .,A Z B Q == 【答案】D【解析】根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .二.填空题11.利用计算机产生0~1之间的均匀随机数a ,则时间“310a ->”发生的概率为________ 【答案】23【解析】13103a a ->∴>a 产生0~1之间的均匀随机数1(,1)3a ∴∈112313p -∴==12.已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________【答案】12π【解析】由图可知,图形为一个球中间是内接一个棱长为2的正方体,2412R S R ππ∴====球表13.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC ,sin 3BAC AB AD ∠===则BD 的长为_______________【解析】sin sin()cos 2BAC BAD BAD π∠=∠+=∠=∴根据余弦定理可得222cos 2AB AD BD BAD AB AD +-∠=∙BD ==14.椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c ,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =∴==-15.当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n nn C C C C +⨯+⨯+⨯++⨯=+【答案】113[()1]12n n +-+ 【解析】由01221......(1)n nn n n n n C C x C x C x x +++++=+两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:122311*********()()...()[()1]222321212n n n n n n nn n C C C C ++⨯+⨯+⨯++⨯=-++ 三.解答题16.(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分. 解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.17.(本小题满分13分)已知函数()ln ()f x x a x a R =-∈ (1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.本小题主要考查函数.函数的导数.不等式等基础知识,考查运算求解能力,考查函数与方程思想.分类与整合思想,数形结合思想.化归与转化思想.满分13分. 解:函数()f x 的定义域为(0,)+∞,()1'=-a f x x. (Ⅰ)当2=a 时,()2ln =-f x x x ,2()1(0)'=->f x x x, (1)1,(1)1'∴==-f f ,()∴=y f x 在点(1,(1))A f 处的切线方程为1(1)-=--y x ,即20+-=x y .(Ⅱ)由()1,0-'=-=>a x a f x x x x可知: ①当0≤a 时,()0'>f x ,函数()f x 为(0,)+∞上的增函数,函数()f x 无极值; ②当0>a 时,由()0'=f x ,解得=x a ;(0,)∈x a 时,()0'<f x ,(,)∈+∞x a 时,()0'>f x()∴f x 在=x a 处取得极小值,且极小值为()ln =-f a a a a ,无极大值.综上:当0≤a 时,函数()f x 无极值当0>a 时,函数()f x 在=x a 处取得极小值ln -a a a ,无极大值.18.(本小题满分13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程;(2)过点C 做直线l 与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线l 的方程.本小题主要考查抛物线的性质.直线与抛物线的位置关系等基础知识,考查运算求解能力.推理论证能力,考查化归与转化思想,数形结合思想.函数与方程思想.满分13分. 解:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x ii y x 得:2110=y x ,即210=x y ,∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线l 的斜率存在,设直线l 的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx 此时2100+4000∆=>k ,直线l 与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x又120⋅<x x ,∴124=-x x分别带入21010=+⎧⎨=⎩y kx x y,解得32=±k直线l 的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y19.(本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1AA ABCD ⊥底面,//AB DC ,11AA =,3AB k =,4AD k =,5BC k =,6DC k =(0)k >.(1)求证:11;CD ADD A ⊥平面(2)若直线1AA 与平面1AB C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱1111ABCD A B C D -形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为()f k ,写出()f k 的表达式(直接写出答案,不必要说明理由)本小题主要考查直线与直线.直线与平面的位置关系.柱体的概念及表面积等基础知识,考查空间想象能力.推理论证能力.运算求解能力,考查数形结合思想.分类与整合思想.化归与转化思想,满分13分. 解:(Ⅰ)取CD 中点E ,连接BE//AB DE Q ,3AB DE k == ∴四边形ABED 为平行四边形 //BE AD ∴且4BE AD k ==在BCE V 中,4,3,5BE k CE k BC k ===Q222BE CE BC ∴+=90BEC ∴∠=︒,即BE CD ⊥,又//BE AD Q ,所以CD AD ⊥ 1AA ⊥Q 平面ABCD ,CD ⊂平面ABCD 1AA CD ∴⊥,又1AA AD A =I ,CD ∴⊥平面11ADD A(Ⅱ)以D 为原点,1,,DA DC DD uu u r uuu r uuur的方向为,,x y z 轴的正方向建立如图所示的空间直角坐标系(4,0,0)A k ,(0,6,0)C k ,1(4,3,1)B k k ,1(4,0,1)A k所以(4,6,0)AC k k =-uuu r ,1(0,3,1)AB k =uuu r ,1(0,0,1)AA =uuu r设平面1AB C 的法向量(,,)n x y z =,则由100AC n AB n ⎧⋅=⎪⎨⋅=⎪⎩uuu r uuu r得46030kx ky ky z -+=⎧⎨+=⎩取2y =,得(3,2,6)n k =-设1AA 与平面1AB C 所成角为θ,则111,sin |cos ,|||||AA nAA n AA n θ=〈〉=⋅uuu ruuu r uuu r67==,解得1k =.故所求k 的值为1 (Ⅲ)共有4种不同的方案2257226,018()53636,18k k k f k k k k ⎧+<≤⎪⎪=⎨⎪+>⎪⎩20.(本小题满分14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式; (2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数; 若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2017个零点. 本小题主要考查同角三角函数的基本关系.三角恒等变换.三角函数的图像与性质.函数.函数的导数.函数的零点.不等式等基础知识,考查运算求解能力.抽象概括能力,考查函数与方程思想,数形结合思想,分类与整合思想.化归与转化思想,满分14分. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω= 又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,1sin 2x <<10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解 设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++- 因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,()04G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x , 即存在唯一的0(,)64x ππ∈满足题意 (Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin x a x =-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin x h x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表当0x >且x 趋近于0时,()h x 趋向于-∞当x π<且x 趋近于π时,()h x 趋向于-∞当x π>且x 趋近于π时,()h x 趋向于+∞当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点21.(本题满分14分)(1)(本小题满分7分)矩阵与变换已知直线:1l ax y +=在矩阵1201A ⎡⎤=⎢⎥⎣⎦对应的变换作用下变为直线':1l x by +=. (1)求实数,a b 的值;(2)若点00(,)p x y 在直线l 上,且0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,求点p 的坐标. 本小题主要考查矩阵.矩阵与变换等基础知识,考查运算求解能力.考查化归与转化思想.满分7分.解:解:(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y '''由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩ (Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0)(2)(本小题满分7分)坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立坐标系.已知点A 的极坐标为)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系. 本小题主要考查极坐标与直角坐标的互化.圆的参数方程等基础知识.考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)由点)4A π在直线cos()4a πρθ-=上,可得a = 所以直线l 的方程可化为cos sin 2ρθρθ+=从而直线l 的直角坐标方程为20x y +-=(Ⅱ)由已知得圆C 的直角坐标方程为22(1)1x y -+=所以圆心为(1,0),半径1r =以为圆心到直线的距离1d =<,所以直线与圆相交 (3)(本小题满分7分)不等式选讲 设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值.本小题主要考查绝对猪不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为3。
2017福建省质检数学(理)word版篇一:福建省福州外国语学校2017届高三适应性考试(三)数学(理)试题 Word版含答案高三数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满足(3?4i)?z?|4?3i|,i是虚数单位,则z的虚部为() A.?4B.4 5C.4 D.?4 52.设集合P??x||x?1|?3?,Q??y|y?(),x?(?2,1)?,则P?Q?()x??13??A.(?4,)19B.(,2]19C.(,2]13D.(,2)133.已知命题p:?x1,x2?R,(f(x2)?f(x1))(x2?x1)?0,则?p是() A.?x1,x2?R,(f(x2)?f(x1))(x2?x1)?0 B.?x1,x2?R,(f(x2)?f(x1))(x2?x1)?0 C.?x1,x2?R,(f(x2)?f(x1))(x2?x1)?0 D.?x1,x2?R,(f(x2)?f(x1))(x2?x1)?04.若??(A.??2,?),3cos2??sin(B.?4??),则sin2?的值为()C.?171****8118D.1 185.在如图所示的程序框图中,若输出的值是3,则输入x的取值范围是() A.(4,10]B.(2,??)C.(2,4]D.(4,??)6.有关以下命题:①用相关指数R来刻画回归效果,R越小,说明模型的拟合效果越好;②已知随机变量?服从正态分布N(2,?2),P(??4)?,则P(2)?;③采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,16,27,38,49的同学均被选出,则该班学生人数可能为60;其中正确的命题个数为() A.3个B.2个C.1个D.0个227. 一个三棱锥的三视图如图所示,则该三棱锥的表面积为() A.2?B.16?C.8?D.8?3x?y?a?0,?8. 设x,y满足约束条件?x?y?0,若目标函数z?x?y的最大值为2,则实数a的?2x?y?0,?值为() A.2B.1C.?1D.?29.已知等差数列?an?的公差d?0,且a1,a3,a13成等比数列,若a1?1,Sn为数列?an?的前n项和,则2Sn?16的最小值为()an?3B.3C.2D.2A.4bx2y210.过双曲线2?2?1(a?0,b?0)的右焦点F作直线y??x的垂线,垂足为A,aab交双曲线的左支于B点,若FB?2FA,则该双曲线的离心率为()AB.2CD11.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为则bd和(a,b,c,d?N*),acb?d是x的更为精确的不足近似值或过剩近似值.我们知道,若令a?c314916,则第一次用“调日法”后得是?的更为精确的过剩近似值,即101553116,若每次都取最简分数,那么第四次用“调日法”后可得?的近似分数为() 105226378109A. B. C. D.720352512.已知函数f(x)??根的根数是() A.8B.6C.4D.2?2x,g(x)?xcosx?sinx,当x3?,3??时,方程f(x)?g(x)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知(x?为.162?)展开式的常数项是540,则由区县y?x和y?x围成的封闭图形的面积axB,C,14.△ABC的三个内交为A,的最大值为.7?则2cosB?sin2C?tan(?),122????215.在平行四边形ABCD中,AC?CB?0,2BC?AC?4?0,若将其沿AC 折成二面角D?AC?B,则三棱锥D?AC?B的外接球的表面积为.??x3?x2,x?e16.设函数y??的图象上存在两点P,Q,使得△POQ是以O为直角顶点?alnx,x?e的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.数列?an?的前n项和为Sn,且Sn?2an?1,设bn?2(log2an?1),n?N*.(1)求数列?an?的通项公式;(2)求数列?bn?an?的前n 项和Tn.18.如图,四边形ABCD与BDEF均为菱形,?DAB??DBF?60?,且FA?FC.(1)求证:AC?平面BDEF;(2)求证:FC//平面EAD;(3)求二面角A?FC?B的余弦值.19.某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如下:方式实施地点大雨中雨小雨模拟实验总次数A B甲乙丙4次 3次 2次6次 6次 2次2次 3次 8次12次 12次 12次C假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:(1)求甲、乙、丙三地都恰为中雨的概念;(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量?,求随机变量?的分布列和数学期望E?.x2y220.已知椭圆?:2?2?1(a?b?0)的右焦点为,且椭圆?上一点M到其ab两焦点F1,F2的距离之和为(1)求椭圆?的标准方程;(2)设直线l:y?x?m(m?R)与椭圆?交于不同两点A,B,且|AB|?,若点P(x0,2)满足|PA|?|PB|,求x0的值. 21.已知a?R,函数f(x)?(x?a)|x?1|.(1)若a?3,求f(x)的单调递增区间;(2)函数f(x)在?a1,b?上的值域为??1,1?,求a,b需要满足的条件.??请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-1:几何证明选讲如图,AB是圆O的直径,弦CD?AB于点M,E是CD延长线上一点,AB?10,CD?8,3ED?4OM,EF切圆O于F,BF交CD于G.(1)求证:△EFG为等腰三角形;(2)求线段MG的长.篇二:福建省福州第一中学2016届高三下学期模拟考试(5月质检)数学(理)试题 Word版含答案2016届福州一中高中毕业班理科数学模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A?x?2?16,B?xlog3(x?2x)?1,则A?B等于(A)?3,4? (B) ?3,4?(C) (??,0)??0,4? (D) (??,?1)??0,4? (2)计算sin46??cos16??cos314??sin16???x??2?1(C)2(3)已知随机变量?服从正态分布N(3,?2),若P(??6)?,则P(03)? (A) (B) (C) (D)x03(4)设命题p:?x0?(0,??),3?x0,则?p为(A) ?x?(0,??),3x?x3 (B) ?x?(0,??),3x?x3 (C)?x?(0,??),3?x (D) ?x?(0,??),3?x(5)二项式(2xx3x35的展开式中x的系数等于(6)设向量OA?e1,OB?e2,若e1与e2不共线,且AP?6PB,则OP?(A) ?40 (B) 40 (C) ?20(D) 201??6??6??1??1??6??6??1??(A) e1?e2 (B) e1?e2 (C) e1?e2 (D) e1?e2777777771?8?(7)已知函数f(x)?sin(x?)(x?R),把函数f(x)的图象向右平移个单位得函数463g(x)的图象,则下面结论正确的是(A) 函数g(x)是奇函数(B) 函数g(x)在区间??,2??上是增函数(C) 函数g(x)的最小正周期是4? (D) 函数g(x)的图象关于直线x??对称(8)在一球面上有A,B,C三点,如果AB??ACB?60?,球心O到平面ABC的距离为3,则球O的表面积为(A) 36? (B) 64? (C) 100? (D) 144? (9)右边程序框图的算法思路,源于我国南宋时期的数学家秦九韶在他的著作中提出的秦九韶算法,执行该程序框图,若输入的n,an,x分别为5,1,?2,且a4?5,a3?10,a2?10,a1?5,a0?1,则输出的v=(A) 1 (B) 2 (C) ?1 (D) ?25(10)某三棱锥的三视图如上图所示,其侧(左)视图为直角三角形,则该三棱锥最长的棱长等于 (A) (D)x2y2(11) 已知O,F分别为双曲线E:2?2?1(a?0,b?0)的中心和右焦点,点G,M分别在abE的渐近线和右支,FG?OG,GM//x轴,且OM?OF,则E的离心率为43x(12) 设定义在(0,??)的函数f(x)的导函数是f?(x),且xf?(x)?3xf(x)?e,e3f(3)?,则x?0时,f(x)81(A) 有极大值,无极小值(B) 有极小值,无极大值(C) 既无极大值,又无极小值 (D) 既有极大值,又有极小值第Ⅱ卷本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)已知复数z的共轭复数z?1?i,则复数z的虚部是_______. 1?2i?y?x?(14)若x,y满足约束条件?x?y?2, 且z?3x?y的最小值是最大值的?3倍,则a的值是?x?a?_____.(15)若椭圆的中心在原点,一个焦点为(1,0),直线2x?2y?3?0与椭圆相交,所得弦的中点的横坐标为1,则这个椭圆的方程为_________.(16)若?ABC的内角满足sinA?2sinC?B,则角C的最大值是_______. 三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知等差数列?an?的前n项和为Sn,且S6?5S2?18,a3n?3an,数列?bn?满足 b1?b2bn?4Sn.(Ⅰ)求数列?an?,?bn?的通项公式;(Ⅱ)令cn?log2bn,且数列?(18)(本小题满分12分)?1??的前n项和为Tn,求T2016.?cn?cn?1?ABCD,底面ABCD为直如图,在四棱柱ABCD?A1BC11D1中,侧面ADD1A1?底面AB?BC?4. 角梯形,其中BC//AD,AB?AD,AD?12,AD11?(Ⅰ)在线段AD上求一点N,使得CN//平面ABB1A1,并加以证明;(Ⅱ)对于(Ⅰ)中的点N,求锐二面角D?ND1?C1的余弦值.(19)(本小题满分12分)某商场每天以每件100元的价格购入A商品若干件,并以每件200元的价格出售,若所购进的A商品前8小时没有售完,则商场对没卖出的A商品以每件60元的低价当天处理完毕(假定A商品当天能够处理完).该商场统计了100天A商品在每天的前8小时的销售量,(Ⅰ)某天该商场共购入8件A商品,在前8个小时售出6件. 若这些产品被8名不同的顾客购买,现从这8名顾客中随机选4人进行回访,求恰有三人是以每件200元的价格购买的概率;(Ⅱ)将频率视为概率,要使商场每天购进A商品时所获得的平均利润最大,则每天应购进几件A商品,并说明理由.(20)(本小题满分12分)已知抛物线E:y2?2px(p?0)的焦点为F,过F且垂直于x轴的直线与抛物线E交于A,B两点,E的准线与x轴交于点C,?CAB的面积为4,以点D(3,0)为圆心的圆D过点A,B.(Ⅰ)求抛物线E和圆D的方程;(Ⅱ)若斜率为k(k?1)的直线m与圆D相切,且与抛物线E交于M,N两点,求FM?FN的取值范围.(21)(本小题满分12分)已知函数f(x)?ax2?bx?2lnx(a?0,b?R),若对任意x?0,f(x)?f(2). (Ⅰ)写出b?g(a)的表达式;(Ⅱ)已知c,d为不相等的两个整数,且c?k?d时lna?kb?0恒成立,求c的最小值与d的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD内接于圆O,AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD的延长线于M,自M引MT切圆O于T.(Ⅰ)求证:MT?ME;(Ⅱ)若AE?BM,MT?3,MD?1,求BE的长.(23)(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C1的方程为x?y?1,在以原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为??228.cos??2sin?(Ⅰ)将C1上的所有点的横坐标和纵坐标分别伸长为原来的2C2,求曲线C2的直角坐标方程;(Ⅱ)若P,Q分别为曲线C2与直线l上的两个动点,求PQ的最小值以及此时点P的坐标.(24)(本小题满分10分)选修4-5:不等式选讲如果关于x 的不等式x??x?6?a的解集为空集. (Ⅰ)求实数a的取值范围;(Ⅱ)若实数b与实数a取值范围相同,求证:ab?25?5a?b.篇三:福建省福州市第八中学2017届高三上学期第四次质量检查数学(理)试题 Word版含答案福州八中2016—2017学年高三毕业班第四次质量检查数学(理)试题考试时间:120分钟试卷满分:150分第Ⅰ卷(60分)一、选择题(本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A?{x|?1?2x?1?3},B?{x|A.{x|?1?x?0} C.{x|0?x?2} 2.复数z?x?2?0},则A?B? xB.{x|0?x?1} D.{x|0?x?1}2i?i3(i为虚数单位)的共轭复数为 i?1C.1?iD.1?2iA.1?2i3.某几何体的三视图如图所示,则该几何体的体积为B. D.234.已知命题p:?x?R,32x?1?0,命题q:0?x?2是log2x?1的充分不必要条件,则下列命题为真命题的是A.?pB.p?qC.p?(?q) D.?p?q5.已知直线l1:(3+a)x+4y=5-3a和直线l2:2x+(5+a)y =8平行,则a= A.-7B.-7或-1C.-1D.7或1?x?y?2?0,?6.若实数x,y满足?x?y?0,若z?x?2y的最小值是?y?0,?A.?2B.?1D.2是7. 直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于 A.4 3C.838.若两个正实数x,y满足?1xy4?1,且不等式x??m2?3m有解,则实数m的取值范围4yA.(??,?1)?(4,??) C.(?4,1) 9.已知函数B.(??,0)?(3,??) D.(?1,4)?2f(x)?Acos(?x??)的图象如图所示,f()??,则f(0)等于23232C.3A.?B. ?D.1 2x2y210.已知双曲线ab1(a>0,b>0)的左,右焦点分别为F1(-c,0),F2(c,0),若双曲1 2ac线上存在点P,则该双曲线的离心率的取值范围为sin∠PF1F2sin∠PF2F1A.2+1,+∞) C.(13)B.3,+∞) D.(1,2+1)?|log3x|,0?x?3?11.已知函数f(x)??,若存在实数x1,x2,x3,x4,当??x),3?x?9?3?x1?x2?x3?x4时,满足f(x1)?f(x2)?f(x3)?f(x4),则x1?x2?x3?x4的取值范围是135135) ) C.[27,30) D.(27,4412x12.已知函数f(x)?x?e?(x?0)与g(x)?x2?ln(x?a)的图象上存在2A.(7,B.(21,29) 4关于y轴对称的点,则a的取值范围是A.(?,??) B.(?1,) eC.(?,11) D.(?,??) e第Ⅱ卷(主观题90分)二、填空题(本大题共4小题,每小题5分,共20分)rrr1r13.已知向量a?(,b?(1,0),则b在a上的投影等于______________.214.已知圆x+y=m与圆x+y+6x-8y-11=0相交,则实数m的取值范围是215.已知数列{an}满足a1?1,a2?2,an?2?(1?cos2222n?n?)an?sin2,则该数列的前1222项和为16.已知边长为2的菱形ABCD中,?BAD?600,沿对角线BD折成二面角为120的四面体,则四面体的外接球的表面积为________.三、解答题:解答应写出文字说明、演算步骤或证明过程.17.(本小题满分12分)等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求证:18.(本小题满分12分)1113(n?N?) S1S2Sn4??已知函数f?x??m?n,且m?sin?x?cos?x?x,???n??cos?x?sin?x,2sin?x?,其中??0,若函数f?x?相邻两条对称轴的距离大于等于?. 2(1)求?的取值范围;(2)在锐角?ABC中,当?最大时,f?A??1,且a?a,b,c分别是角A,B,C的对边,求b?c的取值范围.19.(本小题满分12分)如图, 已知四边形ABCD和BCEG均为直角梯形,AD//BC,CE//BG,且?BCD??BCE?平面ABCD⊥平面BCEG,?2,BC?CD?CE?2AD?2BG?2.(Ⅰ)证明:AG//平面BDE;(Ⅱ)求平面BDE和平面BAG所成锐二面角的余弦值.y2x220.(本小题满分12分)已知椭圆C:2?2?1(a?b?0),以原点为圆ab心,椭圆的短半轴长为半径的圆与直线x?y?0相切.A、B是椭圆C的右顶点与上顶点,直线y?kx(k?0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.(本小题满分12分)设函数f(x)?(x?1)lnx?a(x?1).(1)若函数f(x)在x?e处的切线与y轴相交于点(0,2?e),求a的值;(2)当1?x?2时,求证:211. ??x?1lnxln(2?x)请考生在第22,23题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
2017年普通高等学校招生统一考试(福建卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、若集合(是虚数单位),,则等于A. B. C. D.2、下列函数为奇函数的是A. B. C. D.3、若双曲线的左、右焦点分别为,点在双曲线上,且,则等于A. B. C. D.4、为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区户家庭,得到如下统计数据表:根据上表可得回归本线方程,其中,据此估计,该社区一户收入为万元家庭年支出为A.万元B.万元C.万元D.万元5、若变量满足约束条件则的最小值等于A. B. C. D.6、阅读如图所示的程序框图,运行相应的程序,则输出的结果为A. B. C. D.7、若是两条不同的直线,垂直于平面,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条8、若是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于A. B. C. D.9、已知,若点是所在平面内一点,且,则的最大值等于A. B. C. D.10、若定义在上的函数满足,其导函数满足,则下列结论中一定错误的是A. B. C. D.二、填空题:本大题共5小题,每小题4分,共20分。
11、的展开式中,的系数等于.(用数字作答)12、若锐角的面积为,且,则等于.13、如图,点的坐标为,点的坐标为,函数,若在矩形内随机取一点,则此点取自阴影部分的概率等于.14、若函数(且)的值域是,则实数的取值范围是.15、一个二元码是由和组成的数字串,其中称为第位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由变为,或者由变为)已知某种二元码的码元满足如下校验方程组:其中运算定义为:.现已知一个这种二元码在通信过程中仅在第位发生码元错误后变成了,那么利用上述校验方程组可判定等于.三、解答题:本大题共6小题,共80分。
福建省福州市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知复数,则的值为()A . 3B .C . 5D .2. (2分)对于大前提小前提所以结论以上推理过程中的错误为()A . 大前提B . 小前提C . 结论D . 无错误3. (2分) (2016高三上·鹰潭期中) 设两个向量 =(λ+2,λ2﹣cos2α)和 =(m,+sinα),其中λ,m,α为实数.若 =2 ,则的取值范围是()A . [﹣1,6]B . [﹣6,1]C . (﹣∞, ]D . [4,8]4. (2分) (2019高二下·吉林期中) 下列命题正确的是()A . 复数不是纯虚数B . 若,则复数为纯虚数C . 若是纯虚数,则实数D . 若复数,则当且仅当时,为虚数5. (2分)(2019·桂林模拟) 的展开式中的一次项系数是()A . -20B . 14C . 20D . 356. (2分)如果一个几何体的三视图是如图所示(单位:cm)则此几何体的表面积是()A .B . 22cm2C .D .7. (2分) (2020高一下·元氏期中) 已知是公差为3的等差数列.若成等比数列,则的前10项和()A . 165B . 138C . 60D . 308. (2分) (2016高一下·鞍山期中) 如果若干个函数的图象经过平移后能够重合,则称这些函数“互为生成”函数,给出下列函数:①f(x)=sinx﹣cosx,②f(x)= (sinx+cosx),③f(x)= sinx+2,④f(x)=sinx,其中互为生成的函数是()A . ①②B . ①③C . ③④D . ②④9. (2分)已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A .B . 3C .D . 410. (2分) (2019高一下·包头期中) 《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一栋七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则该塔中间一层灯的盏数是()A . 24B . 48C . 12D . 6011. (2分) (2017高二上·揭阳月考) 已知数列{an}中,a1=2,an=1﹣(n≥2),则a2017等于()A . ﹣B .C . ﹣1D . 212. (2分)已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(﹣∞,0)时xf′(x)<﹣f(x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=﹣2f(log2),则a,b,c的大小关系是()A . c>a>bB . c>b>aC . a>b>cD . a>c>b二、填空题 (共4题;共4分)13. (1分)已知直线与曲线切于点,则b的值为________.14. (1分) (2019高三上·建平期中) 双曲线的一个焦点是,一条渐近线是,那么双曲线的方程是________15. (1分) (2016高二下·郑州期末) 把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.16. (1分)已知向量 .若向量与垂直,则 =________三、解答题 (共7题;共70分)17. (15分) (2016高二下·沈阳开学考) 已知数列{an}的前n项和为.(1)求a1 , a2 , a3;(2)若数列{an}为等比数列,求常数a的值及an;(3)对于(2)中的an ,记f(n)=λ•a2n+1﹣4λ•an+1﹣3,若f(n)<0对任意的正整数n恒成立,求实数λ的取值范围.18. (5分)(2017·黑龙江模拟) 某厂每日生产一种大型产品2件,每件产品的投入成本为1000元.产品质量为一等品的概率为0.5,二等品的概率为0.4,每件一等品的出厂价为5000元,每件二等品的出厂价为4000元,若产品质量不能达到一等品或二等品,除成本不能收回外,每生产1件产品还会带来1000元的损失.(Ⅰ)求在连续生产的3天中,恰有两天生产的2件产品都为一等品的概率;(Ⅱ)已知该厂某日生产的这种大型产品2件中有1件为一等品,求另1件也为一等品的概率;(Ⅲ)求该厂每日生产这种产品所获利润ξ(元)的分布列和期望.19. (5分) (2019高二上·兴宁期中) 如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.20. (10分)(2016·绍兴模拟) 已知椭圆C: +y2=1与直线l:y=kx+m相交于E、F两不同点,且直线l 与圆O:x2+y2= 相切于点W(O为坐标原点).(1)证明:OE⊥OF;(2)设λ= ,求实数λ的取值范围.21. (15分) (2015高二下·克拉玛依期中) 已知函数f(x)=lnx﹣.(1)若a>0,试判断f(x)在定义域内的单调性;(2)若f(x)在[1,e]上的最小值为,求a的值;(3)若f(x)>x2在(1,+∞)上恒成立,求a的取值范围.22. (10分) (2017高二下·赤峰期末) 选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(其中为参数),曲线:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的普通方程和曲线的极坐标方程;(2)若射线()与曲线,分别交于,两点,求 .23. (10分)(2019·泉州模拟) 已知函数,为不等式的解集. (1)求;(2)证明:当时, .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、17-3、18-1、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
2017-2018学年福建省福州市高考数学模拟试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}2.复数z满足z(1﹣i)=|1+i|,则复数z的共轭复数在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数f(x)=Asin(x+φ)(A>0)在x=处取得最小值,则()A.f(x+)是奇函数B.f(x+)是偶函数C.f(x﹣)是奇函数D.f(x﹣)是偶函数4.在△ABC中,=5,=4,则AB=()A.9 B.3 C.2 D.15.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)A.0.1 B.0.3 C.0.42 D.0.56.若x,y满足约束条件且目标函数z=ax﹣y取得最大值的点有无数个,则z 的最小值等于()A.﹣2 B.﹣C.﹣D.7.执行如图的程序框图,若输入n值为4,则输出的结果为()A.8 B.21 C.34 D.558.(x+2+)5的展开式中,x2的系数为()A.45 B.60 C.90 D.1209.正项等比数列{a n}满足a1=1,a2a6+a3a5=128,则下列结论正确的是()A.∀n∈N*,a n a n+1≤a n+2B.∃n∈N*,a n+a n+2=2a n+1C.∀n∈N*,S n<a n+1 D.∃n∈N*,a n+a n+3=a n+1+a n+210.双曲线的左右焦点为F1,F2,P是双曲线上一点,满足|PF2|=|F1F2|,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为()A.B.C.D.11.一个三棱锥的三视图如图所示,则该三棱锥的体积等于()A.2 B.C.D.312.设m∈R,函数f(x)=(x﹣m)2+(e2x﹣2m)2,若存在x0使得f(x0)≤成立,则m=()A.B.C.D.二、填空题:本大题4小题,每小题5分,共20分.把答案填在答题卡相应位置.13.若函数f(x)=,g(x)=f(x)+ax,x∈[﹣2,2]为偶函数,则实数a=.14.所有棱长均为2的正四棱锥的外接球的表面积等于.15.抛物线C:y2=4x的准线与x轴交于M,过焦点F作倾斜角为60°的直线与C交于A,B 两点,则tan∠AMB=.16.数列{a n}的前n项和为S n,已知a1=2,S n+1+(﹣1)n S n=2n,则S100=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的内角A,B,C所对的边分别为a,b,c,已知1+=.(I)求A;(Ⅱ)若BC边上的中线AM=2,高线AH=,求△ABC的面积.18.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).10%的前提下认为“该学科成绩与性别有关”?(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.K2=.19.如图所示,四棱锥P﹣ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E是PB中点,CD=PD=AD=AB.(Ⅰ)求证:CE⊥平面PAB;(Ⅱ)若CE=,AB=4,求直线CE与平面PDC所成角的大小.20.在平面直角坐标系xOy中,已知点A,B的坐标分别为(﹣2,0),(2,0).直线AP,BP相交于点P,且它们的斜率之积是﹣.记点P的轨迹为Г.(Ⅰ)求Г的方程;(Ⅱ)已知直线AP,BP分别交直线l:x=4于点M,N,轨迹Г在点P处的切线与线段MN交于点Q,求的值.21.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.四.请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图所示,△ABC内接于圆O,D是的中点,∠BAC的平分线分别交BC和圆O于点E,F.(Ⅰ)求证:BF是△ABE外接圆的切线;(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系.(Ⅰ)写出C1的极坐标方程;(Ⅱ)设曲线C2: +y2=1经伸缩变换后得到曲线C3,射线θ=(ρ>0)分别与C1和C3交于A,B两点,求|AB|.[选修4-5:不等式选讲]24.已知不等式|x+3|<2x+1的解集为{x|x>m}.(Ⅰ)求m的值;(Ⅱ)设关于x的方程|x﹣t|+|x+|=m(t≠0)有解,求实数t的值.2016年福建省福州市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为R,集合M={﹣1,1,2,4},N={x|x2﹣2x>3},则M∩(∁R N)=()A.{﹣1,1,2}B.{1,2}C.{4}D.{x|﹣1≤x≤2}【考点】交、并、补集的混合运算.【分析】求出N中不等式的解集确定出N,根据全集R,求出N的补集,找出M与N补集的交集即可.【解答】解:由N中不等式变形得:(x﹣3)(x+1)>0,解得:x<﹣1或x>3,即N=(﹣∞,﹣1)∪(3,+∞),∵全集为R,∴∁R N=[﹣1,3],∵M={﹣1,1,2,4},∴M∩(∁R N)={﹣1,1,2},故选:A.2.复数z满足z(1﹣i)=|1+i|,则复数z的共轭复数在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:z(1﹣i)=|1+i|,∴z(1﹣i)(1+i)=(1+i),∴z=+i,则复数z的共轭复数+i在复平面内的对应点位于第四象限.故选:D.3.函数f(x)=Asin(x+φ)(A>0)在x=处取得最小值,则()A.f(x+)是奇函数B.f(x+)是偶函数C.f(x﹣)是奇函数D.f(x﹣)是偶函数【考点】正弦函数的图象.【分析】由f()=f min(x)可知直线x=是f(x)的一条对称轴.故将f(x)图象向左平移个单位后关于y轴对称.【解答】解:∵f(x)在x=处取得最小值,∴直线x=是f(x)的一条对称轴.∴将f(x)的函数图象向左平移个单位后关于y轴对称,∴f(x+)是偶函数.故选B.4.在△ABC中,=5,=4,则AB=()A.9 B.3 C.2 D.1【考点】平面向量数量积的运算.【分析】由=4,得,与=5作和,然后结合向量加法的运算法则求得得答案.【解答】解:由=4,得,即,又=5,∴﹣=,即.∴AB=3.故选:B.5.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)Y PA.0.1 B.0.3 C.0.42 D.0.5【考点】古典概型及其概率计算公式.【分析】分别求出两个事件发生的概率,利用条件概率公式求得答案.【解答】解:降水量X至少是100的条件下,工期延误不超过15天的概率P,设:降水量X至少是100为事件A,工期延误不超过15天的事件B,P(A)=0.6,P(AB)=0.3,P=P(B丨A)==0.5,故答案选:D.6.若x,y满足约束条件且目标函数z=ax﹣y取得最大值的点有无数个,则z 的最小值等于()A.﹣2 B.﹣C.﹣D.【考点】简单线性规划.【分析】化简可得y=ax﹣z,再作出平面区域,从而可得a=﹣,化简直线y=﹣x﹣z,从而可知过点(﹣1,1)时有最小值,代入求之即可.【解答】解:∵z=ax﹣y,∴y=ax﹣z,故直线y=ax﹣z的截距为﹣z,作平面区域如下,,故a=﹣,故直线y=﹣x﹣z,故过点(﹣1,1)时,有最小值z=﹣×(﹣1)﹣1=﹣,故选C.7.执行如图的程序框图,若输入n值为4,则输出的结果为()A.8 B.21 C.34 D.55【考点】程序框图.【分析】执行程序框图,依次写出每次循环得到的s,t,i的值,当n=4时不满足条件i<4,退出循环,输出s+t的值为21,从而得解.【解答】解:模拟执行程序框图,可得n=4,s=1,t=1,i=1满足条件i<4,执行循环体,可得:s=2,t=3,i=2满足条件i<4,执行循环体,可得:s=4,t=7,i=3满足条件i<4,执行循环体,可得:s=7,t=14,i=4不满足条件i<4,退出循环,输出s+t的值为21.故选:B.8.(x+2+)5的展开式中,x2的系数为()A.45 B.60 C.90 D.120【考点】二项式定理的应用.【分析】利用完全平方公式对原式变形可知,问题即求(+)10的展开式中x2的系数,进而计算可得结论.【解答】解:∵x+2+=(+)2,∴(x+2+)5=(+)10,∴T k+1=•=x5﹣k,令5﹣k=2,则k=3,故x2的系数为=120,故选:D.9.正项等比数列{a n}满足a1=1,a2a6+a3a5=128,则下列结论正确的是()A.∀n∈N*,a n a n+1≤a n+2B.∃n∈N*,a n+a n+2=2a n+1C.∀n∈N*,S n<a n+1 D.∃n∈N*,a n+a n+3=a n+1+a n+2【考点】等比数列的通项公式.【分析】根据题意先求出q,求出通项公式,再分别判断即可.【解答】解:设公比为q,正项等比数列{a n}满足a1=1,a2a6+a3a5=128,∴q6+q6=128,∴q6=64=26,解得q=2,∴a n=2n﹣1,∴a n+1=2n,a n+2=2n+1,若a n a n+1≤a n+2,∴22n﹣1≤2n+1,∴2n﹣1≤n+1,解得n≤2,故A不正确,若a n+a n+2=2a n+1,∴2n﹣1+2n+1=2•2n,则1+4=2×2,显然不成立,故B不正确,∵S n==2n﹣1,若S n<a n+1,∴2n﹣1<2n,恒成立,故C正确,∵a n+3=2n+2,若a n+a n+3=a n+1+a n+2,∴2n﹣1+2n+2=2n+2n+1,即1+8=2+4,显然不成立,故D不正确,故选:C.10.双曲线的左右焦点为F1,F2,P是双曲线上一点,满足|PF2|=|F1F2|,直线PF1与圆x2+y2=a2相切,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】先设PF1与圆相切于点M,利用|PF2|=|F1F2|,及直线PF1与圆x2+y2=a2相切,可得几何量之间的关系,从而可求双曲线的离心率的值.【解答】解:设PF1与圆相切于点M,因为|PF2|=|F1F2|,所以△PF1F2为等腰三角形,所以|F1M|=|PF1|,又因为在直角△F1MO中,|F1M|2=|F1O|2﹣a2=c2﹣a2,所以|F1M|=b=|PF1|①又|PF1|=|PF2|+2a=2c+2a ②,c2=a2+b2③由①②③解得=.故选D.11.一个三棱锥的三视图如图所示,则该三棱锥的体积等于()A.2 B.C.D.3【考点】由三视图求面积、体积.【分析】根据三视图知几何体是三棱锥为棱长为2的正方体一部分,画出几何体的直观图,根据切割补形法和椎体的体积公式求出该三棱锥的体积.【解答】解根据三视图知几何体是:三棱锥P﹣ABC为棱长为2的正方体一部分,直观图如图所示:且B是棱的中点,由图得,该三棱锥是:由正方体截去两个相同的四棱锥P﹣ADEC、P﹣CEFB,两个三棱锥P﹣ABM、C﹣ANB,由正方体的性质可得,四棱锥P﹣ADEC的体积是=2,三棱锥P﹣ABM的体积是=三棱锥C﹣ANB的体积是=,所以该三棱锥的体积:V=2×2×2﹣4﹣﹣=2,故选:A.12.设m∈R,函数f(x)=(x﹣m)2+(e2x﹣2m)2,若存在x0使得f(x0)≤成立,则m=()A.B.C.D.【考点】特称.【分析】函数f(x)=(x﹣m)2+(e2x﹣2m)2,表示两点P(x,e2x),Q(m,2m)之间的距离的平方.分别令f(x)=e2x,g(x)=2x.利用导数研究切线方程的斜率,再利用点到直线的距离公式即可得出.【解答】解:函数f(x)=(x﹣m)2+(e2x﹣2m)2,表示两点P(x,e2x),Q(m,2m)之间的距离的平方.分别令f(x)=e2x,g(x)=2x.f′(x)=2e2x,令=2,解得x0=0,可得P(0,1).则点P(0,1)到直线y=2x的距离d=,∴d2=.因此存在x0=0使得f(x0)≤成立,联立,解得x=.故选:B.二、填空题:本大题4小题,每小题5分,共20分.把答案填在答题卡相应位置.13.若函数f(x)=,g(x)=f(x)+ax,x∈[﹣2,2]为偶函数,则实数a=﹣.【考点】分段函数的应用;函数奇偶性的性质.【分析】依题意,可求得g(x)=,依题意,g(﹣1)=g(1)即可求得实数a的值.【解答】解:∵f(x)=,∴g(x)=f(x)+ax=,∵g(x)=为偶函数,∴g(﹣1)=g(1),即﹣a﹣1=1+a﹣1=a,∴2a=﹣1,∴a=﹣.故答案为:﹣.14.所有棱长均为2的正四棱锥的外接球的表面积等于8π.【考点】球的体积和表面积.【分析】作出棱长均为2的正四棱锥O﹣ABCD,如图所示,四边形ABCD为正方形,△OAD,△OAB,△OBC,△OCD都为等边三角形,得到8条边相等,再由OE=DE=AE=BE=CE=r,即为正四棱锥的外接球半径,求出球的表面积即可.【解答】解:作出棱长均为2的正四棱锥O﹣ABCD,如图所示,∵四边形ABCD为正方形,△OAD,△OAB,△OBC,△OCD都为等边三角形,∴AD=DC=CB=AB=OA=OD=OB=OC=2,∴AE=EC=DE=BE=OE=,∴正四棱锥的外接球的半径r=,则正四棱锥的外接球的表面积S=4π•r2=8π,故答案为:8π15.抛物线C:y2=4x的准线与x轴交于M,过焦点F作倾斜角为60°的直线与C交于A,B两点,则tan∠AMB=4.【考点】抛物线的简单性质.【分析】设AB方程y=(x﹣1),与抛物线方程y2=4x联立,求出A,B的坐标,利用夹角公式求出tan∠AMB.【解答】解:抛物线C:y2=4x的焦点F(1,0),M(﹣1,0),设AB方程y=(x﹣1),y=(x﹣1),与y2=4x联立可得3x2﹣10x+3=0可得x=或3,∴A(,﹣),B(3,2),∴k AM=﹣,k BM=∴tan∠AMB==4.故答案为:4.16.数列{a n}的前n项和为S n,已知a1=2,S n+1+(﹣1)n S n=2n,则S100=198.【考点】数列递推式.【分析】当n为偶数时,由题意可推出S n+2+S n=4n+2,从而可得S n+4﹣S n=8,再由a1=2知S2=4,S4=6,再利用累加法求和.【解答】解:当n为偶数时,S n+1+S n=2n,S n+2﹣S n+1=2n+2,故S n+2+S n=4n+2,故S n+4+S n+2=4(n+2)+2,故S n+4﹣S n=8,而由a1=2知,S1=2,S2﹣S1=2,故S2=4,∵S4+S2=4×2+2=10,∴S4=6,∴S8﹣S4=8,S12﹣S8=8,…,S100﹣S96=8,∴S100=24×8+S4=192+6=198.故答案为:198.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.△ABC的内角A,B,C所对的边分别为a,b,c,已知1+=.(I)求A;(Ⅱ)若BC边上的中线AM=2,高线AH=,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(I)由和三角函数公式和正弦定理可得cosA=,A=;(Ⅱ)可得MH=,以M为原点,BC的垂直平分线为y轴建系,由向量的数量积可得a的方程,解得a2=4,a=2,代入三角形的面积公式计算可得.【解答】解:(I)∵在△ABC中1+=,∴1+=,∴=,∴=,∴=,∴由正弦定理可得=,∴cosA=,∵A∈(0,π),∴A=;(Ⅱ)由题意和勾股定理可得MH==,以M为原点,BC的垂直平分线为y轴建立如图所示的坐标系,并设C(a,0),则B(﹣a,0),其中a>0,则由题意可得A(,),cos<,>=cos=,又可得=(﹣a﹣,﹣),=(a﹣,﹣),由数量积可得(﹣a﹣)(a﹣)+3=••,整理可得a4﹣20a2+64=0,故(a2﹣4)(a2﹣16)=0,解得a2=4或a2=16经验证当a2=16时矛盾,应舍去,故a2=4,a=2,故可得△ABC的面积S=•BC•AH=×4×=2.18.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高三年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).i2210%的前提下认为“该学科成绩与性别有关”?(Ⅱ)将频率视作概率,从高三年级该学科成绩中任意抽取3名学生的成绩,求至少2名学生的成绩为优分的概率.K2=.【考点】频率分布直方图;茎叶图;独立性检验.【分析】(Ⅰ)根据图示,将2×2列联表补充完整,计算观测值k,对照数表得出概率结论;(Ⅱ)利用频率视作概率,得出X服从二项分布,求出对应的概率值.22列联表补充完整如下:假设H0:该学科成绩与性别无关,则K2的观测值k===3.125,因为3.125>2.706,所以能在犯错误概率不超过10%的前提下认为该学科成绩与性别有关;(Ⅱ)由于有较大的把握认为该学科成绩与性别有关,因此需要将男女生成绩的优分频率f==0.4视作概率;设从高三年级中任意抽取3名学生的该学科成绩中,优分人数为X,则X服从二项分布B(3,0.4),所求概率P=P(X=2)+P(X=3)=×0.42×0.6+×0.43=0.352. 19.如图所示,四棱锥P ﹣ABCD 的底面是梯形,且AB ∥CD ,AB ⊥平面PAD ,E 是PB 中点,CD=PD=AD=AB .(Ⅰ)求证:CE ⊥平面PAB ;(Ⅱ)若CE=,AB=4,求直线CE 与平面PDC 所成角的大小.【考点】直线与平面所成的角;直线与平面垂直的判定. 【分析】(I )取AP 的中点F ,连结DF ,EF ,由四边形CDFE 是平行四边形可转而证明DF ⊥平面PAB ;(II )设点O ,G 分别为AD ,BC 的中点,连结OG ,OP ,则可证OA ,OG ,OP 两两垂直,以O 为原点建立空间直角坐标系,求出和 平面PDC 的法向量,于是直线CE 与平面PDC所成角的正弦值等于|cos <>|.【解答】证明:(Ⅰ)取AP 的中点F ,连结DF ,EF . ∵PD=AD ,∴DF ⊥AP .∵AB ⊥平面PAD ,DF ⊂平面PAD , ∴AB ⊥DF .又∵AP ⊂平面PAB ,AB ⊂平面PAB ,AP ∩AB=A , ∴DF ⊥平面PAB .∵E 是PB 的中点,F 是PA 的中点,∴EF ∥AB ,EF=AB .又AB ∥CD ,CD=AB ,∴EF ∥CD ,EF=CD ,∴四边形EFDC 为平行四边形, ∴CE ∥DF ,∴CE ⊥平面PAB .(Ⅱ)解:设点O ,G 分别为AD ,BC 的中点,连结OG ,则OG ∥AB , ∵AB ⊥平面PAD ,AD ⊂平面PAD , ∴AB ⊥AD ,∴OG ⊥AD .∵BC=,由(Ⅰ)知,DF=, 又AB=4,∴AD=2,∴AP=2AF=2=2,∴△APD 为正三角形,∴PO ⊥AD ,∵AB⊥平面PAD,PO⊂平面PAD,∴AB⊥PO.又AD⊂平面ABCD,AB⊂平面ABCD,AD∩AB=A,∴PO⊥平面ABCD.以点O为原点,分别以OA,OG,OP为x轴,y轴,z轴建立空间直角坐标系O﹣xyz,如图所示.则P(0,0,),C(﹣1,2,0),D(﹣1,0,0),E(,2,),∴=(﹣1,0,﹣),=(﹣1,2,﹣),=(﹣,0,﹣),设平面PDC的法向量为=(x,y,z),则,∴,取z=1,则=(﹣,0,1),∴cos<>===设EC与平面PDC所成的角为α,则sinα=cos<>=,∵α∈[0,],∴α=,∴EC与平面PDC所成角的大小为.20.在平面直角坐标系xOy中,已知点A,B的坐标分别为(﹣2,0),(2,0).直线AP,BP相交于点P,且它们的斜率之积是﹣.记点P的轨迹为Г.(Ⅰ)求Г的方程;(Ⅱ)已知直线AP,BP分别交直线l:x=4于点M,N,轨迹Г在点P处的切线与线段MN交于点Q,求的值.【考点】椭圆的简单性质;椭圆的标准方程;直线与圆锥曲线的关系.【分析】(Ⅰ)设出P点坐标,求得AP、BP所在直线的斜率,由斜率之积是﹣列式整理即可得到Г的方程;(Ⅱ)设出P点坐标,得到AP、BP的方程,进一步求出M、N的纵坐标,再写出椭圆在P 点的切线方程,由判别式等于0得到过P的斜率(用P的坐标表示),再代入切线方程,求得Q点纵坐标,设,转化为坐标的关系即可求得λ,从而得到的值.【解答】解:(Ⅰ)设点P坐标为(x,y),则直线AP的斜率(x≠﹣2);直线BP的斜率(x≠2).由已知有(x≠±2),化简得点P的轨迹Г的方程为(x≠±2).(Ⅱ)设P(x1,y1)(x1≠±2),则.直线AP的方程为,令x=4,得点M纵坐标为;直线BP的方程为,令x=4,得点N纵坐标为;设在点P处的切线方程为y﹣y1=k(x﹣x1),由,得.由△=0,得=0,整理得.将代入上式并整理得:,解得,∴切线方程为.令x=4得,点Q纵坐标为=.设,则y Q﹣y M=λ(y N﹣y Q),∴.∴.将代入上式,得,解得λ=1,即=1.21.已知a∈R,函数f(x)=e x﹣1﹣ax的图象与x轴相切.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x>1时,f(x)>m(x﹣1)lnx,求实数m的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,根据函数图象与x轴相切,求出a的值,从而求出函数的单调区间;(Ⅱ)求出g(x)的导数,通过讨论m的范围,结合函数的单调性以及f(x)>m(x﹣1)lnx,求出m的范围即可.【解答】解:(Ⅰ)f′(x)=e x﹣1﹣a,设切点为(x0,0),依题意,,解得所以f′(x)=e x﹣1﹣1.当x<1时,f′(x)<0;当x>1时,f′(x)>0.故f(x)的单调递减区间为(﹣∞,1),单调递增区间为(1,+∞).(Ⅱ)令g(x)=f(x)﹣m(x﹣1)lnx,x>0.则g′(x)=e x﹣1﹣m(lnx+)﹣1,令h(x)=g′(x),则h′(x)=e x﹣1﹣m(+),(ⅰ)若m≤,因为当x>1时,e x﹣1>1,m(+)<1,所以h′(x)>0,所以h(x)即g′(x)在(1,+∞)上单调递增.又因为g′(1)=0,所以当x>1时,g′(x)>0,从而g(x)在[1,+∞)上单调递增,而g(1)=0,所以g(x)>0,即f(x)>m(x﹣1)lnx成立.(ⅱ)若m>,可得h′(x)在(0,+∞)上单调递增.因为h′(1)=1﹣2m<0,h′(1+ln(2m))>0,所以存在x1∈(1,1+ln(2m)),使得h′(x1)=0,且当x∈(1,x1)时,h′(x)<0,所以h(x)即g′(x)在(1,x1)上单调递减,又因为g′(1)=0,所以当x∈(1,x1)时,g′(x)<0,从而g(x)在(1,x1)上单调递减,而g(1)=0,所以当x∈(1,x1)时,g(x)<0,即f(x)>m(x﹣1)lnx不成立.纵上所述,k的取值范围是(﹣∞,].四.请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图所示,△ABC内接于圆O,D是的中点,∠BAC的平分线分别交BC和圆O于点E,F.(Ⅰ)求证:BF是△ABE外接圆的切线;(Ⅱ)若AB=3,AC=2,求DB2﹣DA2的值.【考点】圆周角定理;平行截割定理.【分析】(Ⅰ)设△ABE外接圆的圆心为O′,连结BO′并延长交圆O′于G点,连结GE,则∠BEG=90°,∠BAE=∠BGE,可证∠FBE=∠BAE,进而证明∠FBG=90°,即可得证BF是△ABE 外接圆的切线.(Ⅱ)连接DF,则DF⊥BC,由勾股定理可得BD2﹣DA2=AF2﹣BF2,利用相似三角形的性质可得AB•AC=AE•AF=(AF﹣EF)•AF,由△FBE∽△FAB,从而BF2=FE•FA,得AB﹣AC=AF2﹣BF2,进而可求BD2﹣DA2=AB•AC=6.【解答】(本题满分为10分).解:(Ⅰ)设△ABE外接圆的圆心为O′,连结BO′并延长交圆O′于G点,连结GE,则∠BEG=90°,∠BAE=∠BGE.因为AF平分∠BAC,所以,所以∠FBE=∠BAE,所以∠FBG=∠FBE+∠EBG=∠BGE+∠EBG=180°﹣∠BEG=90°,所以O′B⊥BF,所以BF是△ABE外接圆的切线…(Ⅱ)连接DF,则DF⊥BC,所以DF是圆O的直径,因为BD2+BF2=DF2,DA2+AF2=DF2,所以BD2﹣DA2=AF2﹣BF2.因为AF平分∠BAC,所以△ABF∽△AEC,所以=,所以AB•AC=AE•AF=(AF﹣EF)•AF,因为∠FBE=∠BAE,所以△FBE∽△FAB,从而BF2=FE•FA,所以AB﹣AC=AF2﹣BF2,所以BD2﹣DA2=AB•AC=6…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数).以O为极点,x轴正半轴为极轴,并取相同的单位长度建立极坐标系.(Ⅰ)写出C1的极坐标方程;(Ⅱ)设曲线C2: +y2=1经伸缩变换后得到曲线C3,射线θ=(ρ>0)分别与C1和C3交于A,B两点,求|AB|.【考点】简单曲线的极坐标方程;平面直角坐标轴中的伸缩变换;参数方程化成普通方程.【分析】(Ⅰ)根据题意,消去参数,即可解得方程C1的极坐标方程;(Ⅱ)求得C3的方程,即可由OA,OB的长解得AB的长.【解答】解:(Ⅰ)将(α为参数).消去参数α,化为普通方程为(x﹣2)2+y2=4,即C1:x2+y2﹣4x=0,将代入C1:x2+y2﹣4x=0,得ρ2=4ρcosθ,所以C1的极坐标方程为ρ=4cosθ.(Ⅱ)将代入C2得x′2+y′2=1,所以C3的方程为x2+y2=1.C3的极坐标方程为ρ=1,所以|OB=1|.又|OA|=4cos=2,所以|AB|=|OA|﹣|OB|=1.[选修4-5:不等式选讲]24.已知不等式|x+3|<2x+1的解集为{x|x>m}.(Ⅰ)求m的值;(Ⅱ)设关于x的方程|x﹣t|+|x+|=m(t≠0)有解,求实数t的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)由不等式|x+3|<2x+1,可得或,解出即可得出.(Ⅱ)由于|x﹣t|+|x+|≥==|t|+,已知关于x的方程|x﹣t|+|x+|=m(t≠0)有解,|t|+≥2,另一方面,|t|+=2,即可得出.【解答】解:(Ⅰ)由不等式|x+3|<2x+1,可得或,解得x>2.依题意m=2.(Ⅱ)∵|x﹣t|+|x+|≥==|t|+,当且仅当(x﹣t)=0时取等号,∵关于x的方程|x﹣t|+|x+|=m(t≠0)有解,|t|+≥2,另一方面,|t|+=2,∴|t|+=2,解得t=±1.2016年8月16日。
2017年福建省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年福建省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].。
高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1-i,则z的共轭复数是()A. -1-iB. 1-iC. -1+iD. 1+i2.已知集合A={x|2x+1>3},B={x|x2-x-2<0},则A∪B=()A. {x|1<x<2}B. {x|-1<x<1}C. {x|-2<x<1,或x>1}D. {x|x>-1}3.中国传统文化是中化民族智慧的结晶,是中化民族的历史遗产在现实生活中的展现.为弘扬中华民族传统文化,某校学生会为了解本校高一1000名学生的课余时间参加传统文化活动的情况,随机抽取50名学生进行调查.将数据分组整理后,A. 表中m的数值为10B. 估计该校高一学生参加传统文化活动次数不高于2场的学生约为180人C. 估计该校高一学生参加传统文化活动次数不低于4场的学生约为360人D. 若采用系统抽样方法进行调查,从该校高一1000名学生中抽取容量为50 的样本,则分段间隔为254.等比数列{a n}的各项均为正实数,其前n项和为S n.若a3=4,a2a6=64,则S5=()A. 32B. 31C. 64D. 635.已知,且,则=()A. 0B.C. 1D.6.设抛物线y2=4x的焦点为F,准线为l,P为该抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为,则△PAF的面积为()A. B. C. 8 D.7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. 32B. 16C.D.8.已知函数f(x)=2sin(ωx+φ)图象的相邻两条对称轴之间的距离为,将函数f(x)的图象向左平移个单位长度后,得到函数g(x)的图象.若函数g(x)为偶函数,则函数f(x)在区间上的值域是()A. B. (-1,1) C. (0,2] D. (-1,2]9.已知g(x)为偶函数,h(x)为奇函数,且满足g(x)-h(x)=2x.若存在x∈[-1,1],使得不等式m•g(x)+h(x)≤0有解,则实数m的最大值为()A. -1B.C. 1D.10.如图,双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F2作线段F2P与C交于点Q,且Q为PF2的中点.若等腰△PF1F2的底边PF2的长等于C的半焦距,则C的离心率为()A. B. C. D.11.如图,以棱长为1的正方体的顶点为球心,以为半径做一个球面,则该正方体的表面被球面所截得的所有弧长之和为()A. B. C. D.12.已知数列{a n}满足a1=1,,则a8=()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知两个单位向量,满足,则与的夹角为______.14.已知点A(0,2),动点P(x,y)的坐标满足条件,则|PA|的最小值是______.15.(1+ax)2(1-x)5的展开式中,所有x的奇数次幂项的系数和为-64,则正实数a的值为______.16.已知函数有且只有一个零点,则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.△ABC的内角A,B,C的对边分别为a,b,c.若角A,B,C成等差数列,且.(1)求△ABC的外接圆直径;(2)求a+c的取值范围.18.如图,四棱锥P-ABCD,AB∥CD,∠BCD=90°,AB=2BC=2CD=4,△PAB为等边三角形,平面PAB⊥平面ABCD,Q为PB中点.(1)求证:AQ⊥平面PBC;(2)求二面角B-PC-D的余弦值.19.最近,中国房地产业协会主办的中国房价行情网调查的一份数据显示,2018年7月,大部分一线城市的房租租金同比涨幅都在10%以上.某部门研究成果认为,房租支出超过月收入的租户“幸福指数”低,房租支出不超过月收入的租户“幸福指数”高.为了了解甲、乙两小区租户的幸福指数高低,随机抽取甲、乙两小区的租户各100户进行调查.甲小区租户的月收入以[0,3),[3,6),[6,9),[9,12),[12,15](单位:千元)分组的频率分布直方图如图所示.乙小区租户的月收入(单位:千元)的频数分布表如下:(1)设甲、乙两小区租户的月收入相互独立,记M表示事件“甲小区租户的月收入低于6千元,乙小区租户的月收入不低于6千元”.把频率视为概率,求M的概率;(2)利用频率分布直方图,求所抽取甲小区100户租户的月收入的中位数;(3)若甲、乙两小区每户的月租费分别为2千元、1千元.请根据条件完成下面的2×2列联表,并说明能否在犯错误的概率不超过0.001的前提下认为“幸福指数高低与租住的小区”有关.参考公式:.20.已知圆O:x2+y2=r2,椭圆C:的短半轴长等于圆O的半径,且过C右焦点的直线与圆O相切于点.(1)求椭圆C的方程;(2)若动直线l与圆O相切,且与C相交于A,B两点,求点O到弦AB的垂直平分线距离的最大值.21.已知函数f(x)=,g(x)=x2e mx+1-e2.(1)求函数f(x)的单调区间;(2)若a<0,∀x1,x2∈[0,e],不等式f(x1)≥g(x2)恒成立,求实数m的取值范围.22.在直角坐标系xOy中,直线l的参数方程为(t为参数,a∈R).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,射线与曲线C交于O,P两点,直线l与曲线C交于A,B两点.(1)求直线l的普通方程和曲线C的直角坐标方程;(2)当|AB|=|OP|时,求a的值.23.已知不等式|2x+1|+|2x-1|<4的解集为M.(1)求集合M;(2)设实数a∈M,b∉M,证明:|ab|+1≤|a|+|b|.答案和解析1.【答案】C【解析】解:∵复数z满足zi=1-i,∴z===-1-i,故=-1+i,故选:C.由复数z满足zi=1-i,可得z,从而求出即可.本题主要考查两个复数代数形式的除法,两个复数相除,分子和分母同时乘以分母的共轭复数,虚数单位i的幂运算性质,考查共轭复数问题,属于基础题.2.【答案】D【解析】【分析】可解出集合A,B,然后进行并集的运算即可.考查描述法的定义,一元二次不等式的解法,以及并集的运算.【解答】解:A={x|x>1},B={x|-1<x<2};∴A∪B={x|x>-1}.故选:D.3.【答案】C【解析】解:8%+10%+20%+26%+18%+m%+4%+2%=1,得m=12,故A错误,活动次数不高于2场的学生约(8%+10%+20%)×1000=380,即约为380人,故B错误,参加传统文化活动次数不低于4场的学生为(18%+12%+4%+2%)×1000=360人,故C 是正确的;D中的分段间隔应为1000÷50=20,故D错误,故选:C.根据系统抽样的定义分别进行判断即可.本题主要考查命题的真假判断,结合系统抽样的定义进行判断是解决本题的关键.4.【答案】B【解析】解法一:设首项为a1,公比为q,因为a n>0,所以q>0,由条件得,解得,所以S5=31,故选:B.解法二:设首项为a1,公比为q,由,又a3=4,∴q=2,又因为,所以a1=1,所以S5=31,故选:B.解法一:设首项为a1,公比为q,因为a n>0,所以q>0,由条件得,解出即可得出.解法二:设首项为a1,公比为q,由,又a3=4,可得q=2,再利用通项公式即可得出.本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】解:由,且,可得,代入,可得=cos0=1,故选:C.解法二:由,且,可得,所以,故选:C.解法一:由题意先求出角θ,从而求得的值.解法二:由题意求得cos(θ-),再根据=cos[(θ-)+]吧,利用两角差的三角公式求得结果.本题主要考查两角和差的三角公式的应用,属于基础题.6.【答案】B【解析】解:解法一:设准线与x轴交于点Q,因为直线AF的斜率为,|FQ|=2,所以∠AFQ=60°,|FA|=4,又因为|PA|=|PF|,所以△PAF是边长为4的等边三角形,所以△PAF的面积为.解法二:设准线与x轴交于点Q,P(m,n),因为直线AF的斜率为,|FQ|=2,所以∠AFQ=60°,所以,所以,又因为n2=4m,所以m=3,又因为|PA|=|PF|=4,所以△PAF的面积为.故选:B.解法一:设准线与x轴交于点Q,因为直线AF的斜率为,可得△PAF是边长为4的等边三角形,即可求出面积,解法二:设准线与x轴交于点Q,P(m,n),利用抛物线的定义即可求|PF|的值.本题主要考查抛物线的几何性质,定义的应用,以及曲线交点的求法,利用抛物线的定义是解决本题的关键.7.【答案】D【解析】解:由三视图知,该几何体是直三棱柱减去一个三棱锥,如图所示;所求几何体的体积为直三棱柱的体积减去三棱锥的体积,即V=.故选:D.由三视图知该几何体是直三棱柱截去一个三棱锥,结合图中数据求出几何体的体积.本题考查了利用三视图求几何体的体积应用问题,是基础题.8.【答案】D【解析】解:由图象的相邻两条对称轴之间的距离为,所以:T=π,又因为ω>0,所以:,解得ω=2.将函数f(x)的图象向左平移个单位长度后,得到函数的图象.因为函数g(x)为偶函数,所以(k∈Z),由,解得,所以:f(x)=2sin(2x-).因为,所以:,所以函数的值域是(-1,2].故选:D.首先利用函数的图象和性质求出函数的关系式,进一步利用图象的平移变换求出g(x)的函数的关系式,进一步求出函数的值域.本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.【答案】B【解析】解:∵g(x)为偶函数,h(x)为奇函数,且满足g(x)-h(x)=2x.∴g(-x)-h(-x)=g(x)+h(x)=2-x.得g(x)=,h(x)=.由m•g(x)+h(x)≤0得m•+≤0,即m≤==1-,∵y=1-为增函数,∴当x=1时,函数取得最大值,最大值为1-=,故m≤,即m的最大值为,故选:B.利用函数的奇偶性建立方程组求出函数g(x)和h(x)解析式,利用参数分离法求出函数的最值进行求解即可.本题主要考查函数存在性以及恒成立问题,利用函数奇偶性求出函数的解析式以及利用参数分离法进行转化是解决本题的关键.10.【答案】C【解析】【分析】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题.根据双曲线的定义和等腰三角形的性质,即可得到,(2a+)2+()2=(2c)2,化简整理可得.【解答】解:连接QF1,由条件知QF1⊥PF2,且|QF2|=.由双曲线定义知|QF1|=2a+,在Rt△F1QF2中,(2a+)2+()2=(2c)2,即8a2+4ac-7c2=0,即8+4e-7e2=0解得C的离心率e=,故选:C.11.【答案】C【解析】解:正方体的表面被该球面被所截得的弧长有相等的三部分,例如,与上底面截得的弧长,是球的大圆的周长的,故其弧长为=,所以弧长之和为3×=.故选:C.找到球与正方体所形成的三段圆弧,发现它们都是个大圆的圆弧,故可求本题考查球与平面的截得的弧长问题,属于基础题.12.【答案】A【解析】解:因为数列{a n}满足a1=1,,则,所以,所以,令,则,两边取对数得lg b n+1=2lg b n,又,所以数列{lg b n}是首项为lg3,公比为2的等比数列.所以=,所以:,即,从而,将n=8代入,解得:,故选:A.直接利用已知条件建立等量关系,进一步对关系式进行转换,求出,在两边取对数,求出数列的通项公式,最后利用代入法求出结果.本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于中档题型.13.【答案】【解析】解:∵是单位向量;∴对两边平方可得:;∴;∴;又;∴与的夹角为.故答案为:.根据是单位向量,即可对两边平方即可求出,从而得出,根据向量夹角的范围即可求出,的夹角.考查单位向量的概念,向量数量积的运算,以及向量夹角的余弦公式,向量夹角的范围.14.【答案】【解析】解:动点P(x,y)所满足的可行域如图:则|AP|的最小值转化成点A到直线y=x的距离d=,故答案为:.由题意画出图形,再由点到直线的距离公式求解.本题考查点到直线距离公式的应用,考查数学转化思想方法与数形结合的解题思想方法,是中档题.15.【答案】3【解析】解:设(1+ax)2(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6a7x7,令x=1,得0=a0+a1+a2+a3+a4+a5+a6+a7,①,令x=-1,得25(1-a)2=a0-a1+a2-a3+a4-a5+a6-a7,②,②-①得:25(1-a)2=-2(a1+a3+a5+a7),又因为:a1+a3+a5+a7=-64,a>0.∴25(1-a)2=128,解得a=3.故答案为:3.设(1+ax)2(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6a7x7,令x=1,得0=a0+a1+a2+a3+a4+a5+a6+a7,令x=-1,得25(1-a)2=a0-a1+a2-a3+a4-a5+a6-a7,相减即可得出.本题考查了二项式定理的展开式的通项公式、求值,考查了推理能力与计算能力,属于基础题.16.【答案】(-∞,0)∪{e}【解析】解:当x=时,显然x=不是该函数的零点;当x时,由=0,分离参数得a=,令p(x)=,函数有且只有一个零点,等价于直线y=a与函数p(x)=有且只有一个零点.利用导数,可得p′(x)==.当x∈(0,)∪(,)时,p′(x)<0,p(x)单调递减,当x∈(,+∞)时,p′(x)>0,p(x)单调递增,且当x→0时,p(x)→0,当x=时,p(x)不存在,当x=时,p(x)有极小值为e.得出p(x)的图象如图所示,∵直线y=a与函数p(x)的图象的交点个数为1,由图可知,实数a的取值范围是(-∞,0)∪{e},故答案为:(-∞,0)∪{e}.当x=时,显然x=不是该函数的零点;当x时,由=0,分离参数得a=,利用导数研究函数p(x)=的单调性,作出图象,数形结合得答案.本题考查函数零点的判定,考查利用导数研究函数的单调性,考查数形结合的解题思想方法,是中档题.17.【答案】(本题满分为12分)解:(1)由角A、B、C成等差数列,所以2B=A+C,…(1分)又因为A+B+C=π,所以B=,…(2分)根据正弦定理得,△ABC的外接圆直径2R==1…(4分)(2)解法一:由(1)知,B=,所以A+C=,所以0<A<,(5分)由(1)知△ABC的外接圆直径为1,根据正弦定理得,=1,…(6分)∴a+c=sin A+sin C=sin A+sin(-A)…(8分)=(sin A+cos A)=sin(A+).(9分)∵0<A<,∴<A+<,∴<sin(A+)≤1,(11分)从而sin(A+)≤,所以a+c的取值范围是(,]…(12分)解法二:由(1)知,B=,根据余弦定理得,b2=a2+c2-2ac cos B,…(6分)=(a+c)2-3ac,(7分)≥(a+c)2-3()2=(a+c)2,(当且仅当a=c时,取等号)…(9分)因为b=,∴(a+c)2≤3,即a+c,…(10分)又三角形两边之和大于第三边,所以<a+c≤,…(11分)所以a+c的取值范围是(,]…(12分)【解析】(1)由角A、B、C成等差数列,及三角形内角和定理可求B=,根据正弦定理得△ABC的外接圆直径的值.(2)解法一:由(1)知,B=,A+C=,由正弦定理,三角函数恒等变换的应用可求a+c=sin(A+),结合范围0<A<,利用正弦函数的性质可求a+c的取值范围;解法二:由(1)及余弦定理,基本不等式可求a+c,又三角形两边之和大于第三边,可求<a+c≤,即可得解.本题主要考查了等差数列的性质,三角形内角和定理,正弦定理,三角函数恒等变换的应用,正弦函数的性质,余弦定理,基本不等式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】证明:(1)因为AB∥CD,∠BCD=90°,所以AB⊥BC,又平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,平面ABCD,所以BC⊥平面PAB,又AQ⊂平面PAB,所以BC⊥AQ因为Q为PB中点,且△PAB为等边三角形,所以PB⊥AQ,又PB∩BC=B,PB、BC平面PBC,所以AQ⊥平面PBC.解:(2)取AB中点为O,连接PO,因为△PAB为等边三角形,所以PO⊥AB,由平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,因为PO⊂平面PAB,所以PO⊥平面ABCD,因为平面ABCD,所以PO⊥OD,由AB=2BC=2CD=4,∠ABC=90°,可知OD∥BC,所以OD⊥AB.以AB中点O为坐标原点,分别以OD,OB,OP所在直线为x,y,z轴,建立如图所示的空间直角坐标系O-xyz.所以A(0,-2,0),D(2,0,0),C(2,2,0),P(0,0,2),B(0,2,0),则=(2,2,0),=(-2,0,2),=(0,-2,0),因为Q为PB中点,所以Q(0,1,),由(1)知,平面PBC的一个法向量为=(0,3,),设平面PCD的法向量为=(x,y,z),由,取z=1,得=(),由cos<>===.因为二面角B-PC-D为钝角,所以,二面角B-PC-D的余弦值为.【解析】(1)推导出AB⊥BC,从而BC⊥平面PAB,进而BC⊥AQ,再求出PB⊥AQ,由此能证明AQ⊥平面PBC;(2)取AB中点为O,连接PO,推导出PO⊥AB,PO⊥平面ABCD,OD⊥AB.以AB中点O为坐标原点,分别以OD,OB,OP所在直线为x,y,z轴,建立空间直角坐标系O-xyz,利用向量法能求出二面角B-PC-D的余弦值.该题考查线面垂直的证明,考查二面角的余弦值的求法,考查运算求解能力,是中档题.19.【答案】66 34 100 38 62 100 104 96 200【解析】解(1)记A表示事件“甲小区租户的月收入低于6千元”,记B表示事件“乙小区租户的月收入不低于6千元”,甲小区租户的月收入低于6千元的频率为(0.060+0.160)×3=0.66,故P(A)的估计值为0.66;(1分)乙小区租户的月收入不低于6千元频率为=0.35,故P(B)的估计值为0.35;(2分)因为甲、乙两小区租户的月收入相互独立,事件M的概率的估计值为P(M)=P(A)P(B)=0.66×0.35=0.231.(4分)(2)设甲小区所抽取的 100户的月收入的中位数为t,则0.060×3+(t-3)×0.160=0.5,(6分)解得t=5.(7分)(3)设H:幸福指数高低与租住的小区无关,(9分)根据2×2列联表中的数据,得到K2的观测值K2=≈15.705>10.828,(11分)所以能在犯错误的概率不超过 0.001 的前提下认为“幸福指数高低与租住的小区”有关.(12分)(1)先求出P(A)和P(B),再用两个独立事件同时发生的概率公式计算;(2)根据中位数两边概率之和为0.5列式计算可得;(3)计算出K2的观测值,结合临界值可得.本题考查了独立性检验,属中档题.20.【答案】解:(1)由条件知r2=()2+()2=1,(1分)所以b=1.(2分)过点D且与圆O相切的直线方程为:y-=-(x-),即x+y-2=0.(3分)令y=0得,x=2,由题意知,c=2,从而a2=b2+c2=5(4分)所以椭圆C的方程为:.(5分)(2)解法一:设点O到弦AB的垂直平分线的距离为d,①若直线l⊥x轴,弦AB的垂直平分线为x轴,所以d=0;若直线l⊥y轴,弦AB的垂直平分线为y轴,所以d=0.(6分)②设直线l的方程为y=kx+m(x≠0),因为l与圆O相切,所以=1,即|m|=.(7分)由,消去y得(1+5k2)x2+10kmx+5m2-5=0.设A(x1,y1),B(x2,y2).,由韦达定理知:,.(8分)所以AB中点的坐标为(-,),所以弦AB的垂直平分线方程为y-=-,即x+ky+.(9分)所以d=.(10分)将|m|=代入d=得d===≤,(当且仅当|k|=,时,取等号).(11分)综上所述,点O到弦AB的垂直平分线距离的最大值为.(12分)【解析】(1)由条件知b2=r2=()2+()2=1,由题意知,c=2,从而a2=b2+c2=5,即可得椭圆C的方程.(2)设点O到弦AB的垂直平分线的距离为d,①若直线l⊥x轴,弦AB的垂直平分线为x轴,所以d=0;若直线l⊥y轴,弦AB的垂直平分线为y轴,所以d=0.②设直线l的方程为y=kx+m,可得|m|=,由,消去y得(1+5k2)x2+10kmx+5m2-5=0.求得AB中点的坐标为(-,),弦AB的垂直平分线方程为y-=-,即可得d===,利用基本不等式即可求得最大值.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查点到直线的距离公式,韦达定理及弦长公式的应用,考查计算能力,属于中档题.21.【答案】解:(1)因为f(x)=-a ln(1+x),(x>-1),所以f′(x)=,(1分)当a≤0时,f′(x)>0,所以函数f(x)的单调递增区间为(-1,+∞).(2分)当a>0时,由,得:-1<x<-1+;由,得x>-1+;(3分)所以函数f(x)的单调递增区间是(-1,-1+);递减区间是(-1+,+∞).(4分)综上所述,当a≤0时,函数f(x)的单调递增区间为(-1,+∞).当a>0时,函数f(x)的单调递增区间是(-1,-1+);递减区间是(-1+,+∞).(5分)(2)若a<0,∀x1,x2∈[0,e],不等式f(x1)≥g(x2)恒成立,等价于“对任意x∈[0,e],f(x)min≥g(x)max恒成立”.(6分)当a<0时,由(1)知,函数f(x)在[0,e]单调递增,所以f(x)min=f(0)=0.(7分)g′(x)=x(mx+2)e mx+1,(i)当m≥0时,由0≤x≤e,得g′(x)≥0,知函数g(x)在[0,e]单调递增,所以g(x)max=g(e)=e me+3-e2>0,不符合题意.(8分)当m<0时,令g′(x)=0得,x=0或x=-.(ii)当-≤m<0,即-≥e时,在[0,e]上,g′(x)≥0,所以g(x)在[0,e]上单调递增,所以g(x)max=g(e)=e me+3-e2,只需满足:e me+3-e2≤0,即m≤-,所以-≤m≤-.(9分)(iii)当m<-,即0<-<e时,在[0,-]上,g′(x)≥0,所以g(x)在[0,-]单调递增,在[-,e]上,g′(x)≤0,所以g(x)在[-,e]单调递减,所以g(x)max=g(-)=-e2≤0,所以m2≥,得m≤-,又因为->-,所以m<-.(11分)综上所述,实数m的取值范围为(-∞,-].(12分)【解析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)问题等价于“对任意x∈[0,e],f(x)min≥g(x)max恒成立”,根据函数的单调性求出函数的最值,得到关于m的不等式,解出即可.本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,考查转化思想,是一道综合题.22.【答案】解:(1)将直线l的参数方程为(t为参数,a∈R),化为普通方程为.曲线C的极坐标方程为ρ=4cosθ,转换为直角坐标方程为:x2+y2-4x=0(2)由,得P().所以|OP|=2,将直线l的参数方程代入圆的方程x2+y2-4x=0,得由△>0,得,设A、B两点对应的参数为t1和t2,则:|AB|=|t1-t2|=,9分)解得,a=0或a=4.【解析】(1)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之进行转换.(2)利用直线和曲线的位置关系,根据一元二次方程根和系数的关系建立等量关系求出a的值.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.【答案】解:(1)当x<-时,不等式化为:-2x-1+1-2x<4,即x>-1,所以-1<x<-;当-时,不等式化为:2x+1-2x+1<4,即2<4,恒成立,所以-;当x>时,不等式化为:2x+1+2x-1<4,即x<1,所以;综上可知,M={x|-1<x<1}.(2)因为a∈M,b∉M,所以|a|<1,|b|≥1.因为|ab|+1-(|a|+|b|)=|ab|+1-|a|-|b|=(|a|-1)(|b|-1)≤0,所以|ab|+1≤|a|+|b|.【解析】本题考查了绝对值不等式,属于中档题.(1)分段去绝对值解不等式即可;(2)因为a∈M,b∉M,所以|a|<1,|b|≥1,再作差变形可证.。
2017-2018学年福建省福州市高考数学模拟试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.已知复数z满足zi=2i+x(x∈R),若z的虚部为2,则|z|=()A.2 B.2C.D.2.已知命题p:“∃x∈R,e x﹣x﹣1≤0”,则命题¬p()A.∀x∈R,e x﹣x﹣1>0 B.∀x∉R,e x﹣x﹣1>0C.∀x∈R,e x﹣x﹣1≥0 D.∃x∈R,e x﹣x﹣1>03.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x的取值范围是()A.[0,2)B.[2,7]C.[2,4]D.[0,7]4.若2cos2α=sin(α﹣),且α∈(,π),则cos2α的值为()A.﹣B.﹣C.1 D.5.若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.26.如图是一个空间几何体的三视图,则该几何体的表面积为()A.3++B.6+2+2C.3+2D.2++7.(1﹣x)6(1+x)4的展开式中x2的系数是()A.﹣4 B.﹣3 C.3 D.48.已知抛物线C:y2=8x与直线y=k(x+2)(k>0)相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k=()A .B .C .D .9.已知f (x )=,若函数g (x )=f (x )﹣k 有两个零点,则两零点所在的区间为( ) A .(﹣∞,0) B .(0,1) C .(1,2) D .(1,+∞)10.已知三棱锥O ﹣ABC 底面ABC 的顶点在半径为4的球O 表面上,且AB=6,BC=2,AC=4,则三棱锥O ﹣ABC 的体积为( )A .4B .12C .18D .3611.设F 1,F 2是双曲线=1(a >0,b >0)的左,右两个焦点,若双曲线右支上存在一点P ,使()•=0(O 为坐标原点),且||=||,则双曲线的离心率为( )A .B .+1C .D .12.已知偶函数f (x )是定义在R 上的可导函数,其导函数为f ′(x ),当x <0时有2f (x )+xf ′(x )>x 2,C ,则不等式(x +2014)2f (x +2014)﹣4f (﹣2)<0的解集为( ) A .(﹣∞,﹣2012) B .(﹣2016,﹣2012) C .(﹣∞,﹣2016) D .(﹣2016,0)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上.) 13.在等比数列{a n }中,a 3a 7=8,a 4+a 6=6,则a 2+a 8=______.14.已知在△ABC 中,AB=4,AC=6,BC=,其外接圆的圆心为O ,则______.15.以下命题正确的是:______.①把函数y=3sin (2x +)的图象向右平移个单位,可得到y=3sin2x 的图象;②四边形ABCD 为长方形,AB=2,BC=1,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为1﹣;③某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种;④在某项测量中,测量结果ξ服从正态分布N (2,σ2)(σ>0).若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.16.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(3+b )(sinA ﹣sinB )=(c ﹣b )sinC ,且a=3,则△ABC 面积的最大值为______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列{a n }的前n 项和S n 满足2S n =3a n ﹣1,其中n ∈N *. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设a n b n =,求数列{b n }的前n 项和为T n .18.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(Ⅰ)试估计该校高三学生视力在5.0以上的人数;(Ⅱ)为了进一步调查学生的护眼习惯,学习小组成员进行分层抽样,在视力4.2~4.4和5.0~5.2的学生中抽取9人,并且在这9人中任取3人,记视力在4.2~4.4的学生人数为X,求X 的分布列和数学期望.19.已知:矩形A1ABB1,且AB=2AA1,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形A1ABB1沿着直线C1C折成一个60°的二面角,如图所示.(Ⅰ)求证:AB1⊥A1D;(Ⅱ)求AB1与平面A1B1D所成角的正弦值..20.已知以A为圆心的圆(x﹣2)2+y2=64上有一个动点M,B(﹣2,0),线段BM的垂直平分线交AM于点P,点P的轨迹为E.(Ⅰ)求轨迹E的方程;(Ⅱ)过A点作两条相互垂直的直线l1,l2分别交曲线E于D,E,F,G四个点,求|DE|+|FG|的取值范围.21.已知函数f(x)=lnx+,a∈R,且函数f(x)在x=1处的切线平行于直线2x﹣y=0.(Ⅰ)实数a的值;(Ⅱ)若在[1,e](e=2.718…)上存在一点x0,使得x0+<mf(x0)成立,求实数m的取值范围.四.本题有(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.[选修4-1:几何证明讲]22.如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点.(Ⅰ)求证:B、D、H、F四点共圆;(Ⅱ)若AC=2,AF=2,求△BDF外接圆的半径.[选修4-4:坐标系与参数方程]23.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P 的直角坐标.[选修4-5:不等式选讲]24.已知a、b都是实数,a≠0,f(x)=|x﹣1|+|x﹣2|.(1)若f(x)>2,求实数x的取值范围;(2)若|a+b|+|a﹣b|≥|a|f(x)对满足条件的所有a、b都成立,求实数x的取值范围.2016年福建省福州市高考数学模拟试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.已知复数z满足zi=2i+x(x∈R),若z的虚部为2,则|z|=()A.2 B.2C.D.【考点】复数求模.【分析】利用复数的代数形式混合运算化简复数,然后求解复数的模.【解答】解:复数z满足zi=2i+x(x∈R),可得z==2﹣xi.若z的虚部为2,可得x=﹣2.z=2﹣2i.∴|z|=2故选:B.2.已知命题p:“∃x∈R,e x﹣x﹣1≤0”,则命题¬p()A.∀x∈R,e x﹣x﹣1>0 B.∀x∉R,e x﹣x﹣1>0C.∀x∈R,e x﹣x﹣1≥0 D.∃x∈R,e x﹣x﹣1>0【考点】特称命题;命题的否定.【分析】利用含逻辑连接词的否定是将存在变为任意,同时将结论否定,可写出命题的否定.【解答】解:∵命题p:“∃x∈R,e x﹣x﹣1≤0”,∴命题¬p:∀x∈R,e x﹣x﹣1>0,故选:A3.阅读算法框图,如果输出的函数值在区间[1,8]上,则输入的实数x的取值范围是()A.[0,2)B.[2,7]C.[2,4]D.[0,7]【考点】程序框图.【分析】模拟程序框图的运行过程,得出该程序运行输出的是什么,由此得出解答来.【解答】解:根据题意,得当x∈(﹣2,2)时,f(x)=2x,∴1≤2x≤8,∴0≤x≤3;当x∉(﹣2,2)时,f(x)=x+1,∴1≤x+1≤8,∴0≤x≤7,∴x的取值范围是[0,7].故选:D.4.若2cos2α=sin(α﹣),且α∈(,π),则cos2α的值为()A.﹣B.﹣C.1 D.【考点】二倍角的余弦;三角函数的化简求值.【分析】法一、由已知推导出cosα+sinα=,cosα﹣sinα=﹣,解得cosα=,由此利用二倍角的余弦求得cos2α的值.法二、利用诱导公式及倍角公式把已知变形,求出cos(α)=﹣,由α得范围求出的范围,进一步求得sin(α),再由倍角公式得答案.【解答】解:法一、∵α∈(,π),∴sinα>0,cosα<0,∵2cos2α=sin(α﹣),∴2(cos2α﹣sin2α)=(sinα﹣cosα),∴cosα+sinα=,①∴1+2sinαcosα=,则2sinαcosα=﹣,(cosα﹣sinα)2=1﹣2sinαcosα=1+,∴cosα﹣sinα=,②联立①②,解得cosα=,∴cos2α=2cos2α﹣1=2()2﹣1=.法二、由2cos2α=sin(α﹣),得2sin()=sin(α﹣),则4sin()cos(α)=sin(α﹣),∴cos(α)=﹣,∵α∈(,π),∴∈(),则sin()=﹣,则cos2α=sin()=2sin()cos(α)=2×.故选:D.5.若实数x,y满足不等式组目标函数t=x﹣2y的最大值为2,则实数a的值是()A.﹣2 B.0 C.1 D.2【考点】简单线性规划.【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件表示的可行域由⇒A(2,0)是最优解,直线x+2y﹣a=0,过点A(2,0),所以a=2,故选D6.如图是一个空间几何体的三视图,则该几何体的表面积为()A .3++B .6+2+2C .3+2D .2++ 【考点】由三视图求面积、体积.【分析】根据几何体的三视图,画出该几何体的直观图,结合图形求出答案来. 【解答】解:根据几何体的三视图得,该几何体是底面为直角三角形的三棱锥,如图所示; ∴它的表面积为 S=S 底+S 侧=××+(××2+×2×2+××)=1+(+2+)=3++. 故选:A .7.(1﹣x )6(1+x )4的展开式中x 2的系数是( ) A .﹣4 B .﹣3 C .3 D .4 【考点】二项式系数的性质.【分析】把已知二项式变形,然后展开二项式定理,则展开式中x 2的系数可求. 【解答】解:(1﹣x )6(1+x )4 =(1﹣2x +x 2)(1﹣x 2)4=(1﹣2x +x 2).∴(1﹣x )6(1+x )4的展开式中x 2的系数是.故选:B .8.已知抛物线C :y 2=8x 与直线y=k (x +2)(k >0)相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,则k=( )A .B .C .D .【考点】抛物线的简单性质.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,可知|OB|=|AF|,推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2,直线y=k(x+2)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=|AF|,∴|OB|=|BF|,点B的横坐标为1,∵k>0,∴点B的坐标为(1,2),∴k==.故选:A.9.已知f(x)=,若函数g(x)=f(x)﹣k有两个零点,则两零点所在的区间为()A.(﹣∞,0)B.(0,1)C.(1,2)D.(1,+∞)【考点】函数零点的判定定理.【分析】求得x≥2时,x<2时,可得函数f(x)的单调性和值域,即有y=f(x)的图象和直线y=k有两个交点.通过图象观察,即可得到所求区间.【解答】解:f(x)=,可得x≥2时,f(x)=递减,且f(x)∈(0,1];当x<2时,f(x)=(x﹣1)3递增,且f(x)∈(﹣∞,1).画出函数f(x)的图象,如图:令g(x)=f(x)﹣k=0,即有y=f(x)的图象和直线y=k有两个交点.由图象可得,当0<k<1时,直线y=k和y=f(x)有两个交点,可得函数g(x)=f(x)﹣k的两个零点在(1,+∞).故选:D.10.已知三棱锥O﹣ABC底面ABC的顶点在半径为4的球O表面上,且AB=6,BC=2,AC=4,则三棱锥O﹣ABC的体积为()A.4B.12C.18D.36【考点】棱柱、棱锥、棱台的体积.【分析】由勾股定理的逆定理得出AB⊥BC,故O在底面ABC上的投影为斜边AC的中点,利用勾股定理计算出棱锥的高,代入体积公式计算.【解答】解:∵AB=6,BC=2,AC=4,∴AB2+BC2=AC2,∴AB⊥BC.过O作OD⊥平面ABC,则D为AC的中点.∴OD===2.===4.∴V O﹣ABC故选A.11.设F1,F2是双曲线=1(a>0,b>0)的左,右两个焦点,若双曲线右支上存在一点P,使()•=0(O为坐标原点),且||=||,则双曲线的离心率为()A.B. +1 C.D.【考点】双曲线的简单性质;平面向量数量积的运算.【分析】取PF 2的中点A ,利用=2,可得⊥,从而可得PF 1⊥PF 2,利用双曲线的定义及勾股定理,可得结论.【解答】解:取PF 2的中点A ,则=2∵()•=0,∴2•=0∴⊥∵O 是F 1F 2的中点 ∴OA ∥PF 1, ∴PF 1⊥PF 2,∵|PF 1|=|PF 2|,∴2a=|PF 1|﹣|PF 2|=(﹣1)|PF 2|,∵|PF 1|2+|PF 2|2=4c 2, ∴c=|PF 2|,∴e===故选B12.已知偶函数f (x )是定义在R 上的可导函数,其导函数为f ′(x ),当x <0时有2f (x )+xf ′(x )>x 2,C ,则不等式(x +2014)2f (x +2014)﹣4f (﹣2)<0的解集为( ) A .(﹣∞,﹣2012) B .(﹣2016,﹣2012) C .(﹣∞,﹣2016) D .(﹣2016,0) 【考点】利用导数研究函数的单调性.【分析】通过观察2f (x )+xf ′(x )>x 2,不等式的左边像一个函数的导数,又直接写不出来,对该不等式两边同乘以x ,∵x <0,∴会得到2xf (x )+x 2f ′(x )<x 3,而这时不等式的左边是(x 2f (x ))′,所以构造函数F (x )=x 2f (x ),则能判断该函数在(﹣∞,0)上是减函数,根据函数f (x )的奇偶性,得到F (x )是偶函数,发现不等式(x +2014)2f (x +2014)﹣4f(﹣2)<0可以变成F (x +2014)<F (﹣2)=F (2),从而|x +2014|<2,解这个不等式便可.【解答】解:由2f (x )+xf ′(x )>x 2,(x <0); 得:2xf (x )+x 2f ′(x )<x 3 即[x 2f (x )]′<x 3<0; 令F (x )=x 2f (x );则当x <0时,F'(x )<0,即F (x )在(﹣∞,0)上是减函数; ∴F (x +2014)=(x +2014)2f (x +2014),F (﹣2)=4f (﹣2); 即不等式等价为F (x +2014)﹣F (﹣2)<0; ∵F (x )在(﹣∞,0)是减函数;偶函数f (x )是定义在R 上的可导函数,f (﹣x )=f (x ), ∴F (﹣x )=F (x ),F (x )在(0,+∞)递增,∴由F (x +2014)<F (﹣2)=F (2)得,|x +2014|<2, ∴﹣2016<x <﹣2012.∴原不等式的解集是(﹣2016,﹣2012). 故选:B .二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上.)13.在等比数列{a n}中,a3a7=8,a4+a6=6,则a2+a8=9.【考点】等比数列的通项公式.【分析】设等比数列{a n}的公比为q,由a3a7=8=a4a6,a4+a6=6,解得,.可得q2.于是a2+a8=.【解答】解:设等比数列{a n}的公比为q,∵a3a7=8=a4a6,a4+a6=6,解得,.∴q2=2或.则a2+a8==9.故答案为:9.14.已知在△ABC中,AB=4,AC=6,BC=,其外接圆的圆心为O,则10.【考点】平面向量数量积的运算.【分析】根据向量数量积的几何意义即可得到答案.【解答】解:=()=﹣•,如图,根据向量数量积的几何意义得)﹣•=6||﹣4||=6×3﹣4×2=10,故答案为:10.15.以下命题正确的是:①③④.①把函数y=3sin(2x+)的图象向右平移个单位,可得到y=3sin2x的图象;②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1﹣;③某校开设A类选修课3门,B类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种;④在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.【考点】命题的真假判断与应用.【分析】①根据三角函数的图象平移关系进行判断.②根据几何概型的概率公式进行判断.③根据排列组合的计数原理进行判断.④根据正态分布的概率关系进行判断.【解答】解:①把函数y=3sin(2x+)的图象向右平移个单位,得到y=3sin[2(x﹣)+]=3sin(2x﹣+)=3sin2x,即可得到y=3sin2x的图象;故①正确,②解:已知如图所示:长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为,因此取到的点到O的距离大于1的概率P==1﹣;故②错误;③可分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故要求两类课程中各至少选一门,则不同的选法共有30种正确,故③正确,④在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).则正态曲线关于x=2对称,若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在[1,2]的概率P(1<x<2)=0.5﹣0.=4,则在(2,3)内取值的概率P(2<x<3)=P(1<x<2)=0.4.故④正确,故答案为:①③④16.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且(3+b)(sinA﹣sinB)=(c﹣b)sinC,且a=3,则△ABC面积的最大值为.【考点】正弦定理.【分析】由(3+b)(sinA﹣sinB)=(c﹣b)sinC,a=3,利用正弦定理可得(a+b)(a﹣b)=(c﹣b)c,化简利用余弦定理可得A,再利用余弦定理、基本不等式的性质、三角形面积计算公式即可得出.【解答】解:∵(3+b)(sinA﹣sinB)=(c﹣b)sinC,a=3,∴(a+b)(a﹣b)=(c﹣b)c,∴b2+c2﹣a2=bc,∴cosA==,∵A ∈(0,π),∴A=.∴b 2+c 2=9+bc ≥2bc ,化为bc ≤9,当且仅当b=c=3时取等号.∴S △ABC ==.故最大值为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知数列{a n }的前n 项和S n 满足2S n =3a n ﹣1,其中n ∈N *. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设a n b n =,求数列{b n }的前n 项和为T n .【考点】数列的求和;数列递推式. 【分析】( I )分n=1与n ≥2讨论,从而判断出{a n }是等比数列,从而求通项公式;( II )化简可得=3(﹣),利用裂项求和法求解.【解答】解:( I )∵,①当n=1时,a 1=a 1﹣,∴a 1=1,当n ≥2时,∵S n ﹣1=a n ﹣1﹣,② ①﹣②得:a n =a n ﹣a n ﹣1, 即:a n =3a n ﹣1(n ≥2), 又∵a 1=1,a 2=3,∴对n ∈N *都成立,故{a n }是等比数列,∴.( II )∵,∴=3(﹣),∴,∴,即T n=.18.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(Ⅰ)试估计该校高三学生视力在5.0以上的人数;(Ⅱ)为了进一步调查学生的护眼习惯,学习小组成员进行分层抽样,在视力4.2~4.4和5.0~5.2的学生中抽取9人,并且在这9人中任取3人,记视力在4.2~4.4的学生人数为X,求X 的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(I)设各组的频率为f1=0.03,f2=0.07,f3=0.27,f4=0.26,f5=0.23,由此求出视力在5.0以上的频率,从而能估计该校高三学生视力在5.0以上的人数.(II)依题意9人中视力在4.2~4.4和5.0~5.2的学生分别有3人和6人,X可取0、1、2、3,分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】(本小题满分12分)解:(I)设各组的频率为f i(i=1,2,3,4,5,6),f1=0.03,f2=0.07,f3=0.27,f4=0.26,f5=0.23,∴视力在5.0以上的频率为1﹣(0.03+0.07+0.27+0.26+0.23)=0.14,估计该校高三学生视力在5.0以上的人数约为1000×0.14=140人.…(II)依题意9人中视力在4.2~4.4和5.0~5.2的学生分别有3人和6人,X可取0、1、2、3,,,,.…X的数学期望.…19.已知:矩形A1ABB1,且AB=2AA1,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形A1ABB1沿着直线C1C折成一个60°的二面角,如图所示.(Ⅰ)求证:AB1⊥A1D;(Ⅱ)求AB1与平面A1B1D所成角的正弦值..【考点】直线与平面所成的角;空间中直线与直线之间的位置关系.【分析】(I)连结AB、A1B1,则可证明几何体ABC﹣A1B1C1是正三棱柱.取BC中点O,B1C1的中点O1,连结OA,OO1,以O为原点建立坐标系,设AA1=2,求出和的坐标,通过计算得出AB1⊥A1D;(II)求出平面A1B1D的法向量,则AB1与平面A1B1D所成角的正弦值为|cos<>|.【解答】证明:(Ⅰ)连结AB、A1B1,∵C1,C分别是矩形A1ABB1边A1B1、AB的中点,∴AC⊥CC1,BC⊥CC1,AC∩BC=C∴CC1⊥面ABC∴∠ACB为二面角A﹣CC'﹣A'的平面角,则∠ACB=60°.∴△ABC为正三角形,即几何体ABC﹣A1B1C1是正三棱柱.取BC中点O,B1C1的中点O1,连结OA,OO1,则OA⊥平面BB1C1C,OO1⊥BC.以O为原点,以OB,OO1,OA的方向为x,y,z轴的正方向建立空间直角坐标系,不妨设AA1=2,则A(0,0,),B1(1,2,0),D(﹣1,1,0),A1(0,2,).∴=(1,2,﹣),,∴=1×(﹣1)+2×(﹣1)+(﹣)×(﹣)=0,∴∴AB1⊥A1D.(Ⅱ)=(1,0,﹣),设平面A1B1D的法向量为=(x,y,z).则,.∴,令z=1,得.∴cos<>===﹣.∴AB1与平面A1B1D所成角的正弦值为.20.已知以A为圆心的圆(x﹣2)2+y2=64上有一个动点M,B(﹣2,0),线段BM的垂直平分线交AM于点P,点P的轨迹为E.(Ⅰ)求轨迹E的方程;(Ⅱ)过A点作两条相互垂直的直线l1,l2分别交曲线E于D,E,F,G四个点,求|DE|+|FG|的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)连接PB,依题意得PB=PM,从而推导出点P的轨迹E是以A,B为焦点,长轴长为4的椭圆,由此能求出E的轨迹方程.(Ⅱ)当直线l1,l2中有一条直线的斜率不存在时,|DE|+|FG|=6+8=14,当直线l1的斜率存在且不为0时,设直线l1的方程y=k(x﹣2),联立,整理得(3+4k2)x2﹣16k2x+16k2﹣48=0,由此利用韦达定理、弦长公式,结合题意能求出|DE|+|FG|的取值范围.【解答】(本小题满分12分)解:(Ⅰ)连接PB,依题意得PB=PM,所以PB+PA=PM=8所以点P的轨迹E是以A,B为焦点,长轴长为4的椭圆,所以a=4,c=2,,所以E的轨迹方程是.…(Ⅱ)当直线l1,l2中有一条直线的斜率不存在时,|DE|+|FG|=6+8=14,当直线l1的斜率存在且不为0时,设直线l1的方程y=k(x﹣2),设D(x1,y1),E(x2,y2),联立,整理得(3+4k2)x2﹣16k2x+16k2﹣48=0…,,所以DE===,…设直线l2的方程为,所以,所以,…设t=k2+1,所以t>1,所以,因为t>1,所以,所以|DE|+|FG|的取值范围是.…21.已知函数f(x)=lnx+,a∈R,且函数f(x)在x=1处的切线平行于直线2x﹣y=0.(Ⅰ)实数a的值;(Ⅱ)若在[1,e](e=2.718…)上存在一点x0,使得x0+<mf(x0)成立,求实数m的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出导函数,根据导函数的概念求解即可;(Ⅱ)构造函数,只需求出函数的最小值小于零即可,求出函数的导函数,对参数m进行分类讨论,判断函数的单调性,求出函数的最小值,最后得出m 的范围..【解答】解:(Ⅰ)∵,函数f(x)在x=1处的切线平行于直线2x﹣y=0.∴f'(1)=1﹣a=2∴a=﹣1(Ⅱ)若在[1,e](e=2.718…)上存在一点x0,使得成立,构造函数的最小值小于零.…①当m+1≥e时,即m≥e﹣1时,h'(x)<0,h(x)单调递减,…由可得,因为,所以;…②当m+1≤1,即m≤0时,h'(x)>0,h(x)单调递增,由h(1)=1+1+m<0可得m<﹣2;…③当1<m+1<e,即0<m<e﹣1时,最小值为h(1+m),因为0<ln(1+m)<1,所以,0<mln(1+m)<m,h(1+m)=2+m﹣mln(1+m)>2此时,h(1+m)<0不成立.综上所述:可得所求m的范围是:或m<﹣2.…四.本题有(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.[选修4-1:几何证明讲]22.如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点.(Ⅰ)求证:B、D、H、F四点共圆;(Ⅱ)若AC=2,AF=2,求△BDF外接圆的半径.【考点】圆內接多边形的性质与判定;与圆有关的比例线段.【分析】(Ⅰ)由已知条件推导出BF⊥FH,DH⊥BD,由此能证明B、D、F、H四点共圆.(2)因为AH与圆B相切于点F,由切割线定理得AF2=AC•AD,解得AD=4,BF=BD=1,由△AFB∽△ADH,得DH=,由此能求出△BDF的外接圆半径.【解答】(Ⅰ)证明:因为AB为圆O一条直径,所以BF⊥FH,…又DH⊥BD,故B、D、F、H四点在以BH为直径的圆上,所以B、D、F、H四点共圆.…(2)解:因为AH与圆B相切于点F,由切割线定理得AF2=AC•AD,即(2)2=2•AD,解得AD=4,…所以BD=,BF=BD=1,又△AFB∽△ADH,则,得DH=,…连接BH,由(1)知BH为DBDF的外接圆直径,BH=,故△BDF的外接圆半径为.…[选修4-4:坐标系与参数方程]23.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.(Ⅰ)求圆C的参数方程;(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P 的直角坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)求出圆的普通方程,然后求解圆C的参数方程;(Ⅱ)利用圆的参数方程,表示出x+y,通过两角和与差的三角函数,求解最大值,并求出此时点P的直角坐标.【解答】(本小题满分10分)选修4﹣4:坐标系与参数方程解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,所以x2+y2=4x+4y﹣6,所以x2+y2﹣4x﹣4y+6=0,即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…所以所求的圆C的参数方程为(θ为参数).…(Ⅱ)由(Ⅰ)可得,…当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…[选修4-5:不等式选讲]24.已知a、b都是实数,a≠0,f(x)=|x﹣1|+|x﹣2|.(1)若f(x)>2,求实数x的取值范围;(2)若|a+b|+|a﹣b|≥|a|f(x)对满足条件的所有a、b都成立,求实数x的取值范围.【考点】函数恒成立问题.【分析】(1)利用绝对值的意义,|x﹣1|+|x﹣2|表示数轴上的x对应点到1和2对应点的距离之和,而数轴上满足|x﹣1|+|x﹣2|=2的点的坐标,从而得出结论.(2)转化不等式为|x﹣1|+|x﹣2|≤,利用函数恒成立以及绝对值的几何意义,求出x的范围即可.【解答】解:(1)由f(x)>2,即|x﹣1|+|x﹣2|>2.而|x﹣1|+|x﹣2|表示数轴上的x对应点到1和2对应点的距离之和,而数轴上满足|x﹣1|+|x﹣2|=2的点的坐标为和,故不等式|x﹣1|+|x﹣2|≥2的解集为﹛x|x≤或x≥﹜,(2)由题知,|x﹣1|+|x﹣2|≤恒成立,故|x﹣1|+|x﹣2|小于或等于的最小值.∵|a+b|+|a﹣b|≥|a+b+a﹣b|=2|a|,当且仅当(a+b)(a﹣b)≥0 时取等号,∴的最小值等于2,∴x的范围即为不等式|x﹣1|+|x﹣2|≤2的解.由于|x﹣1|+|x﹣2|表示数轴上的x对应点到1和2对应点的距离之和,又由于数轴上的、对应点到1和2对应点的距离之和等于2,故不等式的解集为[,],故答案为[,].2016年10月6日。
2017年福建省福州市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x||x|≤4},B={y|y2+4y﹣21<0},则A∩B=()A.∅B.(﹣7,﹣4]C.(﹣7,4]D.[﹣4,3)2.(5分)设复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,则()A.1+i B.+i C.1+i D.1+i3.(5分)要得到函数f(x)=cos2x的图象,只需将函数g(x)=sin2x的图象()A.向左平移个周期B.向右平移个周期C.向左平移个周期D.向右平移个周期4.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6的等比中项,则k=()A.5 B.6 C.9 D.115.(5分)如图为某几何体的三视图,则其体积为()A.π+B.+4 C.π+D.π+46.(5分)执行如图所示的程序框图,如果输入的m=168,n=112,则输出的k,m的值分别为()A.4,7 B.4,56 C.3,7 D.3,567.(5分)已知函数f(x)=x2﹣πx,α,β,γ∈(0,π),且sinα=,tanβ=,cosγ=﹣,则()A.f(α)>f(β)>f(γ) B.f(α)>f(γ)>f(β) C.f(β)>f(α)>f (γ)D.f(β)>f(γ)>f(α)8.(5分)三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12πC.16πD.28π9.(5分)已知数列{a n}中,a1=1,且对任意的m,n∈N*,都有a m+n=a m+a n+mn,则=()A.B.C.D.10.(5分)不等式组的解集记作D,实数x,y满足如下两个条件:①∀(x,y)∈D,y≥ax;②∃(x,y)∈D,x﹣y≤a.则实数a的取值范围为()A.[﹣2,1]B.[0,1]C.[﹣2,3]D.[0,3]11.(5分)已知双曲线E:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=,则E的离心率是()A.2 B.C.D.12.(5分)已知函数f(x)=若m<n,且f(m)=f(n),则n﹣m的取值范围是()A.[ln2,ln+]B.(ln2,ln+)C.(,ln2]D.(,ln+]二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)已知向量,夹角为60°,且||=2,|﹣2|=2,则||=.14.(5分)(1+x+x2)(1﹣x)10的展开式中,x10的系数为.15.(5分)在距离塔底分别为80m,160m,240m的同一水平面上的A,B,C 处,依次测得塔顶的仰角分别为α,β,γ,若α+β+γ=90°,则塔高为m.16.(5分)从集合M={(x,y)|(|x|﹣1)2+(|y|﹣1)2<4,x,y∈Z}中随机取一个点P(x,y),若xy≥k(k>0)的斜率为,则k的最大值是.三、解答题(本题共70分)17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC=(acosB+bcosA).(1)求角C;(2)若c=2,求△ABC面积的最大值.18.(12分)如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P﹣ABCD,点M的棱PB上,且PM=MB.(1)求证:PD||平面MAC;(2)若平面PAD⊥平面ABCD,求二面角M﹣AC﹣B的余弦值.19.(12分)质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生抽取100名学生的成绩进行统计分析,已知学生考号的后三位分别为000,001,002, (599)(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:从这7名同学中随机抽取3名同学,记这3名同学中数学和物理成绩均为优秀的人数为ζ,求ζ的分布列和数学期望(规定成绩不低于120分的为优秀).附:(下面是摘自随机数表的第4行到第6行)20.(12分)已知曲线C上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(1)求曲线C的方程;(2)过点F且斜率为k的直线l交曲线C于A,B两点,交圆F:x2+(y﹣1)2=1于M,N两点(A,M两点相邻).①若=λ,当λ∈[,]时,求k的取值范围;②过A,B两点分别作曲线C的切线l1,l2,两切线交于点P,求△AMP与△BNP 面积之积的最小值.21.(12分)已知函数f(x)=e x﹣ax+b(a,b∈R).(1)若f(x)在x=0处的极小值为2,求a,b的值;(2)设g(x)=f(x)+ln(x+1),当x≥0时,g(x)≥1+b,试求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|•|FB|的值;(2)求椭圆C的内接矩形周长的最大值.[选修4-5:不等式选讲]23.已知∃x0∈R使不等式|x﹣1|﹣|x﹣2|≥t成立.(1)求满足条件的实数t的集合T;(2)若m>1,n>1,对∀t∈T,不等式log3m•log3n≥t恒成立,求mn的最小值.2017年福建省福州市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)(2017•福州一模)已知集合A={x||x|≤4},B={y|y2+4y﹣21<0},则A∩B=()A.∅B.(﹣7,﹣4]C.(﹣7,4]D.[﹣4,3)【解答】解:由题意得,B={y|y2+4y﹣21<0}={y|﹣7<y<3}=(﹣7,3),又集合A={x||x|≤4}=[﹣4,4],则A∩B=[﹣4,3),故选D.2.(5分)(2017•福州一模)设复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,则()A.1+i B.+i C.1+i D.1+i【解答】解:∵复数z1,z2在复平面内对应的点关于实轴对称,z1=2+i,∴z 2==2﹣i,则===,故选:B.3.(5分)(2017•福州一模)要得到函数f(x)=cos2x的图象,只需将函数g(x)=sin2x的图象()A.向左平移个周期B.向右平移个周期C.向左平移个周期D.向右平移个周期【解答】解:将函数g(x)=sin2x的图象向左平移个单位,可得y=sin2(x+)=cos2x=f(x)的图象,而=•T,故选:C.4.(5分)(2017•福州一模)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6的等比中项,则k=()A.5 B.6 C.9 D.11【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,的等比中项,若a k是a6与a k+6即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.5.(5分)(2017•福州一模)如图为某几何体的三视图,则其体积为()A.π+B.+4 C.π+D.π+4【解答】解:由三视图可知:该几何体为一个圆柱的一半与一个四棱锥.则体积V=+=.故选:A.6.(5分)(2017•福州一模)执行如图所示的程序框图,如果输入的m=168,n=112,则输出的k,m的值分别为()A.4,7 B.4,56 C.3,7 D.3,56【解答】解:执行如图所示的程序框图,输入m=168,n=112,满足m、n都是偶数,k=1,m=84,n=56,满足m、n都是偶数,k=2,m=42,n=28,满足m、n都是偶数,k=3,m=21,n=14,不满足m、n都是偶数,满足m≠n,d=|m﹣n|=7,m=14,n=7,满足m≠n,d=|m﹣n|=7,m=7,n=7,不满足m≠n,退出循环,输出k=3,m=7.故选:C.7.(5分)(2017•福州一模)已知函数f(x)=x2﹣πx,α,β,γ∈(0,π),且sinα=,tanβ=,cosγ=﹣,则()A.f(α)>f(β)>f(γ) B.f(α)>f(γ)>f(β) C.f(β)>f(α)>f(γ)D.f(β)>f(γ)>f(α)【解答】解:∵函数f(x)=x2﹣πx是二次函数,开口向上,且对称轴是x=;∴f(x)在(0,)上单调递减,在(,π)单调递增;又α,β,γ∈(0,π),且sinα=<,tanβ=>1,cosγ=﹣>﹣,∴α<或α>,<β<,<γ<,∴f(α)>f(β)>f(γ).故选:A.8.(5分)(2017•福州一模)三棱锥A﹣BCD中,△ABC为等边三角形,AB=2,∠BDC=90°,二面角A﹣BC﹣D的大小为150°,则三棱锥A﹣BCD的外接球的表面积为()A.7πB.12πC.16πD.28π【解答】解:设球心为M,BC的中点为P,∵三角形BDC满足∠BDC=90°,∴P为三角形BDC的外心,设△ABC的外心为O,∵△ABC为等边三角形,∴MO⊥平面ABC,MP⊥平面BDC,∵二面角A﹣BC﹣D的大小为150°,∴∠OPM=60°,在等边三角形ABC中,由AB=2,得AP=3,∴OP=1,在Rt△MOP中,可得MO=,在Rt△MOA中,得MA=.∴三棱锥A﹣BCD的外接球的表面积为.故选:D.9.(5分)(2017•福州一模)已知数列{a n}中,a1=1,且对任意的m,n∈N*,都=a m+a n+mn,则=()有a m+nA.B.C.D.【解答】解:∵a1=1,且对任意的m,n∈N*,都有a m+n=a m+a n+mn,∴令m=1,则a n=a1+a n+n=a n+n+1,+1﹣a n=n+1,即a n+1=n(n≥2),∴a n﹣a n﹣1…,a2﹣a1=2,∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+(n﹣2)+…+3+2+1=,∴==2(﹣),∴=2[(1﹣)+(﹣)+…+(﹣)+(﹣)]=2(1﹣)=,故选:D.10.(5分)(2017•福州一模)不等式组的解集记作D,实数x,y满足如下两个条件:①∀(x,y)∈D,y≥ax;②∃(x,y)∈D,x﹣y≤a.则实数a的取值范围为()A.[﹣2,1]B.[0,1]C.[﹣2,3]D.[0,3]【解答】解:作出不等式组对应的平面区域如图,即D,由图象可得A(2,2),B(1,3)∵①∀(x,y)∈D,y≥ax,∴a≤1,∵②∃(x,y)∈D,x﹣y≤a,由于B(1,3),∴a≥1﹣3=﹣2,∴﹣2≤a≤1,故选:A11.(5分)(2017•福州一模)已知双曲线E:﹣=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=6,P是E右支上一点,PF1与y轴交于点A,△PAF2的内切圆在边AF2上的切点为Q,若|AQ|=,则E的离心率是()A.2 B.C.D.【解答】解:设△PAF2的内切圆在边PF2上的切点为M,在AP上的切点为N,则|PM|=|PN|,|AQ|=|AN|=,|QF2|=|MF2|,由双曲线的对称性可得|AF1|=|AF2|=|AQ|+|QF2|=+|QF2|,由双曲线的定义可得|PF1|﹣|PF2|=|PA|+|AF1|﹣|PM|﹣|MF2|=+|QF2|+|AN|+|NP|﹣|PM|﹣|MF2|=2=2a,解得a=,又|F1F2|=6,即有c=3,离心率e==.故选:C.12.(5分)(2017•福州一模)已知函数f(x)=若m<n,且f(m)=f(n),则n﹣m的取值范围是()A.[ln2,ln+]B.(ln2,ln+)C.(,ln2]D.(,ln+]【解答】解:作出函数f(x)=的图象如右,m<n,且f(m)=f(n),可得﹣<m≤0,m+1=e n﹣1,即为n=ln(2+m),可得g(m)=n﹣m=ln(2+m)﹣m,﹣<m≤0,g′(m)=﹣1=,当﹣<m<﹣时,g′(m)>0,g(m)递增;当﹣<m≤0时,g′(m)<0,g(m)递减.则g(m)在m=﹣处取得极大值,也为最大值ln+,g(0)=ln2,g(﹣)→,由<ln2,可得n﹣m的范围是(,ln+].故选:D.二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)(2017•福州一模)已知向量,夹角为60°,且||=2,|﹣2|=2,则||=3.【解答】解:向量,夹角为60°,且||=2,|﹣2|=2,∴=﹣4•+4=22﹣4×2×||×cos60°+4=28;﹣||﹣6=0,解得||=3或||=﹣2(不合题意,舍去);∴||=3.故答案为:3.14.(5分)(2017•福州一模)(1+x+x2)(1﹣x)10的展开式中,x10的系数为36.【解答】解:(1+x+x2)(1﹣x)10=(1﹣x3)(1﹣x)9=(1﹣x3)(1﹣9x+…++++(﹣x)9).∴x10的系数==36.故答案为:36.15.(5分)(2017•福州一模)在距离塔底分别为80m,160m,240m的同一水平面上的A,B,C处,依次测得塔顶的仰角分别为α,β,γ,若α+β+γ=90°,则塔高为80m.【解答】解:设塔高为hm,则tanα=,tanβ=,tanγ=,∵α+β+γ=90°,∴tan(α+β)tanγ=1,∴=1,∴h=80.故答案为:80.16.(5分)(2017•福州一模)从集合M={(x,y)|(|x|﹣1)2+(|y|﹣1)2<4,x,y∈Z}中随机取一个点P(x,y),若xy≥k(k>0)的斜率为,则k的最大值是2.【解答】解:从集合M={(x,y)|(|x|﹣1)2+(|y|﹣1)2<4,x,y∈Z}中随机取一个点P(x,y),共有25种情况,即x=0,y=±1,±2,x=1,y=±1,±2,x=2,y=±1,±2,x=﹣1,y=±1,±2,x=﹣2,y=±1,±2,xy≥k(k>0)的概率为,即xy≥k(k>0)的情况有6种,即(2,2),(1,2),(2,1),(﹣2,﹣2),(﹣1,﹣2),(﹣2,﹣1),则k的最大值是2,故答案为:2.三、解答题(本题共70分)17.(12分)(2017•福州一模)已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC=(acosB+bcosA).(1)求角C;(2)若c=2,求△ABC面积的最大值.【解答】解:(1)ctanC=(acosB+bcosA),由正弦定理可得:sinCtanC=(sinAcosB+sinBcosA)=sin(A+B)=sinC.∴tanC=,C∈(0,π).∴C=.(2)由余弦定理可得:12=c2=a2+b2﹣2abcosC≥2ab﹣ab=ab,可得ab≤12,当且仅当a=2时取等号.∴△ABC面积的最大值==3.18.(12分)(2017•福州一模)如图1,在等腰梯形PDCB中,PB∥DC,PB=3,DC=1,∠DPB=45°,DA⊥PB于点A,将△PAD沿AD折起,构成如图2所示的四棱锥P﹣ABCD,点M的棱PB上,且PM=MB.(1)求证:PD||平面MAC;(2)若平面PAD⊥平面ABCD,求二面角M﹣AC﹣B的余弦值.【解答】证明:(1)连结BD,交AC于N,连结MN,依题意知AB∥CD,∴△ABN~△CDN,∴,∵PM=MB,∴,∴在△BPD中,MN∥PD,又∵PD⊄平面MAC,MN⊂平面MAC,∴PD∥平面MAC.解:(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PA⊥AD,PA⊂平面PAD,∴PA⊥平面PAD,又AD⊥AB,从而PA,AD,AB两两垂直,以A为原点,分别以AD,AB,AP为x,y,z轴,建立空间直角坐标系,依题意AP=AD=1,AB=2,又PM=MB,∴A(0,0,0),B(0,2,0),P(0,0,1),M(0,,),C(1,1,0),∴=(0,0,1),=(0,),=(1,1,0),∵PA⊥平面ABCD,∴=(0,0,1)是平面BAC的一个法向量,设=(x,y,z)是平面MAC的一个法向量,则,取x=1,得=(1,﹣1,1),设二面角M﹣AC﹣B的平面角为θ,则cosθ==,∴二面角M﹣AC﹣B的余弦值为.19.(12分)(2017•福州一模)质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生抽取100名学生的成绩进行统计分析,已知学生考号的后三位分别为000,001,002, (599)(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:从这7名同学中随机抽取3名同学,记这3名同学中数学和物理成绩均为优秀的人数为ζ,求ζ的分布列和数学期望(规定成绩不低于120分的为优秀).附:(下面是摘自随机数表的第4行到第6行)【解答】解:(1)从随机数表的第5行第7列的数开始向右读,依次写出抽取的前7人的后三位考号为:966,827,310,503,729,315,571.(2)这7名同学中数学和物理成绩均为优秀的人数为3人,因此ζ取值为0,1,2,3.ξ~B.∴P(ξ=k)=,可得P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=.ξ的分布列为:∴Eξ==.20.(12分)(2017•福州一模)已知曲线C上的点到点F(0,1)的距离比它到直线y=﹣3的距离小2.(1)求曲线C的方程;(2)过点F且斜率为k的直线l交曲线C于A,B两点,交圆F:x2+(y﹣1)2=1于M,N两点(A,M两点相邻).①若=λ,当λ∈[,]时,求k的取值范围;②过A,B两点分别作曲线C的切线l1,l2,两切线交于点P,求△AMP与△BNP 面积之积的最小值.【解答】解:(1)由题意,动点P(x,y)到F(0,1)的距离比到直线y=﹣3的距离小2,∴动点P(x,y)到F(0,1)的距离等于它到直线y=﹣1的距离,∴动点P的轨迹是以F(0,1)为焦点的抛物线,标准方程为x2=4y;(2)①依题意设直线l的方程为y=kx+1,代入x2=4y,得x2﹣4kx﹣4=0,△=(﹣4k)2+16>0,设A(x1,y1),B(x2,y2),则x1+x2=4k,x1x2=﹣4,∵,∴(﹣x2,y2)=λ(x1﹣x2,y1﹣y2),,==1﹣,即4k2+2=,∵λ∈[,],∴,∵函数f (x )=x +在[]单调单调递减,∴4k 2+2∈[2,],﹣,∴k 的取值范围是[﹣].②y=x 2,y′=x ,∴直线AN :y ﹣x 12=x 1(x ﹣x 1),BN :y ﹣x 22=x 2(x ﹣x 2), 两式相减整理可得x=(x 1+x 2)=2k ,将x=(x 1+x 2)=2k ,代入直线AN 的方程求得y=﹣1, ∴N (2k ,﹣1),N 到直线AB 的距离d==2,∵|AC |=|AF |﹣1=y 1,|BD |=|BF |﹣1=y 2,∴|AC ||BD |=y 1y 2==1,∴△ACN 与△BDN 面积之积S △ACN •S △BDN =|AC |•d ×|BD |•d=d 2=(2)2=1+k 2,当且仅当k=0时,△ACN 与△BDN 面积之积的最小值为1.21.(12分)(2017•福州一模)已知函数f (x )=e x ﹣ax +b (a ,b ∈R ). (1)若f (x )在x=0处的极小值为2,求a ,b 的值;(2)设g (x )=f (x )+ln (x +1),当x ≥0时,g (x )≥1+b ,试求a 的取值范围. 【解答】解:(1)f′(x )=e x ﹣a , 若f (x )在x=0处的极小值为2, 则,解得:;(2)g (x )=f (x )+ln (x +1)=e x ﹣ax +b +ln (x +1),当x ≥0时,g (x )≥1+b ,即e x ﹣ax +ln (x +1)≥1在x ∈[0,+∞)恒成立, 令h (x )=e x ﹣ax +ln (x +1),(x ≥0), 则h′(x )=e x +﹣a记m(x)=e x+﹣a,则m′(x)=e x﹣,当x≥0时,e x>1,≤1,此时m'(x)≥0,h'(x)在(0,+∞)上递增,h'(x)≥h'(0)=2﹣a,a≤2时,h′(x)≥0,所以h(x)在[0,+∞)上递增,故h(x)≥h(0)=1成立;a>2时,∃x0∈(0,+∞),使得h(x)在[0,x0)递减,在(x0,+∞)递增,故h(x)min=h(x0)<h(0)=1,不合题意,故a≤2.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•福州一模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|•|FB|的值;(2)求椭圆C的内接矩形周长的最大值.【解答】解:(1)由椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,可得x2+3y2=12,即.其左焦点为(2,0).直线l消去参数t可得:x﹣y=m,∵左焦点F在直线l上,∴直线l方程为:x﹣y=2.联立,解得A(,),B(,)那么|FA|•|FB|=.(2)设椭圆在第一象限上一点P(acosθ,bsinθ),内接矩形周长为:L=4(acosθ+bsinθ)=4sin(θ+φ),最大值为4=4c.由(1)可得c=,∴椭圆C的内接矩形周长的最大值为.[选修4-5:不等式选讲]23.(2017•福州一模)已知∃x0∈R使不等式|x﹣1|﹣|x﹣2|≥t成立.(1)求满足条件的实数t的集合T;(2)若m>1,n>1,对∀t∈T,不等式log3m•log3n≥t恒成立,求mn的最小值.【解答】解:(1)∵∃x0∈R使不等式|x﹣1|﹣|x﹣2|≥t成立,∴|x﹣1|﹣|x ﹣2|的最大值大于或等于t,∵|x﹣1|﹣|x﹣2|≤|x﹣1﹣(x﹣2)|=2,当且仅当1≤x≤2时,取等号,故|x﹣1|﹣|x﹣2|的最大值为1,∴t≤1,故T={t|t≤1}.(2)∵m>1,n>1,对∀t∈T,不等式log3m•log3n≥t恒成立,∴log3m•log3n ≥1.又log 3m+log3n=log3m•n≥2≥2=log39,∴mn≥9,故mn的最小值为9.参与本试卷答题和审题的老师有:gongjy;沂蒙松;caoqz;双曲线;742048;sxs123;wfy814;whgcn;lcb001;zlzhan;刘老师;左杰(排名不分先后)huwen2017年4月8日。