七年级数学平面直角坐标系3
- 格式:ppt
- 大小:471.50 KB
- 文档页数:13
一、选择题1.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 2.下列各点中,在第二象限的是( ) A .()1,0 B .()1,1 C .()1,1- D .()1,1- 3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8- 4.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 5.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4- 6.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,7.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4) 8.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 9.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的1210.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 11.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)12.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47 15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交 二、填空题16.已知点P 的坐标()41,52a a --,且点P 到两坐标轴的距离相等,则点P 的坐标是______.17.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.18.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 19.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______20.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 21.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.22.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 23.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.24.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A 2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______25.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .26.在平面直角坐标系中,点()3,1A -在第______象限.三、解答题27.在直角坐标系中,已知点A (a +b ,2﹣a )与点B (a ﹣5,b ﹣2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.28.如图,△ABC 在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.29.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点Ca-+|b﹣6|=0,点B在第一象限内,点P从原点出的坐标为(0,b),且a、b满足4发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.30.在平面直角坐标系中,有A(-2,a +1),B(a -1,4),C(b - 2,b)三点.(1)当AB// x轴时,求A、B两点间的距离;(2)当CD ⊥x轴于点D,且CD = 1时,求点C的坐标.。
七年级下册数学平面直角坐标系的知识点归纳在学习平面直角坐标系的过程中,我们将一步步掌握如何识别坐标点、平移图形、计算长度、以及求解线性系统方程等基础知识,为深入学习统计分析和解析几何奠定坚实的理论基础。
七年级下册数学中的平面直角坐标系是一个非常重要的知识点,其重要性可见一斑,以下是对这部分知识的归纳:
一、认识坐标系
1. 坐标系是数学中用来表示一个点在一个平面上的方式,是一个由两个数学量(x, y)表示的点的坐标。
2. 坐标系中的x轴和y轴是相互垂直,而原点(0, 0)则是两者交汇的点。
二、用坐标系表示点
1. 一条线可能由无数个点组成,而每个点都可以用坐标系来表示。
2. 点的坐标是确定一个点的方式,可以让学生学习把一个点的位置表现出来。
三、画出坐标平面上的线
1. 通过给定的几点用坐标来表示,就可以画出平面上一条完整的线。
2. 学生要学会分析这几个点之间的位置关系,然后根据直角坐标系的概念画出一条符合要求的完整的线。
四、使用直角坐标系求解几何问题
1. 利用坐标系可以让学生对于几何图形识别和分析更加直观,从而更快更有效地解决问题。
2. 用坐标系去求解几何问题,需要学生做的是理解 num之间的概念,用坐标系来分析,然后解答问题。
总之,七年级下册数学中的平面直角坐标系是一部分十分重要的知识点,要掌握其相关的知识并熟练应用,可以帮助学生理解几何图形,也可以帮助学生解决相关的几何问题。
七年级数学第七章《平面直角坐标系》测试三(附解析)一、单选题1.如图,直角坐标系中,过点A(0,2)的直线a 垂直于y 轴,M(9,2)为直线a 上一点,若P 点从M 出发,以2cm/s 的速度沿着直线a 向左移动;点Q 从原点同时出发,以1cm/s 的速度沿x 轴向右移动,当PQ∥y 轴时,点P 的运动时间为()A.3s B.2s C.1s D.4s2.要将抛物线223y x x =++平移后得到抛物线2y x =,下列平移方法正确的是()A.向左平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位3.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是()A.()7,1-B.()3,1--C.()1,5D.()2,54.点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么A 2018的坐标为()A.(2018,0)B.(1008,1)C.(1009,1)D.(1009,0)6.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)7.在平面坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2018个正方形的面积为()A.5·201732⎛⎫⎪⎝⎭B.5·201832⎛⎫⎪⎝⎭C.5·403632⎛⎫⎪⎝⎭D.5·403432⎛⎫⎪⎝⎭8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2017秒时点P 的坐标是()A.(2016,0)B.(2017,1)C.(2017,-1)D.(2018,0)9.如图所示,在平面直角坐标系中,锐角三角形ABC 的三个顶点坐标分别是(,)A a b 、(,)B c d 、(,)C e d ,在直线BC 上有四个点坐标分别是(1,)D a d -、(1,)E a d +、(,)F a d 、(1,)G e d +,则点A 到直线BC 上的最短距离的点是()A.点D B.点E C.点F D.点G10.正方形的两条边在坐标轴上,其中一个顶点的坐标是(0,0),其他部分在第三象限,面积为4,那么这个正方形不在坐标轴上的顶点的坐标是()A.(2,2)B.(-2,-2)C.(-2,2)D.(2,-2)11.已知点(3,24)A x x +-在第四象限,则x 的取值范围是()A.32x -<<B.3x >-C.2x <D.2x >12.如图,在平面直角坐标系中,已知点B,C 在x 轴上,AB⊥x 轴于点B,DA ⊥AB.若AD=5,点A 的坐标为(-2,7),则点D 的坐标为()A.(-2,2)B.(-2,12)C.(3,7)D.(-7,7)13.如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sinα的值是()A.B.C.D.14.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是()A.(0,2)B.(﹣4,0)C.(0,﹣2)D.(4,0)15.在平面直角坐标系内,点()3,5P m m --在第三象限,则m 的取值范围是()A.5m <B.35m <<C.3m <D.3m <-二、填空题16.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______17.在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)2=0.点M 的坐标为(32-,1),点N 是坐标轴的负半轴上的一个动点,当四边形ABOM 的面积与三角形ABN 的面积相等时,此时点N 的坐标为___________________.18.如图,已知()0,A a ,(),0B b ,第四象限的点(),C c m 到x 轴的距离为3,若a ,b 满足2|2|(2)a b b -+++=C 点坐标为______;BC 与y 轴的交点坐标为_______.19.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根据这个规律,第2025个点的坐标为________.20.已知在平面直角坐标系中,P 点的坐标为(1,4),则在坐标轴上到P 点的距离是21.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是___.22.在平面直角坐标系中,若点M(2,3)与点N(2,y)之间的距离是4,则y 的值是___________.23.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.24.已知点()24,1P m m +-.()1若点P 在x 轴上,则点P 的坐标为________;()2若点P 在第四象限,且到y 轴的距离是2,则点P 的坐标为________.25.将点A (﹣2,﹣3)向右平移3个单位长度得到点B ,则点B 在第_____象限.26.已知点A (1,0)、B (0,2),点P 在y 轴上,且△PAB 的面积是3,则点P 的坐标是_______.27.如图,已知长方形OABC,动点P 从(0,3)出发,沿所示的方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,第一次碰到长方形的边时的位置为P 1(3,0),当点P 第2016次碰到长方形的边时,点P 2016的坐标是_____.28.如果点P(a-1,a+2)向右平移2个单位长度正好落在y 轴上,那么点P 的坐标为__________.29.点A(a 2+1,﹣2﹣b 2)在第_____象限.30.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,如此作下去,则△B 20A 21B 21的顶点A 21的坐标是_____.参考答案1.A【分析】可设当PQ∥y 轴时,点P 的运动时间为xs,根据等量关系:AP=OQ,列出方程求解即可.【详解】设当PQ∥y 轴时,点P 的运动时间为xs,依题意有9-2x=x,解得x=3.故当PQ∥y 轴时,点P 的运动时间为3s,故选A.2.D【分析】先将解析式化为顶点式2223(1)2y x x x =++=++,由平移的性质可得2y x =从而得出正确选项.【详解】2223(1)2y x x x =++=++,由平移的性质向右平移1个单位,再向下平移2个单位可得2y x =,故选:D 3.D【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案。
七年级下数学第七章平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
a,)3、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(b一一对应;其中,a为横坐标,b为纵坐标坐标;4、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;(二)平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
1、历史:法国数学家笛卡儿最早引入坐标系,用代数方法研究几何图形;2、构成坐标系的各种名称;水平的数轴称为x轴或横轴,习惯上取向右为正方向竖直的数轴称为y轴或纵轴,取向上方向为正方向两坐标轴的交战为平面直角坐标系的原点3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限第一象限:x>0,y>0第二象限:x<0,y>0第三象限:x<0,y<0第四象限:x>0,y<0横坐标轴上的点:(x,0)纵坐标轴上的点:(0,y)(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;b) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P (n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m -=,即横、纵坐标互为相反数;XXX在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数 关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -, 即横坐标不变,纵坐标互为相反数; f)点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数;g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:•建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;•根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。