广东省中山市第一中学2017-2018学年高一上学期第一次段考数学试题(解析版)
- 格式:doc
- 大小:1.34 MB
- 文档页数:11
广东省中山市普通高中2017-2018学年高一数学1月月考试题共150分。
时间120分钟。
第Ⅰ卷 (60分)一、选择题(本大题共12个小题,每题5分,共60分;在每个小题给出的四个选项中,只有一项符合要求。
)1.设{}021>-=x x S {}053>+=x x T 则=⋂T S ( )A.φB. ⎭⎬⎫⎩⎨⎧>21x x C. ⎭⎬⎫⎩⎨⎧<<-2135x x D. ⎭⎬⎫⎩⎨⎧<<-3521x x 2.若集合{}3,2,1=A ,则满足A B A =⋃的集合B 的个数是( )A.1B.2C.7D.83. 下列四组中,)(x f 与)(x g 表示同一函数的是( )Ax x f =)(, 2)(x x g =Bx x f =)(, 2)()(x x g =C2)(x x f =,xx x g 3)(=Dx x f =)(, =)(x g ⎩⎨⎧<-≥)0(,)0(,x x x x4.函数)(x f =2x 11+的值域是( ) A.)1,0(B.]1,0(C.)1,0[D.[0,1]5.设)(x f =⎪⎩⎪⎨⎧≥-2)1(log 2e2231-x x x x <,则))2((f f =( )A.0B.1C.2D.36.下列结论正确的是( )A.kx y = (0<k )是增函数B.2x y =是R 上的增函数C. 11-=x y 是减函数 D. 22x y =(x =1,2,3,4,5)是增函数7.若b ax x f +=)(只有一个零点2,则ax bx x g -=2)(的零点是( )A.0,2B.0,21 C.0,21-D.2,21-8.若12822+++=kx kx kx y 定义域为R ,则k 取值范围是( )A.)1,0[B. ]1,0[C.]1,0(D. )1,0(9.已知14)(-+=x ax f 图象经过定点P ,则点P 的坐标是( ) A.(1,5)B.(1,4)C.(0,4)D.(4,0)10.已知5)2(22+-+=x a x y 在(4,+∞)上是增函数,则a 取值范围是( )A.2-≤aB. 2-≥aC. 6-≤aD. 6-≥a11.已知3log 2=x ,则=-21x( )A.31 B.321C.331 D.42 12. )(x f 满足对任意的实数b a ,都有),()()(b f a f b a f ⋅=+且2)1(=f ,则=++++)2009()2010()5()6()3()4(f(1)f(2)f f f f f f ( ) A.1003B. 2010C.2008D. 1004第Ⅱ卷 (90分)二、填空题(本大题共4小题,每题4分,共16分)13.已知{}2,3,1+=m A ,{}2,3m B =,若B ⊆A ,则m =。
中山市高一级2017-2018学年度第一学期期末统一考试数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列四组函数,表示同一函数的是( ) A .x x g x x f ==)(,)(2B .22)(,4)(2-•+=-=x x x g x x fC .xx x g x x f 2)(,)(== D .⎩⎨⎧-<---≥+=+=1,11,1)(|,1|)(x x x x x g x x f2.平行于同一平面的两条直线的位置关系是( )A . 平行B . 相交C .异面D .平行、相交或异面3.已知集合})34(log |{5.0-==x y x M ,})34(log |{5.0-==x y y N ,则=N M ()A .),43[+∞ B .),0[+∞ C .]1,43( D . ]1,43[ 4.图中的直线321,,l l l 的斜率分别是321,,k k k ,则有( )A . 321k k k <<B .213k k k<< C 。
123k k k <<D .132k k k<<5.设8.0log7.0=a ,4.0log 5.0=b ,则( )A .0>>a bB .b a >>0 C. 0>>b aD .1>>a b6.方程x x lg 3-=在下面哪个区间内有实根( ) A .)1,0( B .)2,1(C 。
)3,2(D .)4,3(7。
一个几何体的三视图如图所示,则该几何体的体积为( )A .332 B .350 C 。
364 D .3808。
一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是( )A .030 B .045 C.060 D .0759。
若函数1)2(21)(2+-+=x m mx x f 的值域为),0(+∞,则实数m 的取值范围是( )A .)4,1(B .),4()1,(+∞-∞ C. ),4[]1,0(+∞D .),4[]1,0[+∞10.如图,二面角βα--l 的大小是060,线段α⊂AB ,l B ∈,AB 与l 所成的角为030,则AB 与平面β所成的角的余弦值是( )A .43 B .413 C 。
中山市高一级2017-2018学年度第一学期期末统一考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。
考点:本题主要考查函数的概念,构成函数的要素。
点评:解答题,构成函数的要素有定义域、对应法则。
2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面【答案】D考点:平面的基本性质及推论.3. 已知集合,,则()A. B. C. D.【答案】C【解析】,∴故选:C点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.4. 图中的直线的斜率分别是,则有()A. B. C. D.【答案】D【解析】由图可知:,,,且直线的倾斜角大于直线的倾斜角,所以,综上可知:,故选.5. 设,,则()A. B. C. D.【答案】A【解析】∵,∴故选:A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.6. 方程在下面哪个区间内有实根()A. B. C. D.【答案】C【解析】令,则在上单调递增,且图象是连续的,又,,,即,由零点定理可知:的零点在内,故选:C7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】D【解析】由题可知对应的几何体为一个底面为等腰直角三角形的直棱柱截去以上底面为底,高为一半的一个三棱锥.......................8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.【答案】C【解析】设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,∴母线与底面所成角的余弦值==,∴母线与底面所成角是60°.故选:C.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.【答案】D【解析】函数的值域为,则g(x)=mx2+2(m﹣2)x+1的值域能取到(0,+∞),①当m=0时,g(x)=﹣4x+1,值域为R,包括了(0,+∞),②要使f(x)能取(0,+∞),则g(x)的最小值小于等于0,则,解得:0<m≤1或m≥4.综上可得实数m的取值范围是故选:D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.【答案】B【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D连结AD,易知AD⊥l,故∠ADC为二面角α﹣l﹣β的平面角为60°又由已知,∠ABD=30°连结CB,则∠ABC为AB与平面β所成的角,设AD=2,则AC=,CD=1AB==4,BC=,∴cos∠ABC=.故选:B点睛:(1)求二面角大小的过程可总结为:“一找、二证、三计算。
广东省中山市普通高中2017-2018学年高一数学1月月考试题共150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集(}.7,5,3,1{},6,4,2{},7.6,5,4,3,2,1{ A B A U 则===B C U )等于 ( )A .{2,4,6}B .{1,3,5}C .{2,4,5}D .{2,5}2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3.若:f A B →能构成映射,下列说法正确的有 ( ) (1)A 中的任一元素在B 中必须有像且唯一; (2)A 中的多个元素可以在B 中有相同的像; (3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个4、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥5 5、下列各组函数是同一函数的是 ( )①3()2f x x =-()2g x x =-()f x x =与2()g x x ;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④6.根据表格中的数据,可以断定方程02=--x e x的一个根所在的区间是( )x-1 0 1 2 3 x e1 2+x123 45A .(-1,0)B .(0,1)C .(1,2)D .(2,3)7.若=-=-33)2lg()2lg(,lg lg y x a y x 则 ( )A .a 3B .a 23 C .aD .2a 8、 若定义运算ba ba b aa b<⎧⊕=⎨≥⎩,则函数()212log log f x x x =⊕的值域是( ) A [)0,+∞ B (]0,1 C [)1,+∞ D R9.函数]1,0[在xa y =上的最大值与最小值的和为3,则=a ( )A .21 B .2 C .4 D .41 10. 下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、22log 1y x =-C 、21log y x = D 、22log (45)y x x =-+ 11.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是( )x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
中山一中2018届高三级第一次统测理科数学满分150分,时间120分钟第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,集合,则()A. B. C. D.【答案】D【解析】由题意得,选D.2. 函数的定义域为()A. B. C. D.【答案】C【解析】由题意得,所以,选C.3. 下列函数在其定义域上既是增函数又是奇函数的是()A. B. C. D.【答案】C【解析】对于.函数是奇函数,在为整数)上递增,则不满足;对于.函数为奇函数,由于,则在上递增,则满足;对于.函数为偶函数,则不满足;对于.函数既不是奇函数,也不是偶函数,则不满足,故选C.4. 下列四个命题中:①若,则,中至少有一个不小于1的逆命题;②存在正实数,,使得;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在中,是的充分不必要条件.真命题的个数是()A. 3B. 2C. 1D. 0【答案】B【解析】①若,中至少有一个不小于,如,则不成立,①错;②时;②对;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;③对;④在中,是的充分必要条件. ④错;因此选B.5. 实数,,的大小关系正确的是()A. B. C. D.【答案】C【解析】根据指数函数和对数函数的性质,知,,,即,,,∴,故选C.6. 已知集合,若对于任意,存在,使得成立,则称集合是“垂直对点集”.给出下列四个集合:①;②;③;④.其中是“垂直对点集”的序号是()A. ①②B. ②③C. ①④D. ②④【答案】D【解析】不妨设,成立,所以,即以O为直角顶点的,对任意点A,在有边OB与曲线相交。
由于①中,因为A(1,0)点的垂直对称点不存在,所以不符。
②画出三角函数的图像,显然转动时,OB与曲线都有交点,所以②对。
③中,显然A(1,1),角与曲线没有交点,不符。
④中,画出曲线与直角,也都有交点,所以符合,综上②④对,选D.【点睛】对于新定义题型,我们需尽量转化为己学过的相关的知识点或基本处理方法,本题转化为几何意义就是OA与OB垂直,每确定一点A,就需在在曲线上找到一点B使OA与OB垂直,所以把直角绕关O点转,使得与图像有两个以上交点即可。
2015-2016学年广东省中山一中高一(上)第一次段考数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知M={y|y=x2+1,x∈R},N={y|y=﹣x2+1,x∈R},则M∩N=()A.{0,1} B.{(0,1)} C.{1} D.以上均不对2.与y=|x|为同一函数的是()A.B.C.D.3.已知x∈{1,2,x2},则有()A.x=1 B.x=1或x=2C.x=0或x=2 D.x=0或x=1或x=24.若全集U=R,A=[1,3],B={x|x2﹣2x≤0},则A∩(∁U B)=()A.[1,2] B.(﹣∞,0)∪(2,3] C.[0,1)D.(2,3]5.下列函数在区间(﹣∞,0)上为增函数的是()A.y=x2B.y=C.y=()x D.y=3﹣x6.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.47.下列函数y=x,y=x,y=x,y=x中,定义域为{x∈R|x>0}的有()A.1个B.2个C.3个D.4个8.已知对数函数f(x)过点(2,4),则f()的值为()A.﹣1 B.C.D.19.设f(x)=,则f[f()]=()A.B.C.﹣D.10.下列图象表示的函数中具有奇偶性的是()A.B. C.D.11.若f(x)的定义域为{x∈R|x≠0},满足f(x)﹣2f()=3x,则f(x)为()A.偶函数B.奇函数C.既奇又偶函数 D.非奇非偶函数12.偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x•f(x)<0的解集为()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,﹣1)∪(1,4)C.(﹣∞,﹣4)∪(﹣1,0)D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)二、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域为.14.函数y=x2﹣6x+6,x∈(﹣1,5]的值域为.15.若a>0,b>0,化简成指数幂的形式: = .16.不等式x<的解集是.三、解答题(本大题共6小题,共80分)17.求值:(1)2log510+log50.25(2)(5)0.5+(﹣1)﹣1÷0.75﹣2+(2).18.设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(∁U A)∩B={2},A∩(∁U B)={4},求A∪B.19.已知函数f(x)=.(1)求函数f(x)的定义域;(2)判断函数f(x)在(0,+∞)上的单调性,并用单调性的定义证明你的结论.20.已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).(1)求出函数y=f(x)的解析式;(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)21.国家对出书所得稿费纳税进行如下规定:稿费总数不超过800元的不纳税;稿费总数超过800元而不超过4000元的,按超过部分的14%纳税;稿费总数超过4000元的按全稿酬的11%纳税.(1)建立纳税y元与稿费x元的函数关系;(2)若某人出版了一书共纳税420元,则这个人的稿费为多少元?22.已知f(x)=,(a>0,且a≠1).(1)求f(x)的定义域.(2)证明f(x)为奇函数.(3)求使f(x)>0成立的x的取值范围.2015-2016学年广东省中山一中高一(上)第一次段考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,共60分)1.已知M={y|y=x2+1,x∈R},N={y|y=﹣x2+1,x∈R},则M∩N=()A.{0,1} B.{(0,1)} C.{1} D.以上均不对【考点】交集及其运算.【专题】计算题.【分析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N.【解答】解;集合M={y|y=x2+1,x∈R}=[1,+∞),N={y|y=﹣x2+1,x∈R}=(﹣∞,1],∴M∩N={1}故选C.【点评】此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.2.与y=|x|为同一函数的是()A.B.C.D.【考点】判断两个函数是否为同一函数.【专题】计算题.【分析】先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【解答】解:A、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数B、∵两个函数的解析式一致,定义域是同一个集合,∴是同一个函数C、∵y=|x|的定义域为(﹣∞,+∞).的定义域是(﹣∞,0)∪(0,+∞),∴不是同一个函数D、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数故选B.【点评】两个函数解析式表示同一个函数需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.3.已知x∈{1,2,x2},则有()A.x=1 B.x=1或x=2C.x=0或x=2 D.x=0或x=1或x=2【考点】元素与集合关系的判断.【专题】集合.【分析】利用元素与集合的关系知x是集合的一个元素,分类讨论列出方程求出x代入集合检验集合的元素满足的三要素.【解答】解:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故选:C.【点评】本题考查元素与集合的关系、在解集合中的参数问题时,一定要检验集合的元素满足的三要素:确定性、互异性、无序性.4.若全集U=R,A=[1,3],B={x|x2﹣2x≤0},则A∩(∁U B)=()A.[1,2] B.(﹣∞,0)∪(2,3] C.[0,1)D.(2,3]【考点】交、并、补集的混合运算.【专题】集合.【分析】求解一元二次不等式化简集合B,进一步求出∁U B,然后利用交集运算得答案.【解答】解:由x2﹣2x≤0,得0≤x≤2,∴B={x|x2﹣2x≤0}=[0,2],∴∁U B=(﹣∞,0)∪(2,+∞),又A=[1,3],∴A∩(∁U B)=(2,3].故选:D.【点评】本题考查并集及其运算,考查了一元二次不等式的解法,是基础题.5.下列函数在区间(﹣∞,0)上为增函数的是()A.y=x2B.y=C.y=()x D.y=3﹣x【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据二次函数、反比例函数、指数函数,以及一次函数的单调性即可找出正确选项.【解答】解:A.y=x2在(﹣∞,0)上为减函数;B.反比例函数在(﹣∞,0)上为增函数,即该选项正确;C.指数函数在(﹣∞,0)上为减函数;D.一次函数y=3﹣x在(﹣∞,0)上为减函数.故选:B.【点评】考查二次函数,反比例函数,指数函数,以及一次函数的单调性.6.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.4【考点】指数函数的单调性与特殊点;对数值大小的比较;对数函数的图象与性质.【专题】计算题;函数的性质及应用.【分析】通过构造函数,利用函数的单调性直接判断选项即可.【解答】解:对于A,构造幂函数y=x3,函数是增函数,所以A正确;对于B,对数函数y=log0.5x,函数是减函数,所以B正确;对于C,指数函数y=0.75x是减函数,所以C错误;对于D,对数函数y=lgx,函数是增函数,所以D正确;故选C.【点评】本题考查指数函数与对数函数的单调性的应用,基本知识的考查.7.下列函数y=x,y=x,y=x,y=x中,定义域为{x∈R|x>0}的有()A.1个B.2个C.3个D.4个【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,分别写出这四个函数的定义域,即可得出所以符合条件的函数有几个.【解答】解:函数y=x的定义域为R,函数y=x的定义域为{x|x≥0};函数y=x的定义域为{x|x≠0};函数y=x中的定义域为{x∈R|x>0};所以符合条件的函数只有1个.故选:A.【点评】本题考查了求常见的函数定义域的应用问题,是基础题目.8.已知对数函数f(x)过点(2,4),则f()的值为()A.﹣1 B.C.D.1【考点】求对数函数解析式.【专题】函数的性质及应用.【分析】设出对数函数的解析式,求解即可.【解答】解:设对数函数为:f(x)=log a x,对数函数f(x)过点(2,4),可得4=log a2,解得a=,对数函数为:f(x)=log x,f()==1.故选:D.【点评】本题考查对数函数的解析式的求法,函数值的求法,考查计算能力.9.设f(x)=,则f[f()]=()A.B.C.﹣D.【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】判断自变量的绝对值与1的大小,确定应代入的解析式.先求f(),再求f[f()],由内而外.【解答】解:f()=,,即f[f()]=故选B【点评】本题考查分段函数的求值问题,属基本题.10.下列图象表示的函数中具有奇偶性的是()A.B. C.D.【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据函数奇偶性的对称性进行判断即可.【解答】解:偶函数的图象关于y轴对称,奇函数的图象关于原点对称,则具备对称性的只有B,故选:B.【点评】本题主要考查函数图象的判断,根据函数奇偶性的性质是解决本题的关键.11.若f(x)的定义域为{x∈R|x≠0},满足f(x)﹣2f()=3x,则f(x)为()A.偶函数B.奇函数C.既奇又偶函数 D.非奇非偶函数【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】由f(x)﹣2f()=3x,把代换x可得:f()﹣2f(x)=,联立消去f()可得:f(x),即可判断出奇偶性.【解答】解:由f(x)﹣2f()=3x,把代换x可得:f()﹣2f(x)=,联立消去f()可得:f(x)=﹣x﹣,x∈{x∈R|x≠0}.∵f(﹣x)=x+=﹣f(x),∴f(x)是奇函数.故选:B.【点评】本题考查了函数的解析式、函数奇偶性的判定方法,考查了推理能力与计算能力,属于中档题.12.偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x•f(x)<0的解集为()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,﹣1)∪(1,4)C.(﹣∞,﹣4)∪(﹣1,0)D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】利用偶函数的性质结合题意进行求解.【解答】解:求x•f(x)<0即等价于求函数在第二、四象限图形x的取值范围.∵偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0∴f(4)=f(﹣1)=f(﹣4)=f(1)=0且f(x)在区间[0,3]与[3,+∞)上分别递减与递增如右图可知:即x∈(1,4)函数图象位于第四象限x∈(﹣∞,﹣4)∪(﹣1,0)函数图象位于第二象限综上说述:x•f(x)<0的解集为:(﹣∞,﹣4)∪(﹣1,0)∪(1,4)故答案选:D【点评】考察了偶函数的单调性质,属于中档题.二、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域为[0,1] .【考点】函数的定义域及其求法.【专题】计算题.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需解得0≤x≤1,所以,原函数定义域为[0,1].故答案为[0,1].【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.14.函数y=x2﹣6x+6,x∈(﹣1,5]的值域为[﹣3,13).【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】函数y=x2﹣6x+6的图象是开口朝上,且以直线x=3为对称轴的抛物线,求出x∈(﹣1,5]时的最值,可得答案.【解答】解:函数y=x2﹣6x+6的图象是开口朝上,且以直线x=3为对称轴的抛物线,若x∈(﹣1,5],则:当x=3时,函数取最小值﹣3,当x=﹣1时,函数取最大值13,故函数y=x2﹣6x+6,x∈(﹣1,5]的值域为[﹣3,13),故答案为:[﹣3,13)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.15.若a>0,b>0,化简成指数幂的形式: = .【考点】有理数指数幂的运算性质.【专题】函数的性质及应用.【分析】利用有理指数幂的运算法则求解即可.【解答】解: ==.故答案为:.【点评】本题考查有理指数幂的运算法则的应用,考查计算能力、16.不等式x<的解集是(0,1)∪(2,+∞).【考点】指、对数不等式的解法.【专题】函数的性质及应用.【分析】根据已知中不等式可得x>0,结合指数函数和对数函数的单调性,分当0<x<1时,当x=1时和当x>1时三种情况,求解满足条件的x值,综合讨论结果,可得答案.【解答】解:若使不等式x<=x﹣1有意义,x>0,当0<x<1时,原不等式可化为:,解得:x<2,∴0<x<1;当x=1时,x=不满足已知中的不等式,当x>1时,原不等式可化为:,解得:x>2,∴x>2;综上所述,不等式x<的解集是(0,1)∪(2,+∞),故答案为:(0,1)∪(2,+∞).【点评】本题考查的知识点是指数函数和对数函数的单调性,分类讨论思想,难度中档.三、解答题(本大题共6小题,共80分)17.求值:(1)2log510+log50.25(2)(5)0.5+(﹣1)﹣1÷0.75﹣2+(2).【考点】有理数指数幂的化简求值;对数的运算性质.【专题】函数的性质及应用.【分析】(1)利用对数的运算法则即可得出;(2)利用指数的运算法则即可得出.【解答】解:(1)原式===2.(2)原式=﹣1×+==.【点评】本题考查了指数与对数的运算法则,考查推理能力与了计算能力,属于基础题.18.设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(∁U A)∩B={2},A∩(∁U B)={4},求A∪B.【考点】补集及其运算;并集及其运算;交集及其运算.【专题】计算题.【分析】利用:“(C U A)∩B={2},A∩(C U B)={4},”得到4∈A且2∈B,列出方程组求得p,q,从而得出A,B,最后求出A∪B即可.【解答】解:∵∴A={3,4},B={2,3}∴A∪B={2,3,4}【点评】本题考查补集及其运算、交集及其运算、并集及其运算,解答的关键是利用元素与集合的关系列出方程求解.19.已知函数f(x)=.(1)求函数f(x)的定义域;(2)判断函数f(x)在(0,+∞)上的单调性,并用单调性的定义证明你的结论.【考点】函数单调性的判断与证明;函数的定义域及其求法.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)定义域容易求出为{x|x≠﹣1};(2)分离常数得到f(x)=,从而可以看出f(x)在(0,+∞)上单调递增,根据增函数的定义,设任意的x1>x2>0,然后作差,通分,证明f(x1)>f(x2)便可得出f (x)在(0,+∞)上单调递增.【解答】解:(1)要使f(x)有意义,则:x≠﹣1;∴函数f(x)的定义域为{x|x≠﹣1};(2);∴x>0时,x增大,减小,f(x)增大;∴f(x)在(0,+∞)上单调递增,证明如下:设x1>x2>0,则: =;∵x1>x2>0;∴x1﹣x2>0,(x1+1)(x2+1)>0;∴f(x1)>f(x2);∴f(x)在(0,+∞)上单调递增.【点评】考查函数定义域的概念及其求法,分离常数法的运用,根据增函数的定义判断并证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分.20.已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).(1)求出函数y=f(x)的解析式;(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)【考点】函数奇偶性的性质;函数的单调性及单调区间.【专题】函数的性质及应用.【分析】(1)当x<0时,﹣x>0,根据已知可求得f(﹣x),根据奇函数的性质f(x)=﹣f(﹣x)即可求得f(x)的表达式.(2)结合二次函数的图象和性质,可得分段函数的单调递增区间.【解答】解:(1)当x<0时,﹣x>0,∴f(﹣x)=﹣x(1+x).…又因为y=f(x)是奇函数所以f(x)=﹣f(﹣x)x(1+x).…综上f(x)=…(2)函数y=f(x)的单调递增区间是[,]…【点评】本题考查的知识点是函数奇偶性的性质,难度不大,属于基础题.21.国家对出书所得稿费纳税进行如下规定:稿费总数不超过800元的不纳税;稿费总数超过800元而不超过4000元的,按超过部分的14%纳税;稿费总数超过4000元的按全稿酬的11%纳税.(1)建立纳税y元与稿费x元的函数关系;(2)若某人出版了一书共纳税420元,则这个人的稿费为多少元?【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】(1)分0≤x≤800、800<x≤4000、x>4000三种情况讨论即可;(2)通过(1)计算出当800<x≤4000、x>4000时各自的稿费情况,进而可得结论.【解答】解:(1)由题意得f(x)=,即f(x)=;(2)由(1)可知当800<x≤4000时有0.14x﹣112=420,解得x=3800;当x>4000时有0.11x=420,解得x≈3818(舍去),综上所述,稿费为3800元.【点评】本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于基础题.22.已知f(x)=,(a>0,且a≠1).(1)求f(x)的定义域.(2)证明f(x)为奇函数.(3)求使f(x)>0成立的x的取值范围.【考点】对数函数的定义域;函数单调性的性质;函数奇偶性的判断.【专题】计算题.【分析】(1)f(x)=,(a>0,且a≠1)的定义域为:{x|},由此能求出结果.(2)由f(x)=,(a>0,且a≠1),知f(﹣x)==﹣=﹣f(x),由此能证明f(x)为奇函数.(3)由f(x)>0,得,对a分类讨论可得关于x的方程,由此能求出使f(x)>0成立的x的取值范围.【解答】解:(1)f(x)=,(a>0,且a≠1)的定义域为:{x|},解得f(x)=,(a>0,且a≠1)的定义域为{x|﹣1<x<1}.(2)∵f(x)=,(a>0,且a≠1),∴f(﹣x)==﹣=﹣f(x),∴f(x)为奇函数.(3)∵f(x)=,(a>0,且a≠1),∴由f(x)>0,得,当0<a<1时,有0<<1,解得﹣1<x<0;当a>1时,有>1,解得0<x<1;∴当a>1时,使f(x)>0成立的x的取值范围是(0,1),当0<a<1时,使f(x)>0成立的x的取值范围是(﹣1,0).【点评】本题考查f(x)的定义域的求法,证明f(x)为奇函数,求使f(x)>0成立的x的取值范围,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.。
2015-2016学年广东省中山一中高一(上)第一次段考数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知M={y|y=x2+1,x∈R},N={y|y=﹣x2+1,x∈R},则M∩N=()A.{0,1} B.{(0,1)} C.{1} D.以上均不对2.与y=|x|为同一函数的是()A.B.C.D.3.已知x∈{1,2,x2},则有()A.x=1 B.x=1或x=2C.x=0或x=2 D.x=0或x=1或x=24.若全集U=R,A=[1,3],B={x|x2﹣2x≤0},则A∩(∁U B)=()A.[1,2] B.(﹣∞,0)∪(2,3] C.[0,1)D.(2,3]5.下列函数在区间(﹣∞,0)上为增函数的是()A.y=x2B.y=C.y=()x D.y=3﹣x6.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.47.下列函数y=x,y=x,y=x,y=x中,定义域为{x∈R|x>0}的有()A.1个B.2个C.3个D.4个8.已知对数函数f(x)过点(2,4),则f()的值为()A.﹣1 B.C.D.19.设f(x)=,则f[f()]=()A.B.C.﹣D.10.下列图象表示的函数中具有奇偶性的是()A.B. C.D.11.若f(x)的定义域为{x∈R|x≠0},满足f(x)﹣2f()=3x,则f(x)为()A.偶函数B.奇函数C.既奇又偶函数 D.非奇非偶函数12.偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x•f(x)<0的解集为()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,﹣1)∪(1,4)C.(﹣∞,﹣4)∪(﹣1,0)D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)二、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域为.14.函数y=x2﹣6x+6,x∈(﹣1,5]的值域为.15.若a>0,b>0,化简成指数幂的形式: = .16.不等式x<的解集是.三、解答题(本大题共6小题,共80分)17.求值:(1)2log510+log50.25(2)(5)0.5+(﹣1)﹣1÷0.75﹣2+(2).18.设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(∁U A)∩B={2},A∩(∁U B)={4},求A∪B.19.已知函数f(x)=.(1)求函数f(x)的定义域;(2)判断函数f(x)在(0,+∞)上的单调性,并用单调性的定义证明你的结论.20.已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).(1)求出函数y=f(x)的解析式;(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)21.国家对出书所得稿费纳税进行如下规定:稿费总数不超过800元的不纳税;稿费总数超过800元而不超过4000元的,按超过部分的14%纳税;稿费总数超过4000元的按全稿酬的11%纳税.(1)建立纳税y元与稿费x元的函数关系;(2)若某人出版了一书共纳税420元,则这个人的稿费为多少元?22.已知f(x)=,(a>0,且a≠1).(1)求f(x)的定义域.(2)证明f(x)为奇函数.(3)求使f(x)>0成立的x的取值范围.2015-2016学年广东省中山一中高一(上)第一次段考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,共60分)1.已知M={y|y=x2+1,x∈R},N={y|y=﹣x2+1,x∈R},则M∩N=()A.{0,1} B.{(0,1)} C.{1} D.以上均不对【考点】交集及其运算.【专题】计算题.【分析】根据函数值域求得集合M=[1,+∞),N}=(﹣∞,1],根据集合交集的求法求得M∩N.【解答】解;集合M={y|y=x2+1,x∈R}=[1,+∞),N={y|y=﹣x2+1,x∈R}=(﹣∞,1],∴M∩N={1}故选C.【点评】此题是个基础题.考查交集及其运算,以及函数的定义域和圆的有界性,同时考查学生的计算能力.2.与y=|x|为同一函数的是()A.B.C.D.【考点】判断两个函数是否为同一函数.【专题】计算题.【分析】先判断两个函数的定义域是否是同一个集合,再判断两个函数的解析式是否可以化为一致.【解答】解:A、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数B、∵两个函数的解析式一致,定义域是同一个集合,∴是同一个函数C、∵y=|x|的定义域为(﹣∞,+∞).的定义域是(﹣∞,0)∪(0,+∞),∴不是同一个函数D、∵y=|x|的定义域为(﹣∞,+∞).的定义域是[0,+∞),∴不是同一个函数故选B.【点评】两个函数解析式表示同一个函数需要两个条件:①两个函数的定义域是同一个集合;②两个函数的解析式可以化为一致.这两个条件缺一不可,必须同时满足.3.已知x∈{1,2,x2},则有()A.x=1 B.x=1或x=2C.x=0或x=2 D.x=0或x=1或x=2【考点】元素与集合关系的判断.【专题】集合.【分析】利用元素与集合的关系知x是集合的一个元素,分类讨论列出方程求出x代入集合检验集合的元素满足的三要素.【解答】解:∵x∈{1,2,x2},分情况讨论可得:①x=1此时集合为{1,2,1}不合题意②x=2此时集合为{1,2,4}合题意③x=x2解得x=0或x=1当x=0时集合为{1,2,0}合题意故选:C.【点评】本题考查元素与集合的关系、在解集合中的参数问题时,一定要检验集合的元素满足的三要素:确定性、互异性、无序性.4.若全集U=R,A=[1,3],B={x|x2﹣2x≤0},则A∩(∁U B)=()A.[1,2] B.(﹣∞,0)∪(2,3] C.[0,1)D.(2,3]【考点】交、并、补集的混合运算.【专题】集合.【分析】求解一元二次不等式化简集合B,进一步求出∁U B,然后利用交集运算得答案.【解答】解:由x2﹣2x≤0,得0≤x≤2,∴B={x|x2﹣2x≤0}=[0,2],∴∁U B=(﹣∞,0)∪(2,+∞),又A=[1,3],∴A∩(∁U B)=(2,3].故选:D.【点评】本题考查并集及其运算,考查了一元二次不等式的解法,是基础题.5.下列函数在区间(﹣∞,0)上为增函数的是()A.y=x2B.y=C.y=()x D.y=3﹣x【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据二次函数、反比例函数、指数函数,以及一次函数的单调性即可找出正确选项.【解答】解:A.y=x2在(﹣∞,0)上为减函数;B.反比例函数在(﹣∞,0)上为增函数,即该选项正确;C.指数函数在(﹣∞,0)上为减函数;D.一次函数y=3﹣x在(﹣∞,0)上为减函数.故选:B.【点评】考查二次函数,反比例函数,指数函数,以及一次函数的单调性.6.下列各式中错误的是()A.0.83>0.73B.log0..50.4>log0..50.6C.0.75﹣0.1<0.750.1D.lg1.6>lg1.4【考点】指数函数的单调性与特殊点;对数值大小的比较;对数函数的图象与性质.【专题】计算题;函数的性质及应用.【分析】通过构造函数,利用函数的单调性直接判断选项即可.【解答】解:对于A,构造幂函数y=x3,函数是增函数,所以A正确;对于B,对数函数y=log0.5x,函数是减函数,所以B正确;对于C,指数函数y=0.75x是减函数,所以C错误;对于D,对数函数y=lgx,函数是增函数,所以D正确;故选C.【点评】本题考查指数函数与对数函数的单调性的应用,基本知识的考查.7.下列函数y=x,y=x,y=x,y=x中,定义域为{x∈R|x>0}的有()A.1个B.2个C.3个D.4个【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,分别写出这四个函数的定义域,即可得出所以符合条件的函数有几个.【解答】解:函数y=x的定义域为R,函数y=x的定义域为{x|x≥0};函数y=x的定义域为{x|x≠0};函数y=x中的定义域为{x∈R|x>0};所以符合条件的函数只有1个.故选:A.【点评】本题考查了求常见的函数定义域的应用问题,是基础题目.8.已知对数函数f(x)过点(2,4),则f()的值为()A.﹣1 B.C.D.1【考点】求对数函数解析式.【专题】函数的性质及应用.【分析】设出对数函数的解析式,求解即可.【解答】解:设对数函数为:f(x)=log a x,对数函数f(x)过点(2,4),可得4=log a2,解得a=,对数函数为:f(x)=log x,f()==1.故选:D.【点评】本题考查对数函数的解析式的求法,函数值的求法,考查计算能力.9.设f(x)=,则f[f()]=()A.B.C.﹣D.【考点】分段函数的解析式求法及其图象的作法;函数的值.【分析】判断自变量的绝对值与1的大小,确定应代入的解析式.先求f(),再求f[f()],由内而外.【解答】解:f()=,,即f[f()]=故选B【点评】本题考查分段函数的求值问题,属基本题.10.下列图象表示的函数中具有奇偶性的是()A.B. C.D.【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据函数奇偶性的对称性进行判断即可.【解答】解:偶函数的图象关于y轴对称,奇函数的图象关于原点对称,则具备对称性的只有B,故选:B.【点评】本题主要考查函数图象的判断,根据函数奇偶性的性质是解决本题的关键.11.若f(x)的定义域为{x∈R|x≠0},满足f(x)﹣2f()=3x,则f(x)为()A.偶函数B.奇函数C.既奇又偶函数 D.非奇非偶函数【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】由f(x)﹣2f()=3x,把代换x可得:f()﹣2f(x)=,联立消去f()可得:f(x),即可判断出奇偶性.【解答】解:由f(x)﹣2f()=3x,把代换x可得:f()﹣2f(x)=,联立消去f()可得:f(x)=﹣x﹣,x∈{x∈R|x≠0}.∵f(﹣x)=x+=﹣f(x),∴f(x)是奇函数.故选:B.【点评】本题考查了函数的解析式、函数奇偶性的判定方法,考查了推理能力与计算能力,属于中档题.12.偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减与递增,则不等式x•f(x)<0的解集为()A.(﹣∞,﹣4)∪(4,+∞)B.(﹣4,﹣1)∪(1,4)C.(﹣∞,﹣4)∪(﹣1,0)D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】利用偶函数的性质结合题意进行求解.【解答】解:求x•f(x)<0即等价于求函数在第二、四象限图形x的取值范围.∵偶函数f(x)(x∈R)满足f(﹣4)=f(1)=0∴f(4)=f(﹣1)=f(﹣4)=f(1)=0且f(x)在区间[0,3]与[3,+∞)上分别递减与递增如右图可知:即x∈(1,4)函数图象位于第四象限x∈(﹣∞,﹣4)∪(﹣1,0)函数图象位于第二象限综上说述:x•f(x)<0的解集为:(﹣∞,﹣4)∪(﹣1,0)∪(1,4)故答案选:D【点评】考察了偶函数的单调性质,属于中档题.二、填空题(本题共4小题,每小题5分,共20分)13.函数的定义域为[0,1] .【考点】函数的定义域及其求法.【专题】计算题.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需解得0≤x≤1,所以,原函数定义域为[0,1].故答案为[0,1].【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.14.函数y=x2﹣6x+6,x∈(﹣1,5]的值域为[﹣3,13).【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】函数y=x2﹣6x+6的图象是开口朝上,且以直线x=3为对称轴的抛物线,求出x∈(﹣1,5]时的最值,可得答案.【解答】解:函数y=x2﹣6x+6的图象是开口朝上,且以直线x=3为对称轴的抛物线,若x∈(﹣1,5],则:当x=3时,函数取最小值﹣3,当x=﹣1时,函数取最大值13,故函数y=x2﹣6x+6,x∈(﹣1,5]的值域为[﹣3,13),故答案为:[﹣3,13)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.15.若a>0,b>0,化简成指数幂的形式: = .【考点】有理数指数幂的运算性质.【专题】函数的性质及应用.【分析】利用有理指数幂的运算法则求解即可.【解答】解: ==.故答案为:.【点评】本题考查有理指数幂的运算法则的应用,考查计算能力、16.不等式x<的解集是(0,1)∪(2,+∞).【考点】指、对数不等式的解法.【专题】函数的性质及应用.【分析】根据已知中不等式可得x>0,结合指数函数和对数函数的单调性,分当0<x<1时,当x=1时和当x>1时三种情况,求解满足条件的x值,综合讨论结果,可得答案.【解答】解:若使不等式x<=x﹣1有意义,x>0,当0<x<1时,原不等式可化为:,解得:x<2,∴0<x<1;当x=1时,x=不满足已知中的不等式,当x>1时,原不等式可化为:,解得:x>2,∴x>2;综上所述,不等式x<的解集是(0,1)∪(2,+∞),故答案为:(0,1)∪(2,+∞).【点评】本题考查的知识点是指数函数和对数函数的单调性,分类讨论思想,难度中档.三、解答题(本大题共6小题,共80分)17.求值:(1)2log510+log50.25(2)(5)0.5+(﹣1)﹣1÷0.75﹣2+(2).【考点】有理数指数幂的化简求值;对数的运算性质.【专题】函数的性质及应用.【分析】(1)利用对数的运算法则即可得出;(2)利用指数的运算法则即可得出.【解答】解:(1)原式===2.(2)原式=﹣1×+==.【点评】本题考查了指数与对数的运算法则,考查推理能力与了计算能力,属于基础题.18.设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(∁U A)∩B={2},A∩(∁U B)={4},求A∪B.【考点】补集及其运算;并集及其运算;交集及其运算.【专题】计算题.【分析】利用:“(C U A)∩B={2},A∩(C U B)={4},”得到4∈A且2∈B,列出方程组求得p,q,从而得出A,B,最后求出A∪B即可.【解答】解:∵∴A={3,4},B={2,3}∴A∪B={2,3,4}【点评】本题考查补集及其运算、交集及其运算、并集及其运算,解答的关键是利用元素与集合的关系列出方程求解.19.已知函数f(x)=.(1)求函数f(x)的定义域;(2)判断函数f(x)在(0,+∞)上的单调性,并用单调性的定义证明你的结论.【考点】函数单调性的判断与证明;函数的定义域及其求法.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)定义域容易求出为{x|x≠﹣1};(2)分离常数得到f(x)=,从而可以看出f(x)在(0,+∞)上单调递增,根据增函数的定义,设任意的x1>x2>0,然后作差,通分,证明f(x1)>f(x2)便可得出f (x)在(0,+∞)上单调递增.【解答】解:(1)要使f(x)有意义,则:x≠﹣1;∴函数f(x)的定义域为{x|x≠﹣1};(2);∴x>0时,x增大,减小,f(x)增大;∴f(x)在(0,+∞)上单调递增,证明如下:设x1>x2>0,则: =;∵x1>x2>0;∴x1﹣x2>0,(x1+1)(x2+1)>0;∴f(x1)>f(x2);∴f(x)在(0,+∞)上单调递增.【点评】考查函数定义域的概念及其求法,分离常数法的运用,根据增函数的定义判断并证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分.20.已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).(1)求出函数y=f(x)的解析式;(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)【考点】函数奇偶性的性质;函数的单调性及单调区间.【专题】函数的性质及应用.【分析】(1)当x<0时,﹣x>0,根据已知可求得f(﹣x),根据奇函数的性质f(x)=﹣f(﹣x)即可求得f(x)的表达式.(2)结合二次函数的图象和性质,可得分段函数的单调递增区间.【解答】解:(1)当x<0时,﹣x>0,∴f(﹣x)=﹣x(1+x).…又因为y=f(x)是奇函数所以f(x)=﹣f(﹣x)x(1+x).…综上f(x)=…(2)函数y=f(x)的单调递增区间是[,]…【点评】本题考查的知识点是函数奇偶性的性质,难度不大,属于基础题.21.国家对出书所得稿费纳税进行如下规定:稿费总数不超过800元的不纳税;稿费总数超过800元而不超过4000元的,按超过部分的14%纳税;稿费总数超过4000元的按全稿酬的11%纳税.(1)建立纳税y元与稿费x元的函数关系;(2)若某人出版了一书共纳税420元,则这个人的稿费为多少元?【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】(1)分0≤x≤800、800<x≤4000、x>4000三种情况讨论即可;(2)通过(1)计算出当800<x≤4000、x>4000时各自的稿费情况,进而可得结论.【解答】解:(1)由题意得f(x)=,即f(x)=;(2)由(1)可知当800<x≤4000时有0.14x﹣112=420,解得x=3800;当x>4000时有0.11x=420,解得x≈3818(舍去),综上所述,稿费为3800元.【点评】本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于基础题.22.已知f(x)=,(a>0,且a≠1).(1)求f(x)的定义域.(2)证明f(x)为奇函数.(3)求使f(x)>0成立的x的取值范围.【考点】对数函数的定义域;函数单调性的性质;函数奇偶性的判断.【专题】计算题.【分析】(1)f(x)=,(a>0,且a≠1)的定义域为:{x|},由此能求出结果.(2)由f(x)=,(a>0,且a≠1),知f(﹣x)==﹣=﹣f(x),由此能证明f(x)为奇函数.(3)由f(x)>0,得,对a分类讨论可得关于x的方程,由此能求出使f(x)>0成立的x的取值范围.【解答】解:(1)f(x)=,(a>0,且a≠1)的定义域为:{x|},解得f(x)=,(a>0,且a≠1)的定义域为{x|﹣1<x<1}.(2)∵f(x)=,(a>0,且a≠1),∴f(﹣x)==﹣=﹣f(x),∴f(x)为奇函数.(3)∵f(x)=,(a>0,且a≠1),∴由f(x)>0,得,当0<a<1时,有0<<1,解得﹣1<x<0;当a>1时,有>1,解得0<x<1;∴当a>1时,使f(x)>0成立的x的取值范围是(0,1),当0<a<1时,使f(x)>0成立的x的取值范围是(﹣1,0).【点评】本题考查f(x)的定义域的求法,证明f(x)为奇函数,求使f(x)>0成立的x的取值范围,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.。
2017-2018学年广东省中山一中高三(上)第一次统测数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={1,2},B={x|ax﹣3=0},若B⊆A,则实数a的值是()A.0,,3 B.0,3 C.,3 D.32.已知A={x|2x<1},B={x|y=},则A∩B=()A.[﹣2,0)B.[﹣2,0] C.(0,+∞)D.[﹣2,+∞)3.以下选项中的两个函数不是同一个函数的是()A.f(x)=+g(x)=B.f(x)=g(x)=()3C.f(x)=•g(x)=D.f(x)=g(x)=x04.已知幂函数y=f(x)的图象过点(3,),则log4f(2)的值为()A.B.﹣ C.2 D.﹣25.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f (﹣1)=()A.3 B.1 C.﹣1 D.﹣36.设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.127.方程log3x+x﹣3=0的解所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)8.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a9.函数y=的图象大致是()A.B.C.D.10.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题11.已知关于x的方程ax2+x+3a+1=0,在(0,3]上有根,则实数a的取值范围为()A.(﹣,﹣] B.[﹣,﹣] C.[﹣3,﹣2]D.(﹣3,﹣2]12.设集合S={A0,A1,A2},在S上定义运算⊕:A i⊕A j=A k,其中k为i+j被3除的余数,i,j∈{1,2,3},则使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)总共有()A.1对B.2对C.3对D.4对二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)定义域为[0,8],则函数g(x)=的定义域为.14.已知函数f(x)是定义在R上的奇函数,对任意实数x有f(x+1)=f(x﹣1),当0<x<1时,f(x)=4x,则f(﹣)+f(1)=.15.设函数f(x)=,则不等式f(x)≤2的解集是.16.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本题共6题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)设f(x)=lg(ax2﹣2x+a),(1)若f(x)的定义域为R,求实数a的取值范围.(2)若f(x)的值域为R,求实数a的取值范围.18.(12分)命题p:∀x∈[1,2],x2﹣a≥0,命题q:∃x0∈R,x+2ax0+2﹣a=0,若p∧q为假命题,求实数a的取值范围.19.(12分)某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(Ⅰ)试写出y关于x的函数关系式;(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?20.(12分)已知函数(x∈[1,+∞)且m<1).(Ⅰ)用定义证明函数f(x)在[1,+∞)上为增函数;(Ⅱ)设函数,若[2,5]是g(x)的一个单调区间,且在该区间上g (x)>0恒成立,求实数m的取值范围.21.(12分)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?请考生从第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,解答时请写清题号.[选修4-1:几何证明选讲]22.(10分)如图,已知PA与圆O相切于点A,OB⊥OP,AB交PO与点C.(Ⅰ)求证:PA=PC;(Ⅱ)若圆O的半径为3,OP=5,求BC的长.[选修4-4:坐标系与参数方程]23.已知曲线C1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(Ⅱ)设P为曲线C1上的点,点Q的极坐标为,求PQ中点M到曲线C2上的点的距离的最小值.[选修4-5:不等式选讲]24.已知a+b=1,对∀a,b∈(0,+∞),+≥|2x﹣1|﹣|x+1|恒成立,(Ⅰ)求+的最小值;(Ⅱ)求x的取值范围.2016-2017学年广东省中山一中高三(上)第一次统测数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(2015春•定州市期末)已知集合A={1,2},B={x|ax﹣3=0},若B⊆A,则实数a的值是()A.0,,3 B.0,3 C.,3 D.3【考点】集合的包含关系判断及应用.【专题】集合.【分析】本题考察集合间的包含关系,分成B=∅,B={1},或B={2}讨论,求解即可.【解答】解:集合A={1,2},若B⊆A,则B=∅,B={1},或B={2};①当B=∅时,a=0,②当B={1}时,a﹣3=0,解得a=3,③当B={2}时,2a﹣3=0,解得a=,综上,a的值是0,3,,故选:A.【点评】本题容易忽略B=∅的情况.2.(2016秋•广东校级月考)已知A={x|2x<1},B={x|y=},则A∩B=()A.[﹣2,0)B.[﹣2,0] C.(0,+∞)D.[﹣2,+∞)【考点】交集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】求出集合A,B,根据集合的基本运算,即可得到结论.【解答】解:A={x|2x<1}={x|x<0}=(﹣∞,0),B={x|y=}=[﹣2,+∞)∴A∩B=[﹣2,0),故选:A.【点评】本题主要考查集合的基本运算,比较基础.3.(2016秋•广东校级月考)以下选项中的两个函数不是同一个函数的是()A.f(x)=+g(x)=B.f(x)=g(x)=()3 C.f(x)=•g(x)=D.f(x)=g(x)=x0【考点】判断两个函数是否为同一函数.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】判断两个函数是否为同一函数,应判定它们的定义域、值域以及对应关系是否相同,三方面都相同时是同一函数.【解答】解:A中f(x)的定义域是{x|x=1},g(x)的定义域是{x|x=1},且对应关系相同,∴是同一函数;B中f(x),h(x)的定义域是R,且对应关系相同,∴是同一函数;C中f(x)的定义域是{x|x≥1},g(x)的定义域是{x|x≥1,或x≤﹣3},∴不是同一函数;D中f(x)与g(x)的定义域都是{x|x≠0},值域都是{1},对应关系相同,∴是同一函数;故选:C.【点评】本题考查了判断两个函数是否为同一函数的问题,是基础题.4.(2015春•温州校级期中)已知幂函数y=f(x)的图象过点(3,),则log4f(2)的值为()A.B.﹣ C.2 D.﹣2【考点】幂函数的单调性、奇偶性及其应用.【专题】计算题;函数的性质及应用.【分析】用待定系数法求出幂函数的解析式,计算log4f(2)的值.【解答】解:设幂函数y=f(x)=xα,图象过点(3,),∴3α=,∴α=,∴f(x)=(x≥0);∴log4f(2)=log4=log42=×=;故选:A.【点评】本题考查了用待定系数法求出函数的解析式以及利用函数解析式求值的问题,是基础题.5.(2014•兴安盟二模)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b 为常数),则f(﹣1)=()A.3 B.1 C.﹣1 D.﹣3【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】据函数为奇函数知f(0)=0,代入函数的解析式求出b,求出f(1)的值,利用函数为奇函数,求出f(﹣1).【解答】解:因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选D.【点评】解决奇函数的问题,常利用函数若在x=0处有意义,其函数值为0找关系.6.(2015•新课标II)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.7.(2012•东莞二模)方程log3x+x﹣3=0的解所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】对数函数的图象与性质.【专题】数形结合.【分析】方程的解所在的区间,则对应的函数的零点在这个范围,把原函数写出两个初等函数,即两个初等函数的交点在这个区间,结合两个函数的草图得到函数的交点的位置在(1,3),再进行进一步检验.【解答】解:∵方程log3x+x=3即log3x=﹣x+3根据两个基本函数的图象可知两个函数的交点一定在(1,3),因m(x)=log3x+x﹣3在(1,2)上不满足m(1)m(2)<0,方程log3x+x﹣3=0 的解所在的区间是(2,3),故选C.【点评】本题考查函数零点的检验,考查函数与对应的方程之间的关系,是一个比较典型的函数的零点的问题,注意解题过程中数形结合思想的应用.8.(2015•山东)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【考点】不等式比较大小.【专题】函数的性质及应用.【分析】直接判断a,b的大小,然后求出结果.【解答】解:由题意可知1>a=0.60.6>b=0.61.5,c=1.50.6>1,可知:c>a>b.故选:C.【点评】本题考查指数函数的单调性的应用,考查计算能力.9.(2016•株洲一模)函数y=的图象大致是()A.B.C.D.【考点】对数函数的图象与性质.【专题】数形结合.【分析】先由奇偶性来确定是A、B还是C、D选项中的一个,再通过对数函数,当x=1时,函数值为0,可进一步确定选项.【解答】解:∵f(﹣x)=﹣f(x)是奇函数,所以排除A,B当x=1时,f(x)=0排除C故选D【点评】本题主要考查将函数的性质与图象,将两者有机地结合起来,并灵活地运用图象及其分布是数形结合解题的关键.10.(2014•南昌模拟)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题【考点】命题的否定;必要条件、充分条件与充要条件的判断.【分析】对于A:因为否命题是条件和结果都做否定,即“若x2≠1,则x≠1”,故错误.对于B:因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:因为命题的否定形式只否定结果,应为∀x∈R,均有x2+x+1≥0.故错误.由排除法即可得到答案.【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故答案选择D.【点评】此题主要考查命题的否定形式,以及必要条件、充分条件与充要条件的判断,对于命题的否命题和否定形式要注意区分,是易错点.11.(2016秋•广东校级月考)已知关于x的方程ax2+x+3a+1=0,在(0,3]上有根,则实数a的取值范围为()A.(﹣,﹣] B.[﹣,﹣] C.[﹣3,﹣2]D.(﹣3,﹣2]【考点】根的存在性及根的个数判断.【专题】对应思想;综合法;函数的性质及应用.【分析】讨论方程类型和方程在(0,3]上的根的个数,利用二次函数的性质列出不等式解出.【解答】解:当a=0时,方程x+1=0的零点为﹣1,不符合题意,∴a≠0.(1)若方程在(0,3]有一个根,①若3为方程的根,则12a+4=0,解得a=﹣,②若3不是方程的根,则或.解得a=﹣或无解.(2)若方程在(0,3]上有两个根,则,解得:﹣<x≤﹣,综上,a的范围是[﹣,﹣].故选B.【点评】本题考查了方程根的个数判断,一元二次方程与二次函数的关系,不等式的解法,属于中档题.12.(2013•广东模拟)设集合S={A0,A1,A2},在S上定义运算⊕:A i⊕A j=A k,其中k 为i+j被3除的余数,i,j∈{1,2,3},则使关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)总共有()A.1对B.2对C.3对D.4对【考点】元素与集合关系的判断.【专题】新定义.【分析】由题目给出的新定义可知满足关系式(A i⊕A j)⊕A i=A0成立的有序数对(i,j)应保证(i+j)除以3的余数加i后除以3等于0,分别取i=1,j=1,2,3;i=2,j=1,2,3;i=3,j=1,2,3验证后即可得到答案.【解答】解:有定义可知满足(A i⊕A j)⊕A i=A0成立的有序数对(i,j)应保证(i+j)除以3的余数加i后除以3等于0,i=1,j=1,(1+1)除以3的余数是2,(2+1)除以3的余数是0;i=1,j=2,(1+2)除以3的余数是0,(0+1)除以3的余数是1;i=1,j=3,(1+3)除以3的余数是1,(1+1)除以3的余数是2;i=2,j=1,(2+1)除以3的余数是0,(0+2)除以3的余数是2;i=2,j=2,(2+2)除以3的余数是1,(1+2)除以3的余数是0;i=2,j=3,(2+3)除以3的余数是2,(2+2)除以3的余数是1;i=3,j=1,(3+1)除以3的余数是1,(1+3)除以3的余数是1;i=3,j=2,(3+2)除以3的余数是2,(2+3)除以3的余数是2;i=3,j=3,(3+3)除以3的余数是3,(3+3)除以3的余数是0.所以满足条件的数对有(1,1),(2,2),(3,3)共3对.故选C.【点评】本题考查了元素与集合关系的判断,是新定义题,解答的关键是对题意的理解,是基础题型.二、填空题:本大题共4小题,每小题5分.13.(2016秋•广东校级月考)已知函数f(x)定义域为[0,8],则函数g(x)=的定义域为[0,3)∪(3,4] .【考点】函数的定义域及其求法.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】题目给出了函数y=f(x)的定义域,只要让2x在函数f(x)的定义域内,且x≠3,求解x的范围即可.【解答】解:f(x)定义域为[0,8],∴0≤2x≤8,即0≤x≤4,∴f(2x)的定义域为[0,4],∴g(x)=,∴3﹣x≠0,解得x≠3,故函数g(x)=的定义域为[0,3)∪(3,4],故答案为:[0,3)∪(3,4]【点评】本题考查了函数的定义域及其求法,给出了函数f(x)的定义域为[a,b],求函数f[g(x)]的定义域,只要用g(x)∈[a,b],求解x的范围即可,此题是基础题.14.(2016秋•广东校级月考)已知函数f(x)是定义在R上的奇函数,对任意实数x有f (x+1)=f(x﹣1),当0<x<1时,f(x)=4x,则f(﹣)+f(1)=﹣2.【考点】函数的定义域及其求法.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】推导出f(x+2)=f(x),f(1)=0,由此利用当0<x<1时,f(x)=4x,能求出f (﹣)+f(1)的值.【解答】解:∵函数f(x)是定义在R上的奇函数,对任意实数x有f(x+1)=f(x﹣1),∴f(x+2)=f(x),f(1)=f(﹣1)=﹣f(1),∴f(1)=0,∵当0<x<1时,f(x)=4x,∴f(﹣)+f(1)=﹣f()+0=﹣f()=﹣=﹣2.故答案为:﹣2.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.15.(2015春•潍坊期末)设函数f(x)=,则不等式f(x)≤2的解集是[0,+∞).【考点】指、对数不等式的解法;对数函数的单调性与特殊点.【专题】计算题.【分析】根据题意,分情况讨论:x≤1时,f(x)=21﹣x≤2;x>1时,f(x)=1﹣log2x≤2,分别求解即可.【解答】解:x≤1时,f(x)=21﹣x≤2,解得x≥0,因为x≤1,故0≤x≤1;x>1时,f(x)=1﹣log2x≤2,解得x≥,故x>1.综上所述,不等式f(x)≤2的解集为[0,+∞).故答案为:[0,+∞).【点评】本题考查分段函数、解不等式问题、对数函数的单调性与特殊点,属基本题,难度不大.16.(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).【考点】命题的真假判断与应用.【专题】创新题型;开放型;函数的性质及应用.【分析】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.【解答】解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(﹣,+∞)递增,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),即为g(x1)﹣f(x1)=g(x2)﹣f(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.【点评】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本题共6题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013秋•浏阳市校级期中)设f(x)=lg(ax2﹣2x+a),(1)若f(x)的定义域为R,求实数a的取值范围.(2)若f(x)的值域为R,求实数a的取值范围.【考点】函数的定义域及其求法;函数的值域.【专题】函数的性质及应用.【分析】(1)函数f(x)=lg(ax2﹣2x+a)的定义域是实数集,说明对任意实数x都有ax2﹣2x+a>0成立,则该二次三项式对应的二次函数应开口向上,且图象与x轴无交点,由二次项系数大于0,且判别式小于0联立不等式组求解a的取值范围;(2)只有内层函数(二次函数)对应的图象开口向上,且与x轴有交点,真数才能取到大于0的所有实数,由此列式求解a的取值集合.【解答】解:(1)∵f(x)=lg(ax2﹣2x+a)的定义域为R,∴对任意x∈R都有ax2﹣2x+a>0恒成立,则,解得:a>1.∴使f(x)的定义域为R的实数a的取值范围是(1,+∞);(2)∵f(x)=lg(ax2﹣2x+a)的值域为R,∴ax2﹣2x+a能取到大于0的所有实数,则,解得:0<a≤1.∴使f(x)的值域为R的实数a的取值范围是(0,1].【点评】本题考查了函数的定义域及其求法,考查了函数的值域问题,考查了数学转化思想方法,解答的关键是对题意的理解,是中档题.18.(12分)(2014春•泉州校级期末)命题p:∀x∈[1,2],x2﹣a≥0,命题q:∃x0∈R,x+2ax0+2﹣a=0,若p∧q为假命题,求实数a的取值范围.【考点】复合命题的真假.【专题】简易逻辑.【分析】本题的关键是给出命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“”为真时a的取值范围,在根据p、q中至少有一个为假,求实数a的取值范围.【解答】解:∵命题p:“∀x∈[1,2],x2﹣a≥0”,∴若p是真命题.则a≤x2,∵x∈[1,2],∴a≤1;∵命题q:“”,∴若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,若p真q也真时∴a≤﹣2,或a=1∴若“p且q”为假命题,即实数a的取值范围a∈(﹣2,1)∪(1,+∞)【点评】本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断.19.(12分)(2009•湖南)某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(Ⅰ)试写出y关于x的函数关系式;(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?【考点】根据实际问题选择函数类型;利用导数求闭区间上函数的最值.【专题】应用题.【分析】(Ⅰ)设出相邻桥墩间距x米,需建桥墩个,根据题意余下工程的费用y为桥墩的总费用加上相邻两墩之间的桥面工程总费用即可得到y的解析式;(Ⅱ)把m=640米代入到y的解析式中并求出y′令其等于0,然后讨论函数的增减性判断函数的最小值时m的值代入中求出桥墩个数即可.【解答】解:(Ⅰ)相邻桥墩间距x米,需建桥墩个则(Ⅱ)当m=640米时,y=f(x)=640×(+)+1024f′(x)=640×(﹣+)=640×∵f′(26)=0且x>26时,f′(x)>0,f(x)单调递增,0<x<26时,f′(x)<0,f(x)单调递减∴f(x)最小=f(x)极小=f(26)=8704∴需新建桥墩个.【点评】考查学生会根据实际问题选择函数关系的能力,会利用导数研究函数的增减性以及求函数最值的能力.20.(12分)(2015秋•肇庆期末)已知函数(x∈[1,+∞)且m<1).(Ⅰ)用定义证明函数f(x)在[1,+∞)上为增函数;(Ⅱ)设函数,若[2,5]是g(x)的一个单调区间,且在该区间上g(x)>0恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明.【专题】综合题.【分析】(Ⅰ)设1≤x1<x2<+∞,=(x1﹣x2)(),由1≤x1<x2<+∞,m<1,能够证明函数f(x)在[1,+∞)上为增函数.(Ⅱ),对称轴,定义域x∈[2,5],由此进行分类讨论,能够求出实数m的取值范围.【解答】(Ⅰ)证明:设1≤x1<x2<+∞,=(x1﹣x2)()∵1≤x1<x2<+∞,m<1,∴x1﹣x2<0,>0,∴f(x1)<f(x2)∴函数f(x)在[1,+∞)上为增函数.(Ⅱ)解:对称轴,定义域x∈[2,5]①g(x)在[2,5]上单调递增,且g(x)>0,②g(x)在[2,5]上单调递减,且g(x)>0,无解综上所述【点评】本题考查函数的恒成立问题的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,仔细解答.21.(12分)(2009•湖北校级模拟)已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?【考点】二次函数的性质.【专题】综合题;压轴题.【分析】(1)f(﹣1)=0⇒a﹣b+1=0,又值域为[0,+∞)即最小值为0⇒4a﹣b2=0,求出f (x)的表达式再求F(x)的表达式即可;(2)把g(x)的对称轴求出和区间端点值进行分类讨论即可.(3)f(x)为偶函数⇒对称轴为0⇒b=0,把F(m)+F(n)转化为f(m)﹣f(n)=a(m2﹣n2)再利用m>0,n<0,m+n>0,a>0来判断即可.【解答】解:(1)∵f(﹣1)=0,∴a﹣b+1=0①(1分)又函数f(x)的值域为[0,+∞),所以a≠0且由知即4a﹣b2=0②由①②得a=1,b=2(3分)∴f(x)=x2+2x+1=(x+1)2.∴(2)由(1)有g(x)=f(x)﹣kx=x2+2x+1﹣kx=x2+(2﹣k)x+1=,(7分)当或时,即k≥6或k≤﹣2时,g(x)是具有单调性.(9分)(3)∵f(x)是偶函数∴f(x)=ax2+1,∴,(11分)∵m>0,n<0,则m>n,则n<0.又m+n>0,m>﹣n>0,∴|m|>|﹣n|(13分)∴F(m)+F(n)=f(m)﹣f(n)=(am2+1)﹣an2﹣1=a(m2﹣n2)>0,∴F(m)+F(n)能大于零.(16分)【点评】本题是对二次函数性质的综合考查.其中(1)考查了二次函数解析式的求法.二次函数解析式的确定,应视具体问题,灵活的选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移,对称,函数的周期性,奇偶性等知识有机的结合在一起.请考生从第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,解答时请写清题号.[选修4-1:几何证明选讲]22.(10分)(2015春•武汉校级期末)如图,已知PA与圆O相切于点A,OB⊥OP,AB交PO与点C.(Ⅰ)求证:PA=PC;(Ⅱ)若圆O的半径为3,OP=5,求BC的长.【考点】与圆有关的比例线段.【专题】立体几何.【分析】(1)由于PA与圆O相切于点A,可得OA⊥AP,于是∠OAC+∠PAC=90°.由于OB⊥OP,可得∠OCB+∠B=90°.利用OA=OB,可得∠OAC=∠OBC.可得∠PAC=∠OCB.利用对顶角相等可得∠OCB=∠PCA,进而得到∠PAC=∠PCA,即可证明PA=PC.(2)在Rt△OAP中,利用勾股定理可得,即可得出PC=4.进而得到OC=OP﹣CP.在Rt△OBC中,利用勾股定理可得BC2=OB2+OC2即可.【解答】(1)证明:∵PA与圆O相切于点A,∴OA⊥AP,∴∠OAC+∠PAC=90°.∵OB⊥OP,∴∠OCB+∠B=90°.∵OA=OB,∴∠OAC=∠OBC.∴∠PAC=∠OCB,又∵∠OCB=∠PCA,∴∠PAC=∠PCA,∴PA=PC.(2)解:在Rt△OAP中,=4.∴PC=4.∴OC=OP﹣CP=1.在Rt△OBC中,BC2=OB2+OC2=32+12=10.∴.【点评】本题考查了圆的切线的性质、勾股定理、圆的性质、对顶角相等的性质、等角对等边的性质等基础知识,属于基础题.[选修4-4:坐标系与参数方程]23.(2015春•武汉校级期末)已知曲线C1:(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;(Ⅱ)设P为曲线C1上的点,点Q的极坐标为,求PQ中点M到曲线C2上的点的距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(Ⅰ)消去参数t,可得曲线C1的参数方程化为普通方程,利用极坐标与直角坐标的互化将曲线C2的极坐标方程化为直角坐标方程;(Ⅱ)设出Q,求出M,然后利用点到直线的距离公式以及三角函数的最值求解即可.【解答】解:(Ⅰ)曲线C1:(t为参数),消去参数可得:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.化为ρcosθ﹣2ρsinθ=7,它的普通方程为:x﹣2y﹣7=0.(Ⅱ)设P为曲线C1上的点,点Q的极坐标为,Q的直角坐标为:(﹣4,4),设P(8cost,3sint),故M(﹣2+4cost,2+),PQ中点M到曲线C2上的点的距离d==(其中tanβ=),当sint=,cost=时,PQ中点M到曲线C2上的点的距离最小值为:.【点评】本题考查椭圆的参数方程以及直线的极坐标方程的应用,点到直线的距离公式的应用,三角函数的最值的求法,考查计算能力.[选修4-5:不等式选讲]24.(2016•商洛模拟)已知a+b=1,对∀a,b∈(0,+∞),+≥|2x﹣1|﹣|x+1|恒成立,(Ⅰ)求+的最小值;(Ⅱ)求x的取值范围.【考点】基本不等式在最值问题中的应用;函数恒成立问题.【专题】函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)利用“1”的代换,化简+,结合基本不等式求解表达式的最小值;(Ⅱ)利用第一问的结果.通过绝对值不等式的解法,即可求x的取值范围.【解答】解:(Ⅰ)∵a>0,b>0且a+b=1∴=,当且仅当b=2a时等号成立,又a+b=1,即时,等号成立,故的最小值为9.(Ⅱ)因为对a,b∈(0,+∞),使恒成立,所以|2x﹣1|﹣|x+1|≤9,当x≤﹣1时,2﹣x≤9,∴﹣7≤x≤﹣1,当时,﹣3x≤9,∴,当时,x﹣2≤9,∴,∴﹣7≤x≤11.【点评】本题考查函数的最值基本不等式的应用,考查分析问题解决问题的能力.。
广东省中山市普通高中 2017-2018学年高一数学 1月月考试题满分 l50分,考试用时 l20分钟第 I 卷 (选择题 共 60分)一、选择题:本大题共 l2小题,每小题 5分,共 60分.在每小题给出的四个备选项中,只有 一项是符合题目要求的。
1.设集合 U={1,2,3,4},M={2,3},N={1,2,4 },则(ðv M) N=UA .{1,2}B .{2,3}C .{2,4}D .{1,4}2.函数1f (x )=+ 4-xln (x +1)的定义域为A .(-1,4)B .(-1,0) (0,4]C .[-1,4]D .(-l ,4] 3.下列函数中,既是奇函数又是增函数的为A . y =log 2 |x |B . y =-xC . y =31 xD . y =x |x | 4.函数1 21f (x )=x -( ) 的零点个数为x3A .0B .1C .2D .35.若函数 y =f (x )是函数 y =a x (a >0,且 a ≠1的反函数,且1f ( 2)= ,则 f (x ) =2A .log xB . 21 2xC .log x D . 2x -21 26.下列各组函数中,表示同一函数的是A . y =x ,y =x2xB . y =lg x 2 , y =2lg xC . y =x , y =3 x 3D . y = x 2 , y =( x )27.函数y =a x- 1 a(a >0,a ≠1)的图象可能是8.函数2f(x)=lg(-1)1-x的图像关于( )对称A.x轴B.y轴C.原点D.y=x- 1 -9.已知a=log 3.2,b=log 3.2,c=log 3.6,则244A.a>b>c B.a>c>b C.b>a>c D.c>a>b10.若函数f(x)=x3-x-1在区间[1,1.5]内的一个零点附近曲函数值用二分法逐次计算列表如下:x l 1.5 1.25 1.375 1.3125f(x)-l 0.875 -0.2969 0.2246 -0.05151那么方程x3-x-1=0的一个近似根(精确度为0.1)为A.1.3 B.1.3125 C.1.4375 D.1.2511.设函数1()x,(x3)f(x)=2f(x+2),(x<3),则f(log3)=2A.-2381B.11C.1241D.1212.设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数( f o g)(x)和( f A g)(x):对任意x R,(f o g)(x)=f(g(x));(f A g)(x)=f(x)g(x),则下列等式恒成立的是A.((f o g)A h)(x)=((f A h)o(gA h))(x)B.((f A g)o h)(x)=((f o h)A(g o h))(x)C.((f o g)o h)(x)=((f o h)o(g o h))(x)D.((f A g)A h)(x)=((f A h)A(gA h))(x)第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共l6分,把答案填写在答题卡相应位置上.13.已知集合A={x|x2=1},B={ax=1},若B A,则实数a=14.函数f(x)=1-2log x的定义域为615.设2a=5b=m,且11+=2- 2 -式x A f(x)<0的解集是三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)11-(1)已知a2-a2=2(a>0,且a1),求a+a3-3a+a-1的值.15(2)化简lg-lg+lg12.52818:(本小题满分12分)已知集合A={x|x a+3},B={x|x<-1且x>5}.(1)若a=-2,求AðB;(2)若A B=A,求a的取值范围.R19.(本小题满分l2分)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=3,且f(x)的两个零点的差的绝对值为26,求f(x)的解析式。
2017-2018学年高一上学期数学综合测试题01满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( ) A .{0,1,2,6,8} B .{3,7,8} C .{1,3,7,8} D .{1,3,6,7,8} 2.如图,可作为函数y =f (x )的图象是( )3.已知f (x ),g (x )则f (g (1))的值为( )A .-1B .0C .1D .不存在4.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A };则B 中所含元素的个数为( )A .3B .6C .8D .105.已知f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为( )A .-7B .3C .-8D .46.f (x )=-x 2+mx 在(-∞,1]上是增函数,则m 的取值范围是( ) A .{2} B .(-∞,2] C .[2,+∞) D .(-∞,1]7.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( ) A .A ∩B B .A ∪B C .A D .B8.已知函数f (x )=ax 2+bx +3a +b 的定义域为[a -1,2a ]的偶函数,则a +b 的值是( )A .0 B.13 C .1 D .-19.若f (x )是偶函数且在(0,+∞)上减函数,又f (-3)=1,则不等式f (x )<1的解集为( ) A .{x |x >3或-3<x <0} B .{x |x <-3或0<x <3} C .{x |x <-3或x >3} D .{x |-3<x <0或0<x <3}10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)11.设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)=( )A .0B .1 C.52 D .5 12.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F (x )的最值是( ) A .最大值为3,最小值-1 B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 14.已知函数f (x )=3x 2+mx +2在区间[1,+∞)上是增函数,则f (2)的取值范围是________. 15.如下图所示,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.16.某工厂生产某种产品的固定成本为2 000万元,每生产一单位产品,成本增加10万元,又知总收入k 是产品数θ的函数,k (θ)=40θ-120θ2,则总利润L (θ)的最大值是________. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},集合B ={x |-3≤x ≤2}.求A ∩B ,(∁U A )∪B ,A ∩(∁U B ),(∁U A )∪(∁U B ).18.(本题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.19.(本题满分12分)图中给出了奇函数f(x)的局部图象,已知f(x)的定义域为[-5,5],试补全其图象,并比较f(1)与f(3)的大小.20.(本题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费.每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分按每度0.5元计算.(1)设月用电x度时,应交电费y元.写出y关于x的函数关系式;(2)21.(本题满分12分)设函数f(x)在定义域R上总有f(x)=-f(x+2),且当-1<x≤1时,f(x)=x2+2.(1)当3<x≤5时,求函数f(x)的解析式;(2)判断函数f(x)在(3,5]上的单调性,并予以证明.22.(本题满分12分)定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y∈R,有f(x+y)=f(x)·f(y),f(1)=2.(1)求f(0)的值;(2)求证:对任意x∈R,都有f(x)>0;(3)解不等式f(3-x2)>4.答案1: C [解析]A∩B={1,3},(A∩B)∪C={1,3,7,8},故选C.2: D3: C [解析] ∵g (1)=0,f (0)=1,∴f (g (1))=1. 4: D[解析] x =5,y =1,2,3,4 x =4,y =1,2,3,x =3,y =1,2,x =2,y =1共10个5: B [解析] f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (4)+f (-1)=3,故选B.6: C[解析] f (x )=-(x -m 2)2+m 24的增区间为(-∞,m 2],由条件知m2≥1,∴m ≥2,故选C. 7: D [解析] A *B 的本质就是集合A 与B 的并集中除去它们的公共元素后,剩余元素组成的集合. 因此(A *B )*A 是图中阴影部分与A 的并集,除去A 中阴影部分后剩余部分即B ,故选D.[点评] 可取特殊集合求解.如取A ={1,2,3},B ={1,5},则A *B ={2,3,5},(A *B )*A ={1,5}=B .8: B [解析] 由函数f (x )=ax 2+bx +3a +b 是定义域为[a -1,2a ]的偶函数,得b =0,并且a -1=-2a ,即a =13,∴a +b 的值是13.9: C[解析] 由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )即f (x )<f (-3),∴x <-3,故选C.10: A [解析] 若x 2-x 1>0,则f (x 2)-f (x 1)<0, 即f (x 2)<f (x 1),∴f (x )在[0,+∞)上是减函数, ∵3>2>1,∴f (3)<f (2)<f (1),又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A. 11: C[解析] f (1)=f (-1+2)=f (-1)+f (2)=12,又f (-1)=-f (1)=-12,∴f (2)=1,∴f (5)=f (3)+f (2)=f (1)+2f (2)=52.12: B [解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选B.13: 1[解析] ∵A ∩B ={3},∴3∈B , ∵a 2+4≥4,∴a +2=3,∴a =1. 14: [2,+∞)[解析] ∵-m6≤1,∴m ≥-6,f (2)=14+2m ≥14+2×(-6)=2. 15: 2[解析] 由已知,得f (3)=1,f (1)=2,则f (1f (3))=f (1)=2.16: 2 500万元[解析] L (θ)=k (θ)-10θ-2000=-120θ2+30θ-2000.当θ=302×120=300时,L (θ)有最大值为:2500万元.17[解析] 如下图所示,在数轴上表示全集U 及集合A ,B .∵A ={x |-2<x <3}, B ={x |-3≤x ≤3}.∴∁U A ={x |x ≤-2,或3≤x ≤4}, ∁U B ={x |x <-3,或2<x ≤4}. ∴A ∩B ={x |-2<x ≤2};(∁U A )∪B ={x |x ≤2,或3≤x ≤4}; A ∩(∁U B )={x |2<x <3};(∁U A )∪(∁U B )={x |x ≤-2,或2<x ≤4}.18[解析] (1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3.(2)由条件知2a <1<a +1,∴0<a <12.19[解析] 奇函数的图象关于原点对称,可画出其图象如图.显见f (3)>f (1).20[解析] (1)当0≤x ≤100时,y =0.57x ;当x >100时,y =0.5×(x -100)+0.57×100=0.5x -50+57=0.5x +7.所以所求函数式为y =⎩⎪⎨⎪⎧0.57x , 0≤x ≤100,0.5x +7, x >100.(2)据题意,一月份:0.5x +7=76,得x =138(度), 二月份:0.5x +7=63,得x =112(度), 三月份:0.57x =45.6,得x =80(度). 所以第一季度共用电: 138+112+80=330(度).故小明家第一季度共用电330度. 21[解析] (1)∵f (x )=-f (x +2), ∴f (x +2)=-f (x ).∴f (x )=f [(x -2)+2]=-f (x -2)=-f [(x -4)+2]=f (x -4). ∵-1<x ≤1时,f (x )=x 2+2,又∵当3<x ≤5时,-1<x -4≤1, ∴f (x -4)=(x -4)2+2.∴当3<x ≤5时,f (x )=(x -4)2+2.(2)∵函数f (x )=(x -4)2+2的对称轴是x =4,∴函数f (x )=(x -4)2+2在(3,4]上单调递减,在[4,5]上单调递增. 证明:任取x 1,x 2∈(3,4],且x 1<x 2,有 f (x 1)-f (x 2)=[(x 1-4)2+2]-[(x 2-4)2+2] =(x 1-x 2)(x 1+x 2-8). ∵3<x 1<x 2≤4,∴x 1-x 2<0,x 1+x 2-8<0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数y =f (x )在(3,4]上单调递减. 同理可证函数在[4,5]上单调递增. 22[解析] (1)解:对任意x ,y ∈R , f (x +y )=f (x )·f (y ).令x =y =0,得f (0)=f (0)·f (0), 即f (0)·[f (0)-1]=0. 令y =0,得f (x )=f (x )·f (0),对任意x ∈R 成立, 所以f (0)≠0,因此f (0)=1. (2)证明:对任意x ∈R ,有f (x )=f (x 2+x 2)=f (x 2)·f (x 2)=[f (x2)]2≥0. 假设存在x 0∈R ,使f (x 0)=0, 所以f (x 2)-f (x 1)>0, 即f (x 1)<f (x 2).故函数f (x )在(-∞,+∞)上是增函数. 由f (3-x 2)>4,得f (3-x 2)>f (2), 即3-x 2>2. 解得-1<x <1.所以,不等式的解集是(-1,1). 则对任意x >0,有f (x )=f [(x -x 0)+x 0]=f (x -x 0)·f (x 0)=0. 这与已知x >0时,f (x )>1矛盾.所以,对任意x ∈R ,均有f (x )>0成立. (3)解:令x =y =1有f(1+1)=f(1)·f(1),所以f(2)=2×2=4.任取x1,x2∈R,且x1<x2,则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)·f(x1)-f(x1)=f(x1)·[f(x2-x1)-1].∵x1<x2,∴x2-x1>0,由已知f(x2-x1)>1,∴f(x2-x1)-1>0.由(2)知x1∈R,f(x1)>0.。
2017年高一上学期第一次段考数学试题一、选择题(每小题5分,共60分)1.设U=R,A={-2,-1,0,1,2},B={x|x≥1},则A∩∁U B=()A. B. 0,C. D. 0,【答案】C【解析】因为,所以,故选C.2.设集合,则A. B. C. D.【答案】B【解析】【详解】,∴故选:B3.设集合,,则图中阴影部分表示的集合是( )A. B. C. D.【答案】A【解析】略4.已知集合,,若,则()A. 或B. 或C. 或D. 或【答案】B【解析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.5. 下列四个函数之中,在(0,+∞)上为增函数的是()A. B. C. D.【答案】C【解析】【分析】为减函数,的对称轴为,所以不单调,在为减函数。
【详解】为减函数,的对称轴为,所以不单调,在为减函数。
故选C【点睛】基本初等函数的单调性学生要熟练掌握。
6.已知,则A. B. C. D.【答案】D【解析】∵∴故选:D7.已知,则三者的大小关系是A. B. C. D.【答案】A【解析】由函数的图象与性质可知:;由函数的图象与性质可知:;∴故选:A8.已知函数,则A. 是奇函数,且在R上是增函数B. 是偶函数,且在R上是增函数C. 是奇函数,且在R上是减函数D. 是偶函数,且在R上是减函数【答案】A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数。
故选A.点睛:本题考查函数的奇偶性单调性,属基础题.9.已知函数若,则A. B. C. D.【答案】C【解析】∵函数∴或解得:故选:C10.设函数是R上的奇函数,已知,则在上是()A. 增函数且B. 减函数且C. 增函数且D. 减函数且【答案】C【解析】因为函数是R上的奇函数,所以图象关于原点中心对称,在对称区间上单调性相同,函数值符号相反,所以在上是增函数且.故选:C11.函数的图像的大致形状是()A. B.C. D.【答案】C【解析】由题意得,又由可得函数图象选B。
12.对于函数的定义域中任意的,有如下结论:① ;② ;③ .当时,上述结论中正确的有个.A. 3B. 2C. 1D. 0【答案】B【解析】当时,①==①正确;由①可知②;不正确;③;说明函数是增函数,而是增函数,所以③正确;故选:B.点睛:本题重点考查了指数的运算性质及指数函数的单调性,利用指数的运算性质①与②的正误很容易判断,函数单调递增;函数单调递减.二、填空题(每小题5分,共20分)13.函数的定义域是________________.【答案】【解析】由题意,易得:,解得:∴函数的定义域是14.若函数在[-1,2]上的最大值为4,最小值为m,则m= ______.【答案】或【解析】当时,函数在[-1,2]上单调递增,∴,解得:当时,函数在[-1,2]上单调递减,∴,解得:故m=或15.已知函数为R上的奇函数,则数 __________.【答案】【解析】∵函数为R上的奇函数∴,即,∴.点睛:函数为R上的奇函数,易得:,在对称区间上单调性相同,函数值互为相反数,利用特例及性质本题可以速解,也可以利用函数的奇偶性定义来处理,同样可以得到结果.16.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(x R)是单函数;②若为单函数,③若f:A B为单函数,则对于任意b B,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)【答案】②③【解析】解:∵,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数∴①函数f(x)=x2不是单函数,∵f(-1)=f(1),显然-1≠1,∴函数f(x)=x2(x∈R)不是单函数;②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,对于任意b∈B,若∃x1≠x2,使得f(x1)=f(x2)=b,则x1=x2,与x1≠x2矛盾∴③正确;④例如①函数f(x)=x2在(0,+∞)上是增函数,而它不是单函数;故④不正确.故答案为:②③.三、解答题(共6小题,合计70分)17.化简:(1);(2).【答案】(1);(2).【解析】试题分析:(1)化负指数为正指数,由有理指数幂的运算性质得答案;(2)化根式为分数指数幂,然后利用有理指数幂的运算性质化简求值.试题解析:解:(1)原式=;(2).18.已知全集U=R,集合A={x|-2<x<4},B={x|x-m<0}.(Ⅰ)若m=1,求A∪∁U B;(Ⅱ)若A∩B=A,求实数m的取值范围.【答案】(1)(2)【解析】试题分析:(1)根据集合的基本运算求,即可求;(2)根据,可得:A⊆B,借助数轴即可求实数m的取值范围.试题解析:解:集合A={x|﹣2<x<4},B={x|x﹣m<0}.(1)当m=3时,由x﹣m<0,得x<3,∴B={x|x<3},∴U=A∪B={x|x<4},那么∁U B={x|3≤x<4}.∴A∩(∁U B)={x|3≤x<4}.(2)∵A={x|﹣2<x<4},B={x|x<m},∵A∩B=A,∴A⊆B,故:m≥4.∴实数m的取值范围是[4,+∞).点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.19.设函数.(1)用定义证明函数在区间上是单调递减函数;(2)求在区间上的最值.【答案】(1)见解析(2)【解析】试题分析:(1)用定义法证明单调性一般可以分为五步,取值,作差,化简变形,判号,下结论.(2)利用(1)中的单调性求最值.试题解析:解:(1)由定义得,所以函数在区间上是单调递减函数;(2)∵函数在区间上是单调递减函数,.点睛:明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.20.已知是定义在(0,+∞)上的增函数,且满足.(1)求的值;(2)求不等式的解集.【答案】(1)3;(2) .【解析】试题分析:(1)令x=y=2,可求得f(4),进而可求得f(8)的值;(2)由(1)f(8)=3,可求得不等式⇔f(x)>f(8x﹣16),利用f(x)是定义在(0,+∞)上的增函数即可求得答案.试题解析:解:(1)由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1,∴f(8)=3;(2)不等式化为f(x)>f(x-2)+3∵f(8)=3,∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数,∴,解得.21.已知函数的最小值为.(1)求的值;(2)求的解析式.【答案】(1)-4;(2)【解析】试题分析:(1)由a=2,求得f(t)=(t﹣2)2﹣4,即可得到最小值g(2);(2)运用换元法和二次函数的对称轴和区间的关系,对a展开讨论,即可得到最小值的表达式.试题解析:(1)a=2时,f(x)=4x﹣4•2x(﹣1≤x≤2)=(2x﹣2)2﹣4,令t=2x(≤t≤4),即有f(t)=(t﹣2)2﹣4,由于2∈[,4],可得最小值g(2)=﹣4;(2)函数f(x)=4x﹣a•2x+1(﹣1≤x≤2),令t=2x(≤t≤4),则f(t)=t2﹣2at=(t﹣a)2﹣a2,当a≤时,区间[,4]为增区间,即有t=取得最小值﹣a;当<a<4时,当t=a时,取得最小值﹣a2;当a≥4时,区间[,4]为减区间,即有t=4取得最小值16﹣8a.即有.22.某产品生产厂家根据以往销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为g(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足假设该产品产销平衡,试根据上述资料分析:(Ⅰ)要使工厂有盈利,产量x应控制在什么范围内;(Ⅱ)工厂生产多少台产品时,可使盈利最多?(Ⅲ)当盈利最多时,求每台产品的售价.【答案】(1)要使工厂有盈利,产量x应控制在100台到820台内.(2)当工厂生产400台产品时,可使盈利最多为3.6万元.(3)盈利最多时,每台产品的售价为240元.【解析】试题分析:(1)由题意,设利润函数为解即可;(2)分别求各段上的最大值,比较大小从而求最高盈利;(3)当时,(万元),(万元∕百台),从而得结果.试题解析:解:(Ⅰ)由题意,得g(x)=x+2,设利润函数为f(x),则f(x)=R(x)﹣g(x)=,由f(x)>0,解得1<x≤5或5<x<8.2,即1<x<8.2,故要使工厂有盈利,产量x应控制在100台到820台内.(Ⅱ)当0≤x≤5时,f(x)=﹣0.4(x﹣4)2+3.6,即当x=4时有最大值3.6;当x>5时,f(x)<8.2﹣5=3.2.故当工厂生产400台产品时,可使盈利最多为3.6万元.(Ⅲ)当x=4时,R(4)=9.6(万元),=2.4(万元/百台),故盈利最多时,每台产品的售价为240元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者)。