2017-2018年山东省济南市历下区八年级第一学期期末数学试卷带答案
- 格式:doc
- 大小:489.50 KB
- 文档页数:30
第5题图 第7题图山东省济南市历城区2017-2018学年八年级数学上学期期末考试试题一、 选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 9化简的结果是( )A .81B .3C .±3D .3 2.12,0,2-这四个数中,为无理数的是( )B.12C.0D.2-3. 下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4. 下列计算,正确的是( )A=.13|2|22-=-C=.11()22-= 5.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,若AB=4cm ,则△DBE 的周长是( )A .4 cmB. cm C.D .6. 若关于x,y 的方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( ) A .2 B .1 C .3 D .0.57. 如图,直线a ∥b ,直线l 与a ,b 分别相交于A ,B 两点,AC ⊥AB 交b 于点C ,∠1=40°,则∠2的度数是( )A .40°B .45°C .50°D .60° 8. 一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9. 在创建“全国文明城市”期间,济南市某中学组织共青团员植树,其中七位同学植树的棵数分别为: 3,1,1,3,2,3,2,则这组数据的中位数和众数分别是( )A .3,2B .2,3C .2,2D .3,310. 如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD 的第10题图第12题图第11题图度数是().A. 45°B. 60°C. 70°D. 65°11. 如图,yAB⊥轴,垂足为B,将ABO∆绕点A逆时针旋转到11OAB∆的位置,使点B的对应点1B落在直线xy33-=上,再将11OAB∆绕点1B逆时针旋转到211OBA∆的位置,使点1O的对应点2O落在直线xy33-=上,依次进行下去......若点B的坐标是)1,0(,则点12O的纵坐标为()A.339+ B.9 C.3618+ D.1812. 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON的面积不变,(4)MN的长不变,其中正确的个数为()A.4 B.3C.2 D.1二、填空题(本大题共6个小题,每小题4分,共24分)13.x的取值范围是.14. 若数据10,9,a,12,9的平均数是10,则这组数据的方差是 .15. 如图,函数2y x=和4y ax=+的图象交于点A(m,3),则方程24x ax=+的解为x=.第17题图第18题图16. 如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB→BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y (cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是 cm.17. 如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的18. 如图,△ABC 是边长为5的等边三角形,点E 在CA 的延长线上,EP ⊥BC ,垂足为P ,若AE=2,则BP 的长度等于 .三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19. 计算:(每小题4分,共16分) ()2352 1-)( 231227)2(-+2(1-20. 解方程组(每小题4分,共8分)(1)257231x y x y -=⎧⎨+=-⎩(2)3563(4)y x ⎧⎨-=+⎩(x-1)=y+521.(1)(5分)如图,在△ABC 和△DCE 中,AB ∥DC ,AB =DC ,BC =CE ,且点B ,C ,E 在一条直线上.求证:∠A =∠D .(2)(5分)如图,在△ABC 中,AB =AC ,∠A =40°,BD 是∠ABC 的平分线.求∠BDC 的度数.22.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形111A BC ∆;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的222A B C ∆;23.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元. 甲种商品与乙种商品的销售单价各多少元?24.(10分)A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中l 1,l 2表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示甲离A 地的距离与时间关系的图像是________(填l 1或l 2);甲的速度是__________km/h ;乙的速度是________km/h 。
山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼2.(4分)下列说法正确的是()A.﹣3是﹣9的平方根B.1的立方根是±1C.a是a2的算术平方根D.4的负的平方根是﹣23.(4分)下列从左到右的变形属于因式分解的是()A.2a(a+1)=2a2+2a B.a2﹣6a+9=a(a﹣6)+9C.a2+3a+2=(a+1)(a+2)D.a2﹣1=a(a﹣)4.(4分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()5.(4分)分式,,﹣的最简公分母为()A.2xy2B.5xy C.10xy2D.10x2y26.(4分)下列二次根式中,最简二次根式是()A.B.C.D.7.(4分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A.75,70B.70,70C.80,80D.75,808.(4分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3249.(4分)如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B、C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是()A.35°B.40°C.45°D.50°10.(4分)如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60°,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60°;③∠ADE=∠BDC;④∠AED=∠ABD,其中正确结论的序号是()A.①②B.①③C.②③D.①②④11.(4分)将一组数,2,,2,,…,2,按下列方式进行排列:①,2,,2,②2,,4,3,2…若的位置记为(1,3),2的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)12.(4分)如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.(4分)计算:()3=.14.(4分)将多项式x2﹣2在实数范围内分解因式的结果为.15.(4分)如图,已知∠1=75°,将直线m平行移动到直线n的位置,则∠2﹣∠3=°.16.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.17.(4分)已知a,b是两个连续整数,且a<﹣1<b,则a b=.18.(4分)把两块同样大小的含45°角的三角尺按如图所示的方式放置,其中一块三角尺的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B、C、D在同一直线上,若AB=3,则CD=.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.(6分)计算:(1)+(2﹣)0;(2)﹣3﹣20.(6分)解分式方程:=2﹣.21.(6分)分解因式:(a2+1)2﹣4a2.22.(8分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工作所需的时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?23.(8分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BOC绕点C按顺时针旋转得到△ADC,连接OD,OA.(Ⅰ)求∠ODC的度数;(Ⅱ)若OB=2,OC=3,求AO的长.26.(12分)常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2﹣2xy+y2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2﹣2xy+y2﹣16=(x﹣y)2一16=(x﹣y+4)(x﹣y﹣4)这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2﹣25m2﹣n2+12ab+10mn;(2)已知a、b、c分别是△ABC三边的长且2a2+b2+c2﹣2a(b+c)=0,请判断△ABC的形状,并说明理由.27.(12分)(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC 绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B=.(2)(问题解决)如图2,在等边三角形ABC内有一点P,且P A=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长;(3)(灵活运用)如图3,在正方形ABCD内有一点P,且P A=,BP=,PC=1,求∠BPC的度数.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.2.【解答】解:A.﹣9没有平方根,此选项错误;B.1的立方根是1,此选项错误;C.|a|是a2的算术平方根,此选项错误;D.4的负的平方根是﹣2,此选项正确;故选:D.3.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、是因式分解,故本选项符合题意;D、不是因式分解,故本选项不符合题意;故选:C.4.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.5.【解答】解:分式,,﹣的最简公分母为10xy2,故选:C.6.【解答】解:A、原式=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.7.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.8.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.9.【解答】解:∵AB=AB',∴∠ABB'=∠AB'B===55°,在直角△BB'C中,∠BB'C=90°﹣55°=35°.故选:A.10.【解答】解:∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABC=∠ACB=60°,∠AEB=∠BDC∵将△BCD绕着点B逆时针旋转60°,得到△BAE,∴BE=BD,∠DBE=60°,∠EAB=∠ACB=60°∴∠EAB=∠ABC=60°,△BED是等边三角形∴AE∥BC∵△BED是等边三角形∴∠DEB=60°故①②正确∵∠AEB=∠BDC,∠AEB=∠AED+∠BED,∠BDC=∠BAC+∠ABD∴∠AED=∠ABD故④正确∵∠BDC>60°,∠ADE<60°∴∠BDC≠∠ADE故③错误.故选:D.11.【解答】解:这组数据可表示为:①,,,,,②,,,,;…∵19×2=38,∴19÷5=3…4,∴为第4行,第4个数字.故选:B.12.【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠CBH+∠∠ABM+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分.把答案填在答题卡的横线上.)13.【解答】解:()3=﹣.故答案为:﹣.14.【解答】解:x2﹣2=,故答案为:,15.【解答】解:由题意可得:m∥n,则∠CAD+∠1=180°,可得:∠3=∠4,故∠4+∠CAD=∠2,则∠2﹣∠3=∠CAD+∠3﹣∠3=∠CAD=180°﹣∠1=180°﹣75°=105°.故答案为:105.16.【解答】解:由题意可得:空白部分一共有6个位置,白色部分只有在1或2处时,黑色部分的图形是轴对称图形,故黑色部分的图形是轴对称图形的概率是:=.故答案为:.17.【解答】解:∵3<<4,∴2<﹣1<3,∴a=2,b=3,∴a b=23=8,故答案为:8.18.【解答】解:过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=6,BF=AF=FC=AB=3,∵两个同样大小的含45°角的三角尺,∴AD=BC=6,在Rt△ADF中,根据勾股定理得,DF==3,∴CD=DF﹣FC=3﹣3,故答案为:3﹣3.三、解答题(本大题共9个小题,共78分.解答应写出文宇说明,证明过程或演算步骤-)19.【解答】解:(1)+(2﹣)0=3+1=4;(2)﹣3﹣=4﹣3×﹣=.20.【解答】解:去分母得:y﹣2=2y﹣6+1,移项合并得:y=3,经检验y=3是增根,分式方程无解.21.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.22.【解答】解:(1)设甲队单独完成此项工程需要3x天,则乙队单独完成此项工程需要2x天,根据题意得:+=1,解得:x=5,经检验,x=5是所列分式方程的解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程需要15天,乙队单独完成此项工程需要10天.(2)∵甲、乙两队单独完成这项工作所需的时间比是3:2,∴甲、乙两队每日完成的工作量之比是2:3,∴甲队应得的报酬为4000×=1600(元),乙队应得的报酬为4000﹣1600=2400(元).答:甲队应得的报酬为1600元,乙队应得的报酬为2400元.23.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.24.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.【解答】解:(Ⅰ)由旋转的性质得,CD=CO,∠ACD=∠BCO,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠ODC=60°;(Ⅱ)由旋转的性质得,AD=OB=2,∵△OCD为等边三角形,∴OD=OC=3,∵∠BOC=150°,∠ODC=60°,∴∠ADO=90°,在Rt△AOD中,由勾股定理得:AO==.26.【解答】(1)解:9a2+4b2﹣25m2﹣n2+12ab+10mn=(9a2+12ab+4b2)﹣(25m2﹣10mn+n2)=(3a+2b)2﹣(5m﹣n)2=(3a+2b+5m﹣n)(3a+2b﹣5m+n)(2)解:由2a2+b2+c2﹣2a(b+c)=0可分解得2a2+b2+c2﹣2ab﹣2ac=0利用拆项得(a2﹣2ab+b2)+(a2﹣2ac+c2)=0(a﹣b)2+(a﹣c)2=0根据两个非负数互为相反数,只能都同时等于0才成立,于是a﹣b=0,a﹣c=0所以可以得到a=b=c即:△ABC的形状是等边三角形.27.【解答】解:(1)如图1所示,连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;(2)∵△ABC是等边三角形,∴∠ABC=60°,将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,∴AP′=CP=1,BP′=BP=,∠PBC=∠P′BA,∠AP′B=∠BPC,∵∠PBC+∠ABP=∠ABC=60°,∴∠ABP′+∠ABP=∠ABC=60°,∴△BPP′是等边三角形,∴PP′=,∠BP′P=60°,∵AP′=1,AP=2,∴AP′2+PP′2=AP2,∴∠AP′P=90°,则△PP′A是直角三角形;∴∠BPC=∠AP′B=90°+60°=150°;过点B作BM⊥AP′,交AP′的延长线于点M,∴∠MP′B=30°,BM=,由勾股定理得:P′M=,∴AM=1+=,由勾股定理得:AB==.(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,∠ABE=∠PBC,∴∠EBP=∠EBA+∠ABP=∠ABC=90°,∴∠BEP=(180°﹣90°)=45°,由勾股定理得:EP=2,∵AE=1,AP=,EP=2,∴AE2+PE2=AP2,∴∠AEP=90°,∴∠BPC=∠AEB=90°+45°=135°;。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2017-2018学年山东省济南市八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4化简的结果是( )A .3-B .3C .3± D2.(412,0,2-这四个数中,为无理数的是( )A B .12 C .0 D .2-3.(4分)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .4.(4分)下列计算,正确的是( )A B .13|2|22-=- C D .11()22-= 5.(4分)如图,在ABC ∆中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB⊥于E ,若4AB cm =,则DBE ∆的周长是( )A .4 cmB .C .1+D .46.(4分)方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( ) A .2 B .1 C .3 D .47.(4分)如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,AC AB ⊥交b 于点C ,140∠=︒,则2∠的度数是( )A .40︒B .45︒C .50︒D .60︒8.(4分)一次函数y kx b =+满足0kb >,且y 随x 的增大而减小,则此函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.(4分)在创建“全国园林城市”期间,郴州市某中学组织共青团员去植树,其中七位同学植树的棵树分别为:3,1,1,3,2,3,2,这组数据的中位数和众数分别是( )A .3,2B .2,3C .2,2D .3,310.(4分)如图, 将AOB ∆绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是( )A .45︒B .60︒C .70︒D .65︒11.(4分)如图,AB y ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到△11AB O 的位置,使点B 的对应点1B 落在直线y =上,再将△11AB O 绕点1B 逆时针旋转到△112A B O的位置,使点1O 的对应点2O 落在直线y =上,依次进行下去若点B 的坐标是(0,1),则点12O 的纵坐标为( )A .9+B .9C .18+D .1812.(4分)如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补,若MPN ∠在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM PN =恒成立;(2)OM ON +的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(本大题共6个小题,每小题4分,共24分)13.(4x 的取值范围是 .14.(4分)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是 .15.(4分)如图,函数2y x =和4y ax =+的图象交于点(,3)A m ,则方程24x ax =+的解为x = .16.(4分)如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作//PQ BD ,PQ 与边AD (或边)CD 交于点Q ,PQ 的长度()y cm 与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是 cm .17.(4分)如图,在ABC ∆中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若E D C∆的周长为24,ABC ∆与四边形AEDC 的周长之差为12,则线段DE 的长为 .18.(4分)如图,ABC∆是边长为5的等边三角形,点E在CA的延长线上,EP BC⊥,垂足为P,若2AE=,则BP的长度等于.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(16分)计算:(1)23)(22-(3(4)2(|1.20.(8分)解方程组(1)257 231x yx y-=⎧⎨+=-⎩(2)3(1)5 563(4)x yy x-=+⎧⎨-=+⎩.21.(10分)(1)如图,在ABC∆和DCE∆中,//AB DC,AB DC=,BC CE=,且点B,C,E在一条直线上.求证:A D∠=∠.(2)如图,在ABC∆中,AB AC=,40A∠=︒,BD是ABC∠的平分线.求BDC∠的度数.22.(6分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出ABC ∆关于y 轴的对称图形△111A B C ;(2)画出将ABC ∆绕原点O 逆时针方向旋转90︒得到的△222A B C .23.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?24.(10分)A 、B 两地相距90km ,甲、乙两人从两地出发相向而行,甲先出发.图中1l ,2l 表示两人离A 地的距离()S km 与时间()t h 的关系,结合图象回答下列问题:(1)表示甲离A 地的距离与时间关系的图象是 (填1l 或2)l ;甲的速度是 /k m h ;乙的速度是 /k m h .(2)甲出发后多少时间两人恰好相距15km ?25.(10分)【操作发现】(1) 如图 1 ,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于45)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板另一直角边上取一点F ,使CF C D =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF . 请探究结果: ①直接写出EAF ∠的度数= 度;若旋转角BCD α∠=︒,则AEF ∠= 度(可 以用含α的代数式表示) ;②DE 与EF 相等吗?请说明理由;【类比探究】(2) 如图 2 ,ABC ∆为等边三角形, 先将三角板中的60︒角与ACB ∠重合, 再将三角板绕点C 按顺时针方向旋转 (旋 转角大于0︒且小于30)︒. 旋转后三角板的一直角边与AB 交于点D . 在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .①直接写出EAF ∠的度数= 度;②若1AE =,2BD =,求线段DE 的长度 .26.(10分)如图,将边长为8的正三角形纸片ABC 按如下顺序进行两次折叠,展开后,得折痕AD ,BE (如图①),点O 为其交点.(1)探求AO 与OD 的数量关系,并说明理由;(2)如图②,若P ,N 分别为BE ,BC 上的动点.①当PN PD +的长度取得最小值时,求BP 的长度;②如图③,若点Q 在线段BO 上,1BQ =,则三线段QN ,NP ,PD 的和(即)QN NP PD ++是否存在最小值?若存在,请直接写出最小值,若不存在,请说明理由.。
初二数学上册期末测试题一、选择题:(本题共10小题,每小题3分,共30分) 1、在下列各数中是无理数的有( )-0.333…, 4, 5,38-, π-, 2.010010001,4.0123456…(小数部分由相继的正整数组成).A.2个B.3个C. 4个D. 5个 2、下列说法正确的个数有( )(1)-7是49的平方根;(2)49的平方根是-7 (3)3是27的立方根;(4)27的立方根是3 A.1个 B.2个 C. 3个 D. 4个 3、如右图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为( )A 24cm πB 26cm πC 212cm πD 224cm π 4、点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( ) A 、 (-4,-8) B 、 (4,8) C 、 (-4,8) D 、 (4,-8)5、小明将下列4张牌中的3张旋转180°后得到,没有动的牌是( )。
A .2 B .4 C .6 D .86、若平面直角坐标系中某四边形顶点的横、纵坐标都变为原来的相反数, 此时图形的大小、形状和位置都没变,则这四边形不是( ) A.矩形 B. 等腰梯形 C. 正方形 D. 菱形7、如图,E F ,分别是正方形ABCD 的边CD AD ,上的点,且 CE DF AE BF =,,相交于点O ,下列结论①AE BF =;②AE BF ⊥; ③AO OE =;④AOB DEOF S S =△四边形中,错误的有( ) A.1个B.2个C.3个D.4个8、已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是 ( )A B C D9、小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷,奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是( ) A.32,31 B.32,32 C.3,31 D.3,3210、如果方程组⎩⎨⎧=-+=525y x y x 的解也是方程532=+-a y x 的解, 那么a 的值是( )A. 20B. -15C. -10D.5 二、填空题:(本题共10小题,每小题3分,共30分)(第7题)A B11、若正数m 是小于2+3的整数,则m 的值是 .12、多边形的内角和与某个外角的度数总和为1350,则多边形的边数为 .13、如图,将含有300角的三角尺ABC 绕点B 旋转到△DBE 的位置,当C 、B 、E 在同一条直线上时,∠BDC 等于________度. 14、“中华人民共和国道路管理条例”规定:小汽车在城市街路上的行驶速度不得超过70千米/时。
山东省济南市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017七下·福建期中) 已知点P(a,b),ab>0,a+b<0,则点P在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)(2018·河南模拟) 一次中学生田径运动会上,参加男子跳高的20名运动员成绩如下所示:成绩(单位:米) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23245211则下列叙述正确的是()A . 这些运动员成绩的中位数是1.70B . 这些运动员成绩的众数是5C . 这些运动员的平均成绩是1.71875D . 这些运动员成绩的中位数是1.7263. (2分)(2011·义乌) 如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A . 60°B . 25°C . 35°D . 45°4. (2分)不等式的解集是()A .B .C .D .5. (2分)一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ()A . k>0且b<0B . k>0且b>0C . k<0且b<0D . k<0且b>06. (2分) (2016八上·临海期末) 在下列图形中,不是轴对称图形的是()A .B .C .D .7. (2分) (2020八上·昌平期末) 直线不经过的象限是()A . 第四象限B . 第三象限C . 第二象限D . 第一象限8. (2分) (2018八上·海安月考) 在△ABC中,∠A=70°,∠B=60°,∠ACD是△ABC的一个外角,∠ACD 的度数为()A . 50°B . 60°C . 70°D . 130°9. (2分) (2017七下·五莲期末) 在一次“数学与生活”知识竞赛中,竞赛题共26道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于70分得奖,那么得奖至少应选对()道题.A . 22B . 21C . 20D . 1910. (2分) (2019七上·川汇期中) 某商品进价加价25%后出售,最后降价处理库存,要使后续销售不亏本,售价降价不能高于()A . 20%B . 25%C . 30%D . 40%11. (2分) (2015八下·嵊州期中) 如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A . 2B . 4C . 4D . 812. (2分)使方程组有自然数解的整数m()A . 只有5个B . 只能是偶数C . 是小于16的自然数D . 是小于32的自然数二、填空题 (共8题;共8分)13. (1分) (2017七下·马山期中) 将点(0,1)向下平移2个单位,再向左平移4个单位后,所得点的坐标为________ .14. (1分) (2019八下·忠县期中) 2016年5月某日,重庆部分区县的最高温度如下表所示:地区合川永川江津涪陵丰都梁平云阳黔江温度(℃)2526292624282829则这组数据的中位数是________.15. (1分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有________(把你认为说法正确的序号都填上).16. (1分) (2019七下·丹阳月考) 如图,在第1个中,40°,,在上取一点,延长到,使得在第2个中,;在上取一点,延长到,使得在第3个中,;…,按此做法进行下去,第3个三角形中以为顶点的内角的度数为________;第个三角形中以为顶点的内角的度数为________度.17. (1分)已知方程组,则x+y=________18. (1分)在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图象信息,下列说法:①两人相遇前,甲速度一直小于乙速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的说法是________(填序号).19. (1分)(2017八上·上城期中) 如图,和都是等腰直角三角形,,连接交与,连接交于点,连接,下列结论:① ;② ;③ ;④ ;⑤ .正确的有________.20. (1分)若不等式组有解,则a的取值范围是________三、解答题 (共10题;共70分)21. (5分) (2017八下·双柏期末) 解方程组:.22. (5分)(2015·湖州) 解不等式组.23. (5分)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.24. (7分) (2019八上·兴化月考)(1)在网格中画,使、、三边的长分别为、、(2)判断三角形的形状:________(直接填结论).(3)求的面积.25. (5分)已知平面内四条直线共有三个交点,则这四条直线中最多有几条平行线?26. (7分)(2017·临沂模拟) 九年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的条形统计图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为________度;(3)请将条形统计图补充完整;(4)如果全市有6000名九年级学生,那么在试卷评讲课中,“独立思考”的约有多少人?27. (10分)已知,在△ABC中,∠ABC和∠ACD的平分线相交于点O,(1)若∠A=70°,则∠BOC=________;(2)若∠A=80°,则∠BOC=________;(3)试探索:∠BOC和∠A的关系,证明你的结论.28. (6分) (2017八下·房山期末) 在平面直角坐标系xOy中,对于点P(x , y)和Q(x ,y′),给出如下定义:若,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2).结合定义,请回答下列问题:(1)点(-3,4)的“可控变点”为点________.(2)若点N(m,2)是函数图象上点M的“可控变点”,则点M的坐标为________;(3)点P为直线上的动点,当x≥0时,它的“可控变点”Q所形成的图象如下图所示(实线部分含实心点).请补全当x<0时,点P的“可控变点” Q所形成的图象;29. (15分)(2017·路北模拟) 如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为________;用含t的式子表示点P的坐标为________;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.30. (5分) (2018九上·深圳期中) 如图,己知A(0,8),B(6,0),点M、N分别是线段AB、AO上的动点,点M从点B出发,以每秒2个单位的速度向点A运动,点N从点A出发,以每秒1个单位的速度向点O运动,点M、N中有一个点停止时,另一个点也停止。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列哪一组数是勾股数( )A .9,12,13B .8,15,17C .2,3,12D .12,18,22【答案】B【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、∵92+122≠132,∴此选项不符合题意;B 、∵152+82=172,∴此选项符合题意;C 、∵2和12不是正整数,此选项不符合题意;D 、∵122+182≠222,∴此选项不符合题意;故选:B .【点睛】此题考查的是勾股数的判断,掌握勾股数的定义是解决此题的关键.2.若(x+4)(x ﹣2)=x 2+ax+b ,则ab 的积为( )A .﹣10B .﹣16C .10D .﹣6 【答案】B【分析】首先利用多项式乘以多项式计算(x+4)(x ﹣2),然后可得a 、b 的值,进而可得答案.【详解】(x+4)(x ﹣2)=x 2﹣2x+4x ﹣8=x 2+2x ﹣8,∴a=2,b=﹣8,∴ab=﹣1.故选:B .【点睛】本题考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.如图,已知直线y=x+4与x 轴、y 轴分别交于A 、B 两点,C 点在x 轴正半轴上且OC=OB ,点D 位于x轴上点C 的右侧,∠BAO 和∠BCD 的角平分线AP 、CP 相交于点P ,连接BC 、BP ,则∠P BC 的度数为( )A .43︒B .44︒C .45︒D .46︒【答案】C 【分析】依据一次函数即可得到AO=BO=4,再根据OC=OB ,即可得到90ABC ∠=︒,90CBG ∠=︒,过P 作PE ⊥AC ,PF ⊥BC ,PG ⊥AB ,即可得出BP 平分CBG ∠,进而得到45CBP ∠=︒.【详解】在4y x =+中,令0x =,则y=4;令y=0,则4x =-,∴()4,0A -,()0,4B ,∴4AO BO ==,又∵CO=BO ,BO ⊥AC ,∴ABO ∆与CBO ∆是等腰直角三角形,∴90ABC ∠=︒,90CBG ∠=︒,如下图,过P 作PE ⊥AC ,PF ⊥BC ,PG ⊥AB ,∵BAO ∠和BCD ∠的角平分线AP ,CP 相交于点P ,∴GP PE PF ==,∴BP 平分CBG ∠,∴45CBP ∠=︒,故选:C.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线性质证明方法是解决本题的关键.4.己知x,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x+y 的值为( ) A .5B .7C .9D .3【答案】A【分析】直接把两式相加即可得出结论. 【详解】612328x y x y +=⎧⎨-=⎩①②, ①+②得,4x+4y=20,解得x+y=1.故选A .【点睛】本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.5.下面有4个汽车标志图案,其中不是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的定义和特征逐一判断即可.【详解】A、是轴对称图形,故该选项不符合题意,B、是轴对称图形,故该选项不符合题意,C、是轴对称图形,故该选项不符合题意,D、不是轴对称图形,故该选项符合题意,故选D.【点睛】本题考查轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;熟练掌握概念是解题关键.6.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【答案】D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.7.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A.B.C.D.【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A 和直线MN ,过点A 用尺规作图画出直线MN 的垂线,画法正确的是B 、C 、D 选项,不符合题意.A 选项错误,符合题意;故选:A .【点睛】本题考查了作图-基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.8.在平面直角坐标系中,直线y =2x ﹣3与y 轴的交点坐标是( )A .(0,﹣3)B .(﹣3,0)C .(2,﹣3)D .(32,0) 【答案】A【分析】当直线与y 轴相交时,x =0,故将x =0代入直线解析式中,求出交点坐标即可.【详解】把x =0代入y =2x ﹣3得y =﹣3,所以直线y =2x ﹣3与y 轴的交点坐标是(0,﹣3).故选:A .【点睛】本题考查了直线与y 轴的交点坐标问题,掌握直线与y 轴的交点坐标的性质以及解法是解题的关键. 9.甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调走,乙队再做21天完成任务。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知一次函数y kx b =+的图象如图所示,则一次函数y bx k =-+的图象大致是( )A .B .C .D .【答案】C【分析】根据一次函数与系数的关系,由已知函数图象判断k 、b ,然后根据系数的正负判断函数y=-bx+k 的图象位置.【详解】∵函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b>0,∴-b <0,∴函数y=-bx+k 的图象经过第二、三、四象限.故选:C .【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.2.若x 2+6x+k 是完全平方式,则k=( )A .9B .﹣9C .±9D .±3【答案】A【解析】试题分析:若x 2+6x+k 是完全平方式,则k 是一次项系数6的一半的平方.解:∵x 2+6x+k 是完全平方式,∴(x+3)2=x 2+6x+k ,即x 2+6x+1=x 2+6x+k∴k=1.故选A .考点:完全平方式.3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三边的中垂线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点.【答案】C 【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC 三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC 三条角平分线的交点.故选:C .【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.5.下列计算结果正确的是( )A .339a a a =B .()235a a =C .235a a a +=D .()3263a b a b =【答案】D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A .336a a a ⋅=,该选项错误;B . ()236a a =,该选项错误;C . 23,a a 不是同类项不可合并,该选项错误;D . ()3263a b a b =,该选项正确;故选D .【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.6.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒【答案】C 【分析】由图形可知AC=AC ,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC 和△ADC 中∵AB=AD ,AC=AC ,A 、添加CB CD =,根据SSS ,能判定ABC ADC ∆∆≌,故A 选项不符合题意;B 、添加BAC DAC ∠=∠,根据SAS 能判定ABC ADC ∆∆≌,故B 选项不符合题意;C .添加BCA DCA ∠=∠时,不能判定ABC ADC ∆∆≌,故C 选项符合题意;D 、添加90B D ∠=∠=︒,根据HL ,能判定ABC ADC ∆∆≌,故D 选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS 、SAS 、ASA 、AAS 和HL . 7.当一个多边形的边数增加时,它的内角和与外角和的差( )A .增大B .不变C .减小D .以上都有可能【答案】A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n -2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n -2)-360=180n -720∵180>0∴多边形的内角和与外角和的差会随着n 的增大而增大故选A .【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.8.在等腰三角形ABC 中,794937A '''∠=︒,则B 可以有几个不同值( )A .4个B .3个C .2个D .1个 【答案】B【分析】根据等腰三角形的定义,∠A 可能是底角,也可能是顶角,进行分类讨论即可.【详解】解:①当∠A 是顶角时,∠B=∠C=7949'37"18050511.52︒'︒︒-''=, ②当∠A 为底角,∠B 也为底角时, 794937B '''∠=︒,③当∠A 为底角,∠B 为顶角时,∠B=7949'37"2020610248'''︒=︒︒-⨯,故答案为:B .【点睛】本题考查了等腰三角形等边对等角的性质,涉及分类讨论问题,解题的关键是对∠A ,∠B 进行分类讨论. 9.下列运算中,结果正确的是( )A .x 3·x 3=x 6B .3x 2+2x 2=5x 4C .(x 2)3=x 5D .(x +y)2=x 2+y 2【答案】A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【详解】A.x 3·x 3=x 6 ,正确; B.3x 2+2x 2=5x 2,故本选项错误;C.(x 2)3=x 6,故本选项错误;D.(x+y )2=x 2+2xy+y 2,故本选项错误;故选A .【点睛】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.10.下列各组线段中,能够组成直角三角形的一组是( )A .1,2,3B .2,3,4C .4,5,6D .1【答案】D【解析】试题分析:A .222123+≠,不能组成直角三角形,故错误;B .222234+≠,不能组成直角三角形,故错误;C .222456+≠,不能组成直角三角形,故错误;D .2221(2)(3)+=,能够组成直角三角形,故正确.故选D .考点:勾股定理的逆定理.二、填空题11.若分式方程1x a x -+=a 无解,则a 的值为________. 【答案】1或-1【分析】根据分式方程无解,得到最简公分母为2求出x 的值,分式方程转化为整式方程,把x 的值代入计算即可. 【详解】解:去分母:x a ax a -=+ 即:1)2a x a -=-( . 显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a .解得:a=-1.综上:a 的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.12.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.【答案】40°【分析】根据平移的性质得出△ACB ≌△BED ,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC 沿直线AB 向右平移到达△BDE 的位置,∴△ACB ≌△BED ,∵∠CAB =60°,∠ABC =80°,∴∠EBD =60°,∠BDE =80°,则∠CBE 的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD ,∠BDE 的度数是解题关键.13.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.【答案】1【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣30°=90°,∴∠5+∠6=180°﹣80°=90°,∴∠5=180°﹣∠2﹣108°①, ∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=1°.故答案为1.【点睛】本题考查了三角形的内角和定理,熟知正三角形、正四边形、正五边形个内角的度数是解答本题的关键. 14.计算:()232a bab ÷=_________. 【答案】54a b【解析】()232a b ab ÷=62544a b ab a b ÷=15.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是____.【答案】1.【解析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据(a-b )2=a 2-2ab+b 2即可求解.【详解】解:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积是: 12ab×4=13-1=12,即:2ab=12, 则(a-b )2=a 2-2ab+b 2=13-12=1.故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a 2+b 2和ab 的值是关键.16.计算02(3)(3)--⨯-=_______.【答案】19【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【详解】解:0211=1=(3)(3)99-⨯-⨯-. 故答案为:19. 【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键. 17.如图,在△ABC 中,∠C =∠ABC ,BE ⊥AC ,垂足为点E ,△BDE 是等边三角形,若AD =4,则线段BE 的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C ,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题18.A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,1l表示的是B车,2l表示的是A车.(1)汽车B的速度是多少?(2)求1l、2l分别表示的两辆汽车的s与t的关系式.(3)行驶多长时间后,A、B两车相遇?(4)什么时刻两车相距120千米?【答案】(1)120千米/时;(2)1l 对应的函数解析式为2360s t ,2l 对应的函数解析式为s t =;(3)120分钟;(4)当行驶43小时或83小时后,A ,B 两车相距120千米. 【分析】(1)根据函数图象可以得到汽车B 的速度;(2)根据图象可以设出1l 、2l 的解析式,由函数图象上的点可以求得它们的解析式;(3)根据函数关系式列方程解答即可;(4)分两种情况讨论,相遇前和相遇后,然后列方程解答即可.【详解】解:(1)由图象可得, 60(360240)12060(千米 /时);答:汽车B 的速度为120千米/时;(2)设1l 对应的函数解析式为s kt b =+,36060240b k b, 解得2360k b ,即1l 对应的函数解析式为2360s t ,∵2l 经过原点,则设2l 对应的函数解析式为smt , 6060m ,得1m =,即2l 对应的函数解析式为s t =;(3)当两车相遇时,可得方程,2360t t =-+解之得:120t =; (4)由图象可得,汽车A 的速度为:6060=6060千米/时; 设两车相距120千米时的时间是x ,则当两车没有相遇前,相距120千米时 12060360120x 解之得:43x =; 当两车相遇后,再相距120千米时 12060360120x ,解得83x =, 当83x =时,汽车B 行驶的距离是12032036830, 即B 汽车还没有达到终点,符合题意,答:当行驶43小时或83小时后,A ,B 两车相距120千米. 【点睛】 本题考查一次函数的应用和余元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件是解题的关键.19.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【答案】详见解析【分析】(1)首先设足球单价为x 元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程150090040x x=+,再解方程可得答案; (2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【详解】(1)设足球单价为x 元,则篮球单价为(x+40)元,由题意得:150090040x x=+, 解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,由题意得:100m+60n=1000,整理得:m=10-35n , ∵m 、n 都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点睛】1.分式方程的应用;2.二元一次方程的应用.20.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=1. 【答案】13. 【解析】试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=1时,原式=13. 21.请你先化简:2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭,然后从12x -≤≤中选一个合适的整数作为x 的值代入求值. 【答案】22x x+- ,当0x =时,原式1=. 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一). 【详解】2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭ =()22231111x x x x x -⎛⎫--÷ ⎪+++⎝⎭=()()()222112x x x x x +-++- =22x x +-, 当0x =时,原式1=.22.(11)2017﹣|1|(2)如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 坐标.【答案】(1)1﹣2;(2)C 坐标为(﹣1,0)【分析】(1)根据实数的混合运算法则计算;(2)根据勾股定理求出AB ,根据坐标与图形性质解答.【详解】解:(1)4﹣(﹣1)2017+327-﹣12-=21321+--+=1﹣2;(2)由勾股定理得,AB =2200A B +=2234+=5,则OC =AC ﹣OA =1,则点C 坐标为(﹣1,0).【点睛】本题考查的是实数的混合运算、勾股定理,掌握实数的混合运算法则、勾股定理是解题的关键. 23.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC 关于x 轴对称的图形△A 1B 1C 1(点A 、C 分布对应A 1、C 1);(2)请在y 轴上找出一点P ,满足线段AP+B 1P 的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.(阅读材料)数学活动课上,李老师准备了若干张如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a ,宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(理解应用)(1)用两种不同的方法计算出大正方形(图2)的面积,从而可以验证一个等式.这个等式为 ; (2)根据(1)题中的等量关系,解决如下问题:①已知:a +b =5,a 2+b 2=11,求ab 的值;②已知:(2019-a ) 2+( a -2018) 2=5,求(2019-a )( a -2018)的值.【答案】(1)()2a b +=222b+b a a +;(2)①7ab =;②()()20192018=2a a --- 【分析】(1)根据图2中,大正方形的面积的两种求法即可得出结论;(2)①根据完全平方公式的变形计算即可;②设2019-=a x ,2018a y -=,则1x y +=,然后完全平方公式的变形计算即可.【详解】解:(1)图2大正方形的边长为a +b ,面积为()2a b +;也可以看作两个正方形和两个长方形构成,其面积为222b+b a a +.∴这个等式为()2a b +=222b+b a a +(2)①∵5a b +=,∴()2=25a b +.∵22+b =11a ,∴7ab =.②设2019-=a x ,2018a y -=,则1x y +=.∵()()222019+2018=5a a --,∴225x y +=.∵()2222x y x xy y +=++, ∴xy =()()22222x y x y +-+=-.即()()20192018=2a a ---.【点睛】此题考查的是完全平方公式的几何意义和应用,掌握正方形面积的求法和完全平方公式的变形是解决此题的关键.25.如图,在平面直角坐标系中,点M 为x 正半轴上一点,过点M 的直线//l y 轴,且直线l 分别与反比例函数()80y x x =>和()0k y x x =>的图像交于P Q 、两点,14POQ S =.()1求k 的值;()2当45QOM ∠=︒时,求直线OQ 的解析式;()3在()2的条件下,若x 轴上有一点N ,使得NOQ 为等腰三角形,请直接写出所有满足条件的N 点的坐标.【答案】(1)k=﹣20;(2)y=﹣x ;(3)点N 的坐标为(50)或(10,0)或(﹣10,0)或(50).【分析】(1)由14POQ POM MOQ SS S +==结合反比例函数k 的几何意义可得1k +4=14,进一步即可求(2)由题意可得MO=MQ ,于是可设点Q (a ,﹣a ),再利用待定系数法解答即可;(3)先求出点Q 的坐标和OQ 的长,然后分三种情况:①若OQ=ON ,可直接写出点N 的坐标;②若QO=QN ,根据等腰三角形的性质解答;③若NO=NQ ,根据两点间的距离解答.【详解】解:(1)∵14POQ POM MOQ SS S +==,S △POM =1842⨯=,S △QOM =12k , ∴12k +4=14,解得20k ,∵k <0,∴k=﹣20;(2)∵45QOM ∠=︒,//l y 轴,∴45QOM OQM ∠=∠=︒,∴MO=MQ ,设点Q (a ,﹣a ),直线OQ 的解析式为y=mx ,把点Q 的坐标代入得:﹣a=ma ,解得:m=﹣1,∴直线OQ 的解析式为y=﹣x ;(3)∵点Q (a ,﹣a )在20y x=-上,∴220a -=-,解得a =,∴点Q 的坐标为(-,则OQ == 若NOQ 为等腰三角形,可分三种情况:①若OQ=ON=,则点N 的坐标是(,0)或(﹣,0);②若QO=QN ,则NO=2OM=N 的坐标是(0);③若NO=NQ ,设点N 坐标为(n ,0),则((222n n =-+,解得n =∴点N 的坐标是(0);综上,满足条件的点N 的坐标为(0)或(0)或(﹣,0)或(0).【点睛】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形的底角等于50︒,则该等腰三角形的顶角度数为()A.50︒B.80︒C.65︒或50︒D.50︒或80︒【答案】B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.2.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【答案】C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.3.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.10【答案】D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=12BA•CD=12×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+12BA=8+12×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17 B.7 C.14 D.13【答案】D【分析】利用勾股定理求出斜边即可.2251213+=,本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.命题“邻补角的和为180︒”的条件是()A.两个角的和是180︒B.和为180︒的两角为邻补角C.两个角是邻补角D.邻补角的和是180︒【答案】C【分析】根据命题“邻补角的和为180︒”的条件是:两个角是邻补角,即可得到答案.【详解】命题“邻补角的和为180︒”的条件是:两个角是邻补角,故选C.【点睛】本题主要考查命题的条件和结论,学会区分命题的条件与结论,是解题的关键.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=1,7.已知当2x =时,分式2x a x b +-的值为0,当1x =时,分式2x a x b +-无意义,则a -b 的值为( ) A .4B .-4C .0D .14 【答案】B【分析】根据题意可得,当2x =时,分子0x a +=,当1x =时,分母20x b -=,从而可以求得a 、b 的值,本题得以解决.【详解】解:当2x =时,分式2x a x b+-的值为0,当1x =时,分式无意义, ∴20210a b +=⎧⎨⨯-=⎩, 解得,22a b =-⎧⎨=⎩, 224a b ∴-=--=-,故选B .【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出a 、b 的值. 8.如图,Rt △ABC 中,CD 是斜边AB 上的高,∠A=30°,BD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm【答案】C 【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD 中求出BC ,再在直角△ABC 中即可求出AB .【详解】解:Rt △ABC 中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD 是斜边AB 上的高,∴∠BCD=30°,∵BD=2cm ,∴BC=2BD=4cm ,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm .【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.【答案】C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22.∴当8为腰时,它的底边长=22-8-8=6,8+6>8,能构成等腰三角形.当8为底时,它的腰长=(22-8)2=7÷,7+7>8,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.10.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是( )A .10%B .20%C .30%D .40%【答案】A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A .【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.二、填空题11.在等腰ABC 中,AB 为腰,AD 为中线,5AB =,3AD =,则ABD △的周长为________.【答案】12或10.1.【分析】如图1,根据等腰三角形的性质得到AD ⊥BC ,由勾股定理得到BD =4,于是得到△ABD 的周长为12,如图2,在等腰△ABC 中,AB =BC ,求得BD =2.1,于是得到△ABD 的周长为10.1.【详解】解:如图1,在等腰△ABC 中,AB =AC ,∵AD 为中线,∴AD ⊥BC ,∴BD 2222534AD ,∴△ABD 的周长=1+4+3=12,如图2,在等腰△ABC 中,AB =BC ,∵AD 为中线,∴BD =12BC =2.1,∴△ABD 的周长=1+3+2.1=10.1,综上所述,△ABD 的周长为12或10.1,故答案为:12或10.1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.12.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14,则该等腰三角形的顶角为_____.【答案】20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC 中,AB =AC ,∴∠B =∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14, ∴∠A :∠B =1:4,∵∠A+∠B+∠C =180°,∴∠A+4∠A+4∠A =180°,即9∠A =180°,∴∠A =20°,故答案为:20°. 【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.13.如图,四边形ABCD 中,90BCD ∠=︒,,4,5ABD DBC AB DC ∠=∠==,则ABD ∆的面积为__________.【答案】10【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解. 【详解】解:如图,过点D作DE⊥AB与点E,∵ABD DBC∠=∠,∴BD平分∠ABC,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD的面积=12×AB×DE=12×4×5=10.故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.14.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.【答案】110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的度数为_______度.【答案】15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF ,EC ⊥CF 知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF 是△BCE 旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE .又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°﹣∠ECF )=12(180°﹣90°)=45°, 故∠EFD=∠DFC ﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____.【答案】1【分析】在Rt △ABC 中,∠C=90°,则AB 2=AC 2+BC 2,根据题目给出的AB ,AC 的长,则根据勾股定理可以求BC 的长.【详解】∵AB=13,AC=12,∠C=90°,∴22221312AB AC -=-=1.故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键. 17.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_______.【答案】13【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.三、解答题18.如图1,某容器外形可看作由,,A B C 三个长方体组成,其中,,A B C 的底面积分别为22225,10,5,cm cm cm C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:3/cm s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.()1在注水过程中,注满A 所用时间为______________s ,再注满B 又用了______________s ; ()2注满整个容器所需时间为_____________s ;()3容器的总高度为____________cm .【答案】(1)10,8;(2)1;(3)1【分析】(1)根据函数图象可直接得出答案;(2)设容器A 的高度为h A cm ,注水速度为vcm 3/s ,根据题意和函数图象可列出一个含有h A 及v 的二元一次方程组,求出v 后即可求出C 的容积,进一步即可求出注满C 的时间,从而可得答案;(3)根据B 、C 的容积可求出B 、C 的高度,进一步即可求出容器的高度.【详解】解:(1)根据函数图象可知,注满A 所用时间为10s ,再注满B 又用了18-10=8(s );故答案为:10,8;(2)设容器A的高度为h A cm,注水速度为vcm3/s,根据题意和函数图象得:102581210AAvhvh⎧=⎪⎪⎨⎪-=⎪⎩,解得:410Ahv=⎧⎨=⎩;设C的容积为ycm3,则有4y=10v+8v+y,将v=10代入计算得y=60,∴注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=1(s).故答案为:1;(3)∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),∵C的容积为60cm3,∴容器C的高度为:60÷5=12(cm),故这个容器的高度是:4+8+12=1(cm);故答案为:1.【点睛】本题考查了函数图象和二元一次方程组的应用,读懂图象提供的信息、弄清题目中各量的关系是解题的关键.19.在ABC∆中,AB AC=,在ABC∆的外部作等边三角形ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若96BAC∠=︒,求BDF∠的度数;(2)如图2,ACB∠的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN DN=,求证:MB MN=.【答案】(1)18BDF ∠=︒;(2)①补全图形,如图所示.见解析;②见解析.【解析】(1)分别求出∠ADF ,∠ADB ,根据∠BDF=∠ADF-∠ADB 计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC ,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN ≌△ADN (SSS ),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC 中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN 即可解决问题;【详解】(1)解:如图1中,在等边三角形ACD ∆中,60CAD ADC ∠=∠=︒,AD AC =.∵E 为AC 的中点, ∴1302ADE ADC ∠=∠=︒, ∵AB AC =,∴AD AB =,∵BAD BAC CAD ∠=∠+∠,96BAC ∠=︒,60CAD ∠=︒,∴156BAD BAC CAD ∠=∠+∠=︒,∴12ADB ABD ∠=∠=︒,∴18BDF ADF ADB ∠=∠-∠=︒.(2)①补全图形,如图所示.②证明:连接AN .∵CM 平分ACB ∠,∴设AOM BCM a ∠=∠=,∵AB AC =,∴2ABC ACB a ∠=∠=.在等边三角形ACD ∆中,∵E 为AC 的中点,∴DN AC ⊥,∴NA NC =,∴NAC NCA a ∠=∠=,∴60DAN a ∠=︒+,在ABN ∆和ADN ∆中,AB AD BN DN AN AN =⎧⎪=⎨⎪=⎩∴()ABN ADN SSS ∆∆≌,∴30ABN ADN ∠=∠=︒,60BAN DAN a ∠=∠=︒+,∴602BAC a ∠=︒+,在ABC ∆中,180BAC ACB ABC ∠+∠+∠=︒∴60222180a a a ︒+++=︒,∴20a =︒,∴10NBC ABC ABN ∠=∠-∠=︒,∴30MNB NBC NCB ∠=∠+∠=︒,∴MNB MBN ∠=∠,∴MB MN =.【点睛】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,AC 和BD 相交于点O ,并且AB DC =,AC DB =.(1)求证:OB OC =.证明思路现在有以下两种:思路一:把OB 和OC 看成两个三角形的边,用三角形全等证明,即用∆_____∆≌______证明; 思路二:把OB 和OC 看成一个三角形的边,用等角对等边证明,即用∠____=∠____证明; (2)选择(1)题中的思路一或思路二证明:OB OC =.。
2018.1)八年级数学教学质量检测题(分150考试时间120分钟满分分)共第Ⅰ卷(选择题60分。
在每小题给出的四个选项60一.选择题(本大题共12小题,每小题5分,满分中,只有一项是符合题目要求的)) 1.4的算术平方根是(2 A.2 B.-2 C.±2 D.±) 2.若a>b,则下列各式中一定成立的是(ba?D. am>bmA.a-3<b-3B.C.-3a<-3b 33?130-,,8-27,,,16)中,无理数的个数为在实数( 3.25 D.4个 B.2个C.3个 A.1个) -3)向上平移4个单位,再向右平移2个单位后的点的坐标为( 4.将直角坐标系中的点(-1,1,1)-1 B.(-5,) C.(-3,1) D.(, A.(3-1)kx?y) 5.若正比例函数的图像经过点(-1,2),则k 的值为(11-D.2B. A.C.-2 22) 6.下列条件中,不能判断△ABC是直角三角形的是(A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:53 D.a:b:c=1:2:B=C.∠A+∠∠C) 角的三角尺摆放在一起,若∠1=20°,则∠2 的度数是( 7.如图,将直尺与含30°D.60°C.50°A.30° B.40°题第8 题图第7)月份的用水量统计图如图所示,关于这组数据,下列说法错误的是至6( 小明家8.14方差是吨5吨 C.平均数是5 D.吨中位数是吨众数是 A.6 B.3( x在平面直角坐标系的第二象限内,x-4,x+3P9.如果点()那么的取值范围在数轴上可表示为)by?kx?0kb?满足),且y随10.一次函数x的增大而减小,则此函数的图像一定不经过(第四象限C.第三象限D. A.第一象限 B.第二象限1my?0x?x???m,则的值被盖住了。
不过仍能求出m ,其中11.关于x,y的方程组y的解是??x?y?3y???)( 的值是1111--D.B. C. A. 244212.如图,已知点A(1,1),B(2,-3),点P为x轴上一点,当|PA-PB|最大值时,点P的坐标为( )15,0)D.((1,0)A.(-1,0)B.(C.,0)42第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分)13.-8的立方根.14.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.题图第16 第15题图14 第题图y?3x?by?ax?3的图像如图所示,其交点为15.一次函数P(-2,和-5),则不等式(3-a)x?b?3?0.的解集是OB的两边在坐标轴上,以它的对角线的正方形OABC16.如图,在平面直角坐标系中,边长为11111......C,以此类推为边作正方形OBB为边做正方形OBBC,再以正方形OBBC的对角线OB3312122222. C坐标是为则正方形OBBC的顶点2017201720172016分)8题,满分74三、解答题(本大题共(本小题满分8分)计算17.118?82?2748-(-32-1)2)(1()32分)18.(本小题满分85x?1?3(x?1)??(1)解不等式组,并求出它的整数解;x?21??x?1?3?2x?y?k?的解互为相反数,求)已知关于x,y的二元一次方程组k的值。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算()32-2a b的结果是( ) A .536a b -B .636a bC .538a b -D .638a b - 【答案】D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:()()()33322323363-2288a ba b a b a b ⨯=-⋅⋅=-⋅⋅=-,故选D .【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.2.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质3.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 33,5C .23,24,25D .0.3,0.4,0.5【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B、(3)2+(5)2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy【答案】D【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.5.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS 【答案】C【详解】试题分析:如图,连接EC、DC.根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.6.如图,△ABC 中,∠C =90°,ED 垂直平分AB ,若AC =12,EC =5,且△ACE 的周长为30,则BE 的长为( )A .5B .10C .12D .13【答案】D 【分析】ED 垂直平分AB ,BE =AE ,在通过△ACE 的周长为30计算即可【详解】解:∵ED 垂直平分AB ,∴BE =AE ,∵AC =12,EC =5,且△ACE 的周长为30,∴12+5+AE =30,∴AE =13,∴BE =AE =13,故选:D .【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.7.若将一副三角板按如图所示的方式放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠;其中正确的有( )A.①②③B.①②④C.②③④D.①②③④【答案】B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,∴∠1=∠3,故本选项正确.②∵∠2=30°,∴∠1=90°-30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故本选项正确.③∵∠2=30°,∴∠3=90°-30°=60°,∵∠B=45°,∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.8.如图,平行四边形ABCD中,AB = 6cm,AD=10 cm,点P在AD 边上以每秒1 cm的速度从点A向点D 运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q 在BC 上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ ,∵P 的速度是1cm/秒,∴两点运动的时间为12÷1=12s ,∴Q 运动的路程为12×4=48cm ,∴在BC 上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t ,∴t=0,此时两点没有运动,∴点Q 以后在BC 上的每次运动都会有PD=QB ,∴在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有3次,故选C .【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P 、D 、Q 、B 四点组成平出四边形的次数就是Q 在BC 上往返运动的次数.9.如图,在ABC ∆中,68BAC ∠=︒,36C ∠=︒,AD 平分BAC ∠,M 、N 分别是AD 、AB 上的动点,当BM MN +最小时,BMN ∠的度数为( )A .34︒B .68︒C .76︒D .90︒【答案】B 【分析】在AC 上截取AE=AN ,先证明△AME ≌△AMN (SAS ),推出ME=MN .当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,可求出∠NME 的度数,从而求出∠BMN 的度数.【详解】如图,在AC 上截取AE=AN ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,AE AN EAM NAM AM AM ⎧⎪∠∠⎨⎪⎩===,∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME ,当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,∴MN ⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B .【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN 进行转化,利用垂线段最短解决问题.10.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.二、填空题11____________________.【答案】4 2【分析】根据算术平方根和立方根的定义进行解答.,=2.故答案为:4;2【点睛】本题主要考查算术平方根和立方根的定义,关键在于熟练掌握算术平方根和立方根的定义,仔细读题,小心易错点.12.若3(23)10x x +--=,则21x +=______.【答案】3或5或-5【分析】由已知3(23)10x x +--=可知(2x-3)x+3=1,所以要分3种情况来求即可. 【详解】解:∵3(23)10x x +--= ∴(2x-3)x+3=1∴当2x-3=1时,x+3取任意值,x=2;当2x-3=-1时,x+3是偶数,x=1;当2x-3≠0且x+3=0时,x=-3∴x 为2或者1或者-3时,∴2x+1的值为:5或者3或者-5故答案为:5,-5,3.【点睛】本题考查了一个代数式的幂等于1时,底数和指数的取值.找到各种符合条件各种情况,不能丢落. 13.点A (﹣3,2)关于y 轴的对称点坐标是_____.【答案】(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A (﹣3,2)关于y 轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如果关于x 的一元二次方程2410x x m --+= 没有实数根,那么m 的取值范围是_____________.【答案】3m <-【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m 的不等式,求出不等式的解集即可得到m 的范围.【详解】解:∵方程x 2-4x-m+1=0没有实数根,∴△=16-4(-m+1)=4m+12<0,解得:m <-1.故答案为:m <-1【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.15.如图,在ABC ∆中,3AB AC ==,30B ∠=,点P 是BC 边上的动点,设BP x =,当ABP ∆为直角三角形时,x 的值是__________.【答案】332或23 【分析】分两种情况讨论:①∠APB=90°,②∠BAP=90°,分别作图利用勾股定理即可解出x .【详解】①当∠APB=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,∴AP=12AB=32 ∴BP=222233AB AP =3=322⎛⎫-- ⎪⎝⎭ ②当∠BAP=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,BP x =∴12AP x =, 222AP AB =BP +即22213=2⎛⎫+ ⎪⎝⎭x x 解得23x =综上所述,x 的值为332或23. 故答案为:332或23. 【点睛】本题考查勾股定理的应用,解题的关键是掌握直角三角形中30度所对的直角边是斜边的一半. 16.如图,直线a b ∥,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠=__°【答案】40【分析】根据等边三角形的性质得到∠BDC=60°,根据平行线的性质求出∠2,根据三角形的外角性质计算,得到答案.【详解】如图,∵△BCD 是等边三角形,∴∠BDC=60°,∵a ∥b ,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2-∠A=1°,故答案为1.【点睛】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.17.计算:11()22--+-=_____.【答案】.【解析】分别根据负指数幂和绝对值进行化简每一项即可解答;【详解】解:11|2222-⎛⎫-+=-+= ⎪⎝⎭;故答案为.【点睛】本题考查实数的运算,负整数指数幂的运算;掌握实数的运算性质,负整数指数幂的运算法则是解题的关键.三、解答题18.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?【答案】(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x 元,则购买一个乙种篮球需要(x+2)元, 根据题意得:20001400220x x =⨯+,解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m 个乙种足球,则购买(50﹣m )个甲种足球,根据题意得:50×(1+10%)(50﹣m )+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.19.如图,△ABC 三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC 关于y 轴对称的图形△A 1B 1C 1,(2)△A 1B 1C 1三个顶点坐标分别为A 1 ,B 1 ,C 1【答案】(1)见解析;(2)()()()3,41,25,1---,,【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【详解】(1)如图所示:(2)由对称性,得A 1()3,4-,B 1()1,2-,C 1()5,1-.【点睛】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.20.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.【答案】(1)3;(2)63761;(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6,AC=BC(3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
2017-2018学年山东省济南市历下区初二(上)期末数学试卷一.选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)4的算术平方根()A.2B.﹣2C.D.±2.(5分)若a>b,则下列各式中一定成立的是()A.a﹣3<b﹣3B.C.﹣3a<﹣3b D.am>bm 3.(5分)在实数﹣,,,,,0中,无理数的个数为()A.1个B.2个C.3个D.4个4.(5分)将直角坐标系中的点(﹣1,﹣3)向上平移4个单位,再向右平移2个单位后的点的坐标为()A.(3,﹣1)B.(﹣5,﹣1)C.(﹣3,1)D.(1,1)5.(5分)已知正比例函数y=kx的图象经过点P(﹣1,2),则k的值是()A.2B.C.﹣2D.﹣6.(5分)下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.(5分)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°8.(5分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是9.(5分)如果点P(x﹣4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.10.(5分)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(5分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣B.C.﹣D.12.(5分)已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA ﹣PB|最大时,点P的坐标为()A.B.C.D.(1,0)二、填空题(本大题共4个小题,每小题4分,共16分)13.(4分)﹣8的立方根是.14.(4分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.15.(4分)一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式(3﹣a)x+b+3≥0的解集是.16.(4分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…则正方形OB2016B2017C2017的顶点B2017坐标是为.三、解答题(本大题共8题,满分74分)17.(8分)计算(1)(2)18.(8分)(1)解不等式组,并求出它的整数解;(2)已知关于x,y的二元一次方程组的解互为相反数,求k的值.19.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF()∴∠1=∠DGF(等量代换)∴∥()∴∠3+∠=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴∥()∴∠A=∠F()20.(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?21.(9分)某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?22.(10分)春节期间,小明一家乘坐飞机前往某市旅游,计划第二天租出租车自驾游.(1)设租车时间为x小时(0<x≤24),租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2与x间的关系式;(2)请你帮助小明计算并选择哪个公司租车合算.23.(11分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.24.(12分)如图,直线AB与坐标轴交与点A(0,6),B(8,0),动点P沿路线O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上,使得AP平分∠OAB时,求此时点P的坐标;(3)当点P在AB上,把线段AB分成1:3的两部分时,求此时点P的坐标.2017-2018学年山东省济南市历下区初二(上)期末数学试卷参考答案与试题解析一.选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)4的算术平方根()A.2B.﹣2C.D.±【解答】解:4的算术平方根2.故选:A.2.(5分)若a>b,则下列各式中一定成立的是()A.a﹣3<b﹣3B.C.﹣3a<﹣3b D.am>bm【解答】解:A、∵a>b,∴a﹣3>b﹣3,故此选项错误;B、∵a>b,∴<,故此选项错误;C、∵a>b,∴﹣3a<﹣3b,故此选项正确;D、∵a>b,∴am>bm(m>0),故此选项错误;故选:C.3.(5分)在实数﹣,,,,,0中,无理数的个数为()A.1个B.2个C.3个D.4个【解答】解:在实数﹣,,,,,0中,无理数有、这2个,故选:B.4.(5分)将直角坐标系中的点(﹣1,﹣3)向上平移4个单位,再向右平移2个单位后的点的坐标为()A.(3,﹣1)B.(﹣5,﹣1)C.(﹣3,1)D.(1,1)【解答】解:根据题意得,﹣3+4=1,﹣1+2=1,故平移后的点的坐标是(1,1).故选:D.5.(5分)已知正比例函数y=kx的图象经过点P(﹣1,2),则k的值是()A.2B.C.﹣2D.﹣【解答】解:把点P(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故选:C.6.(5分)下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.7.(5分)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:A.8.(5分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为.故选:C.9.(5分)如果点P(x﹣4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【解答】解:∵点P(x﹣4,x+3)在平面直角坐标系的第二象限内,∴,解得:﹣3<x<4,在数轴上表示为:,故选:C.10.(5分)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选:A.11.(5分)关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣B.C.﹣D.【解答】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=﹣,故选:A.12.(5分)已知,如图点A(1,1),B(2,﹣3),点P为x轴上一点,当|PA ﹣PB|最大时,点P的坐标为()A.B.C.D.(1,0)【解答】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,1),∴C的坐标为(1,﹣1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=﹣2x+1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA﹣PB|=|PC﹣PB|<BC,∴此时|PA﹣PB|=|PC﹣PB|=BC取得最大值.故选:A.二、填空题(本大题共4个小题,每小题4分,共16分)13.(4分)﹣8的立方根是﹣2.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.14.(4分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是25.【解答】解:如图:(1)AB===25;(2)AB===5;(3)AB===5.所以需要爬行的最短距离是25.15.(4分)一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式(3﹣a)x+b+3≥0的解集是x≥﹣2.【解答】解:∵一次函数y=3x+b和y=ax﹣3的图象交点为P(﹣2,﹣5),∴当x≥﹣2时,3x+b≥ax﹣3,∴不等式(3﹣a)x+b+3≥0的解集为x≥﹣2,故答案为x≥﹣2.16.(4分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…则正方形OB2016B2017C2017的顶点B2017坐标是为(21008,21008).【解答】解:观察,发现:B1(1,1),B2(0,2),B3(﹣2,2),B4(﹣4,0),B5(﹣4,﹣4),B6(0,﹣8),B7(8,﹣8),B8(16,0),B9(16,16),…,(24n,24n)(n为自然数).∴B8n+1∵2017=8×252+1,∴点B2017的坐标为(21008,21008).故答案为:(21008,21008).三、解答题(本大题共8题,满分74分)17.(8分)计算(1)(2)【解答】解:(1)原式=4﹣3+=;(2)原式=+﹣(18﹣6+1)=2+3﹣18+6﹣1=6﹣14.18.(8分)(1)解不等式组,并求出它的整数解;(2)已知关于x,y的二元一次方程组的解互为相反数,求k的值.【解答】解:(1)解不等式①,得x>2,解不等式②,得x≤4,故原不等式组的解集为2<x≤4.故它的整数解为3或4.(2),①+②得:3(x+y)=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.19.(8分)阅读理解,补全证明过程及推理依据.已知:如图,点E在直线DF上,点B在直线AC上,∠1=∠2,∠3=∠4.求证∠A=∠F证明:∵∠1=∠2(已知)∠2=∠DGF(对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°(等量代换)∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠1=∠2(已知)∠2=∠DGF (对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE (同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F (两直线平行,内错角相等);故答案为:对顶角相等;BD;CE;同位角相等,两直线平行;C;两直线平行,同旁内角互补;AC,DF;同旁内角互补,两直线平行;两直线平行,内错角相等.20.(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?【解答】解(1)D类的人数是:20×10%=2(人).(2)众数为5棵,中位数为5棵;(3)==5.3(棵).估计260名学生共植树5.3×260=1378(棵).21.(9分)某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?【解答】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则50×(1+5%)=52.5(吨),150×(1+15%)=172.5(吨),答:农场去年实际生产玉米52.5吨,小麦172.5吨.22.(10分)春节期间,小明一家乘坐飞机前往某市旅游,计划第二天租出租车自驾游.(1)设租车时间为x小时(0<x≤24),租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2与x间的关系式;(2)请你帮助小明计算并选择哪个公司租车合算.【解答】解:(1)根据题意得:y1=80+15x(0<x≤24);y2=30x(0<x≤24).(2)当y2=y1时,有30x=(80+15x),解得:x=.∵30>15,∴当x<时,选择乙公司合算;当x=时,选择两家公司的费用相同;当x >时,选择甲公司合算.23.(11分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=50°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【解答】解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.24.(12分)如图,直线AB与坐标轴交与点A(0,6),B(8,0),动点P沿路线O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上,使得AP平分∠OAB时,求此时点P的坐标;(3)当点P在AB上,把线段AB分成1:3的两部分时,求此时点P的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴,∴,∴直线AB的解析式为y=﹣x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴=,∴,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB﹣OP=8﹣m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB﹣AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8﹣m)2,∴m=3,∴P(3,0);(3)如图2,过点P作PD⊥OB于D,∴PD∥AO,∴△BDP∽△BOA∴,∵点P在AB上,把线段AB分成1:3的两部分时,①当时,即:,∴,∴BD=2,PD=1.5,∴OD=OB﹣BD=6,∴P(6,1.5),②当时,即:,同①的方法得,BE=6,P'E=4.5,∴OE=OB﹣BE=2,∴P'(2,4.5)即:符合题意的点P(2,4.5)或P(6,1.5).附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。