九年级数学下册 第二十七章 相似 27.2 相似三角形 27.2.2 相似三角形的性质课件 新人教版
- 格式:ppt
- 大小:455.00 KB
- 文档页数:13
2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第3课时相似三角形判定定理3同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第3课时相似三角形判定定理3同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第3课时相似三角形判定定理3同步练习(新版)新人教版的全部内容。
课时作业(十)[27。
2.1 第3课时相似三角形判定定理3]一、选择题1.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是60°,80°,则这两个三角形()A.一定不相似 B.不一定相似C.一定相似 D.全等2.下列各组图形可能不相似的是()A.两个等边三角形B.各有一个角是45°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形3.在△ABC和△A1B1C1中,∠A=∠A1=90°,添加下列条件不能判定两个三角形相似的是()A.∠B=∠B1 B.错误!=错误!C。
错误!=错误! D.错误!=错误!4.如图K-10-1,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()图K-10-1A.1对 B.2对 C.3对 D.4对5.如图K-10-2,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()错误!图K-10-2A.4 B.4 错误! C.6 D.4 错误!6.如图K-10-3,在△ABC中,∠A=78°,AB=4,AC=6。
2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第2课时相似三角形判定定理1,2同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第2课时相似三角形判定定理1,2同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定第2课时相似三角形判定定理1,2同步练习(新版)新人教版的全部内容。
课时作业(九)[27。
2.1 第2课时相似三角形判定定理1,2]一、选择题1.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,2,5,乙三角形木框的三边长分别为5,错误!,错误!,则甲、乙两个三角形( )A.一定相似 B.一定不相似C.不一定相似 D.无法判断2.图K-9-2中的四个三角形与图K-9-1中的三角形相似的是()图K-9-1图K-9-23.如图K-9-3,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )图K-9-3A.①和②相似 B.①和③相似C.①和④相似 D.③和④相似4.已知线段AD,BC相交于点O,OB∶OD=3∶1,若OA=12 cm,OC=4 cm,AB=30 cm,则CD的长为()A.5 cm B.10 cm C.45 cm D.90 cm5.如图K-9-4,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为( )图K-9-4A.P1B.P2C.P3D.P46.一个钢筋三角架的三边长分别为20 cm,50 cm,60 cm,现在要做一个和它相似的钢筋三角架,而只有长为30 cm和50 cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有( )链接听课例1归纳总结A.一种 B.两种C.三种 D.四种或四种以上二、填空题7.如图K-9-5,D是△ABC内的一点,连接BD并延长到点E,连接AD,AE,若错误!=错误!=错误!,且∠CAE=29°,则∠BAD=________°。
27.2.2相似三角形的性质
知识点
1.如何灵活应用相似三角形的判定方法
(1)条件中若有平行线,可以采用找角相等证明两个三角形相似
(2)条件中若有一对等角,可再找一对等角或者再找此角所在的两边比对应相等
(3)条件中若有两边比对应相等,可找夹角相等或者第三边的比对应相等
(4)条件中若有一对直角,可考虑再找一对等角或两直角边的比对应相等
(5)条件中若有等腰三角形,可找顶角相等或找一对底角相等或找腰和底的比对应相等
2.相似三角形的性质:对应边的比相等,对应角相等(画出图形,并且用数学符号语言表示)
3.相似三角形对应线段(对应高,对应中线,对应角分线)的比:等于相似比(画出图形,写出已知求证并证明)
4.相似三角形(多边形)的周长比:等于相似比(画出图形,写出已知求证并证明)
5.相似三角形(多边形)的面积比:等于相似比的平方(画出图形,写出已知求证并证明)
练习题
5.
6.。