安徽省合肥八中等高三数学上学期联考试题(二)理 新人教A版
- 格式:doc
- 大小:487.51 KB
- 文档页数:9
考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:高考范围.一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}*2450M x x x =∈--≤N ,{}04N x x =≤≤,则M N ⋂=()A.{0,1,2,3,4}B.{1,2,3,4}C.{}04x x ≤≤ D.{}14x x ≤≤【答案】B 【解析】【分析】解不等式求出集合M ,根据集合的交集运算,即可得答案.【详解】解2450x x --≤,得:15x -≤≤,所以{}{}*151,2,3,4,5M x x =∈-≤≤=N ,{}04N x x =≤≤,所以{1,2,3,4}M N ⋂=.故选:B.2.形如a b c d我们称为“二阶行列式”,规定运算a b ad bc c d=-,若在复平面上的一个点A 对应复数为z ,其中复数z 满足1ii 12i 1z -=+,则点A 在复平面内对应坐标为()A.(3,2)B.(2,3)C.(2,3)- D.(3,2)-【答案】A 【解析】【分析】根据题意结合复数的运算可得32i z =+,结合复数的几何意义分析求解.【详解】由题意可得:()(12i)(1i)3i i -+-=-+=z z ,则()i 3i 32i =++=+z ,所以点A 在复平面内对应坐标为(3,2).故选:A.3.已知动点M 10y --=,则动点M 的轨迹是()A.椭圆B.双曲线C.抛物线D.圆【答案】C 【解析】【分析】根据方程表示的几何意义结合抛物线定义,即可判断出答案.10y --=1y =+,表示动点(,)M x y 到点(0,1)F 和直线1y =-的距离相等,所以动点M 的轨迹是以(0,1)F 为焦点的抛物线,故选:C.4.已知向量(2,)a m = ,(1,1)b m =+- ,且a b ⊥ ,若(2,1)c = ,则a 在c方向上的投影向量的坐标是()A.42,55⎛⎫ ⎪⎝⎭B.11,22⎛⎫- ⎪⎝⎭C.11,22⎛⎫- ⎪⎝⎭D.42,55⎛⎫-- ⎪⎝⎭【答案】A 【解析】【分析】根据垂直向量的坐标运算建立方程求得参数,结合投影的定义,可得答案.【详解】a b ⊥ ,故2(1)0m m +-=,解得2m =-,所以(2,2)a =-,则a 在c方向上的投影向量为a ccc c =⋅⋅42,55⎛⎫= ⎪⎝⎭.故选:A.5.中国国家馆,以城市发展中的中华智慧为主题,表现出了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化精神与气质.如图,现有一个与中国国家馆结构类似的正四棱台1111ABCD A B C D -,上下底面的中心分别为1O 和O ,若1124AB A B ==,160A AB ∠=︒,则正四棱台1111ABCD A B C D -的体积为()A.2023B.2823C.3D.2863【答案】B 【解析】【分析】根据正四棱台性质求出侧棱长,继而求得高,根据棱台的体积公式,即可求得答案.【详解】因为1111ABCD A B C D -是正四棱台,1124AB A B ==,160A AB ∠=︒,侧面以及对角面为等腰梯形,故()1111122cos AB A B AA A AB -==∠,12AO AC ==22AB =111122AO A B ==,所以1OO ==,所以该四棱台的体积为(1111112282(1648)333ABCD D A B C V OO S S =++=⋅=++,故选:B.6.已知数列{}n a 是递增数列,且*n a ∈N ,数列{}n a 的前n 项和为n S ,若1067S =,则5a 的最大值为()A.5 B.6 C.7 D.8【答案】C 【解析】【分析】根据给定条件,确定数列前4项的值,后5项与5a 的差,即可列式计算得解.【详解】数列{}n a 是递增数列,且*n a ∈N ,而数列{}n a 的前10项和为定值,为使5a 取最大,当且仅当前4项值最小,后5项分别与5a 的差最小,则12341,2,3,4a a a a ====,657585951051,2,3,4,5a a a a a a a a a a -=-=-=-=-=,因此10121051061567S a a a a =++⋅⋅⋅+=++=,解得57a =,所以5a 的最大值为7.故选:C7.已知()f x 是定义在R 上的偶函数,函数()g x 满足()()0g x g x +-=,且()f x ,()g x 在(],0-∞单调递减,则()A.()()f g x 在[)0,∞+单调递减B.()()g g x 在(],0-∞单调递减C.()()g f x 在[)0,∞+单调递减D.()()ff x 在(],0-∞单调递减【答案】C 【解析】【分析】利用函数的奇偶性与单调性一一判定选项即可.【详解】由题意知()f x 在[)0,∞+单调递增,()g x 为奇函数,在R 上单调递减.设120x x ≤<,则()()21g x g x <0≤,()()()()21f g x f g x >,所以()()f g x 在[)0,∞+单调递增,故A 错误,设120x x <≤,则()1g x >()2g x ,()()()()12g g x g g x <,()()g g x 在(],0-∞单调递增,故B 错误;设120x x ≤<,则()1f x ()2f x <,()()()()12g f x g f x >,所以()()g f x 在[)0,∞+单调递减,故C 正确;取()21f x x =-,则()()()2211ff x x=--,()()00f f =,()()11f f -=-,此时()()f f x 在(],0-∞不单调递减,故D 错误.故选:C.8.已知点P 在直线60x y +-=上,过点P 作圆22:4O x y +=的两条切线,切点分别为A ,B ,点M 在圆2214:133C x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭上,则点M 到直线AB 距离的最大值为()A.B.1+ C. D.1+【答案】B 【解析】【分析】结合点P 在直线60x y +-=上,求出切点弦AB 的方程,确定其所经过的定点,确定当CQ AB ⊥时,C 到直线AB 的距离最大,M 到直线AB 的距离也最大,即可求得答案.【详解】根据题意,设点(,)P m n ,则6m n +=,过点P 作圆22:4O x y +=的切线,切点分别为A ,B ,则有OA ⊥PA ,OB PB ⊥,则点A ,B 在以OP 为直径的圆上,以OP 为直径的圆的圆心为,22m n D ⎛⎫⎪⎝⎭,半径12r OP =2=,则其方程为2222224m n m n x y +⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,变形可得220x y mx ny +--=,联立22224x y x y mx ny ⎧+=⎨+--=⎩,可得圆D 和圆O 公共弦AB 为:40mx ny +-=,又由6m n +=,则有mx +()640m y --=,变形可得()640m x y y -+-=,则有0640x y y -=⎧⎨-=⎩,可解得23x y ==,故直线AB 恒过定点22,33Q ⎛⎫ ⎪⎝⎭,点M 在圆2214:133C x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭上,14,33C ⎛⎫-- ⎪⎝⎭,当CQ AB ⊥时,C 到直线AB 的距离最大,M 到直线AB 的距离也最大,则点M 到直线AB 距离的最大值为111CQ +==.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.一组数据2、3、3、4、5、7、7、8、9、11的第80百分位数为8.5B.在回归分析中,可用决定系数2R 判断模型拟合效果,2R 越小,模型的拟合效果越好C.若变量ξ服从()217,N σ,(1718)0.4P ξ<≤=,则(18)0.1P ξ>=D.将总体划分为2层,通过分层抽样,得到两层的样本平均数和样本方差分别为1x ,2x 和21s ,22s ,若12x x =,则总体方差()2221212s s s =+【答案】AC 【解析】【分析】对于A ,根据百分位数的计算方程,可得答案;对于B ,结合拟合的定义,可得答案;对于C ,根据正态分布的对称性,可得答案;对于D ,利用方差的计算,可得答案.【详解】对于A ,数据2、3、3、4、5、7、7,8、9、11共10个数,因为1080%8⨯=,因此,这组数据的第80百分位数为898.52+=,故A 正确,对于B ,在回归分析中,可用决定系数2R 的值判断模型拟合效果,2R 越大,模型的拟合效果越好,故B 错误;对于C ,因为变量ξ服从()217,N σ,(1718)0.4P ξ<≤=,则(18)0.5(1718)0.50.40.1P P ξξ>=-<≤=-=,故C 正确;对于D ,不妨设两层的样本容量分别为m ,n ,总样本平均数为x ,则()()222221212m n s s x x s x x m n m n ⎡⎤⎡⎤=+-++-⎢⎥⎢⎥⎣⎦⎣⎦++,易知只有当m n =,12x x =时,有()2221212s s s =+,故D 错误.故选:AC.10.已知函数π()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,且(0)1f =,若()g x =()f x a +为奇函数,则a 可能取值为()A.π3B.5π12C.π6D.π12-【答案】BD 【解析】【分析】根据图像有2A =,根据(0)2sin 1f ϕ==及π2ϕ<,确定ϕ值,再根据图像确定2π11π12T ω=>,结合11π012f ⎛⎫= ⎪⎝⎭求出ω,确定()f x 解析式,又要使()()g x f x a =+为奇函数,则(0)()0g f a ==,求a 值.【详解】由图象可得2A =,再根据(0)2sin 1f ϕ==,π2ϕ<,故π6ϕ=,又2π11π12T ω=>,则24011ω<<,又11π012f ⎛⎫= ⎪⎝⎭,所以11ππ2π126k ω⨯+=,Z k ∈,得2ω=,故π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭;要使()()g x f x a =+为奇函数,则(0)()0g f a ==,所以π2π6a k +=,Z k ∈,得ππ212k a =-,当0k =时12πa =-,当1k =时5π12a =,所以B 、D 符合,其它选项不符合.故选:BD11.若函数()e e x x f x a b cx -=++,既有极大值点又有极小值点,则()A.0ac < B.0bc < C.()0a b c +< D.240c ab +>【答案】ACD【解析】【分析】根据极值定义,求导整理方程,结合一元方程方程的性质,可得答案.【详解】由题知方程2e e ()e e 0ex x xxxa c bf x a b c -+-'=-+==,2e e 0x x a c b +-=有两不等实根1x ,2x ,令e x t =,0t >,则方程20at ct b +-=有两个不等正实根1t ,2t ,其中11e x t =,22e xt =,212120Δ4000a c abc t t a bt t a ≠⎧⎪=+>⎪⎪⎨+=->⎪⎪=->⎪⎩,24000c ab ac ab ⎧+>⎪<⎨⎪<⎩,()00bc a b c ab ac >⎧⎨+=+<⎩,故ACD 正确,B 错误.故选:ACD.12.已知一圆锥,其母线长为l 且与底面所成的角为60︒,下列空间几何体可以被整体放入该圆锥的是()1.73≈, 1.41≈)A.一个半径为0.28l 的球B.一个半径为0.28l 与一个半径为0.09l 的球C.一个边长为0.45l 且可以自由旋转的正四面体D.一个底面在圆锥底面上,体积为30.04l π的圆柱【答案】ABC 【解析】【分析】作出相应的空间图形及轴截面,再对各个选项逐一分析判断即可得出结果.【详解】如图1,球1O 与圆锥侧面、底面均相切,球2O 与球1O 、圆锥侧面相切,作圆锥的轴截面如图2,设小球1Q 半径为1r ,球1Q 与BC 边相切于点E ,60CBA ∠=︒,30DCB ∠=︒,1O E BC ⊥,所以112CO r =,132CD r ==,130.286r l ∴=>,故A 正确;设小球2O 半径为2r ,同理可知21130.09318r r l l ==>,故B 正确;将棱长为a 的正四面体放置到正方体中,如图则正四面体的外接球即正方体的外接球,易知正方体的外接球球心在体对角线的中点O 处,半径为1B D 的一半长,易知,2BC a =,所以12B D a =,故棱长为a 的正四面体外接球半径为4a ,则46a ≤则边长3a l ≤,20.453l l >,故C 正确;如图3,一圆柱内接圆锥,作圆锥的轴截面如图4,设圆柱底面半径为3r ,高为h ,因为3r CD h DB CD -=,又易知,13,22BD l CD ==,代入3r CD h DB CD -=,整理得到332h l =-,所以圆柱的体积()()2223333333332π2ππ2V r h l r l r r r ⎛⎫==⋅=- ⎪ ⎪⎝⎭,令()()23333π2602V r lr r '=-=,得30r =或313r l =,则体积在10,3l ⎛⎫ ⎪⎝⎭上单调递增,在11,32l l ⎛⎫⎪⎝⎭上单调递减,()333max π30.044π5V l l r =∴<,故D 错误.图1图2图3图4故选:ABC.【点睛】关键点晴,本题的关键在于将空间问题转化成平面问题来处理.三、填空题:共4小题,每小题5分,共20分.13.二项式(2)(1)n x x -+的展开式中,所有项系数和为256-,则2x 的系数为______(用数字作答).【答案】48-【解析】【分析】利用赋值法求得n ,再根据二项式展开式的通项公式求得正确答案.【详解】令1x =可得二项式(2)(1)nx x -+的所有项系数和为2256n -=-,所以8n =.二项式8(1)x +的展开式的通项公式为18C rrr x T +=⋅,0r =,1, (8)所以(2)(1)nx x -+的展开式中,2x 的系数为1288C 2C -=48-.故答案为:48-14.随机变量ξ有3个不同的取值,且其分布列如下:ξ4sin α4cos α2sin 2αP1414a则()E ξ的最小值为______.【答案】54-【解析】【分析】根据分布列性质求得a 的值,即可求得()E ξ的表达式,结合三角换元以及二次函数性质,即可求得答案.【详解】依题意知11144a ++=,则12a =,则()sin cos sin 2E ξααα=++,设πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣,故22sin 2(sin cos )11t ααα=+-=-,所以2215()124E t t t ξ⎛⎫=+-=+- ⎪⎝⎭,当12t ⎡=-∈⎣时,()E ξ取最小值54-,故答案为:54-15.已知双曲线2222:1(0,0)x y E a b a b-=>>的左,右焦点分别为1F ,2F ,过左焦点1F 作直线l 与双曲线交于A ,B 两点(B 在第一象限),若线段AB 的中垂线经过点2F ,且点2F 到直线l 的距离为,则双曲线的离心率为______.【答案】2【解析】【分析】根据题意,由双曲线的定义可得4AB a =,再由勾股定理列出方程即可得到,a c 关系,代入离心率计算公式,即可得到结果.【详解】设双曲线E 的半焦距为c ,0c >,22=BF AF ,根据题意得122BF BF a -=,又21AF AF -212BF AF a =-=,114AB BF AF a ∴=-=,设AB 的中点为C ,在2ACF △中,2CF =,2AC a =,23AF a ∴=,则1AF a =,13CF a =,根据2221212CF CF F F +=,可知2(3)a +)22(2)c =,142c a e =∴=.故答案为:142.16.已知函数22ln e ()21e xa f x a x x x=+-+,(0)a >有唯一零点,则a 的值为______.【答案】2【解析】【分析】设2e (0)e x a t t x=>,转化为方程ln e t t =有唯一解e t =,即2ln 2a x x =-有唯一解,设ln ()22g x a x x =-+,利用导数判断单调性并求出最小值可得答案.【详解】由题意知224e 21e ln x a x x x+=-有唯一解,0x >,故2222e e 21ln e ln e ln e e l ln n x x x a a a x a x x x x=--=--=,设2e (0)e x a t t x=>,即ln e t t =,设(e n )l t F t t =-,则11()e F t t '=-,当(0,e)t ∈时,()0F t '<,函数()F t 单调递减,当(e,)t ∈+∞时,()0F t '>,函数()F t 单调递增;min ()(e)0F t F ==,故方程ln e t t =有唯一解e t =,即2e e e x a x=有唯一解,即2ln 2a x x =-有唯一解,设ln ()22g x a x x =-+,()2a g x x '=-,0a >,当0,2a x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减;当x 趋近于0和x 趋近于+∞时,()g x 趋近于-∞,故只需满足ln 2022a a g a a ⎛⎫=-+=⎪⎝⎭,设()ln 22a h a a a =-+,()ln 2a h a '=,当(0,2)a ∈时,()0h a '<,函数()h a 单调递减,当(2,)a ∈+∞时,()0'>h a ,函数()h a 单调递增,故min ()(2)0h a h ==,故2a =成立.【点睛】关键点点睛:本题的解题关键点是构造函数,利用导数判断单调性四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 的前n 项和为n S,且满足1n a =+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足12n n n n b a a a +⋅=+,求数列{}n b 的前n 和n T .【答案】(1)21n a n =-,*N n ∈(2)2221n n n T n+=+【解析】【分析】(1)根据数列递推式求出首项,得出当2n ≥时,()211114n n S a --=+,和()2114n n S a =+相减并化简可得12n n a a --=,即可求得答案;(2)利用(1)的结果可得12n n n n b a a a +⋅=+的表达式,利用等差数列的前n 项和公式以及裂项法求和,即可求得答案.【小问1详解】由1n a =+得()2114n n S a =+,则()211114a a =+,解得11a =,当2n ≥时,()211114n n S a --=+,所以()()2211111144n n n n n a S S a a --=-=+-+,整理得()()()1112n n n n n n a a a a a a ----+=+,因为{}n a 是正项数列,所以10n n a a ->+,所以12n n a a --=,所以{}n a 是首项为1,公差为2的等差数列,所以12(1)21n a n n =+-=-,*N n ∈.【小问2详解】由(1)可得,21n a n =-,所以122112121(21)(21)2121n n n n b a n n a a n n n n +=+=-+=-+--+-+⋅,所以(121)111111213352121n n n T n n +-⎛⎫=+-+-+⋅⋅⋅+- ⎪-+⎝⎭21121n n =+-+2221n n n =++.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22b a ac -=.(1)求证:2B A =;(2)如图:点D 在线段AC 上,且12AD BD CD ==,求cos C 的值.【答案】(1)证明见解析(2)368【解析】【分析】(1)在ABC 中根据余弦定理、正弦定理及三角公式化简可得;(2)由第一问在BCD △中结合正弦定理可得2a c =,在ABC 中根据余弦定理可求得结果.【小问1详解】证明:由余弦定理得2222cos a c b ac B +-=,又22b a ac -=,可得22cos c ac ac B -=,即2cos c a a B -=,由正弦定理得sin sin 2sin cos C A A B -=,而sin sin()sin cos cos sin C A B A B A B =+=+,代入上式,可得sin sin si )cos co i s n s n(A A B A B B A =-=-,所以πA B A +-=(舍)或A B A =-,即2B A =.【小问2详解】因为2B A =,AD BD =,所以=A ABD CBD ∠∠=∠,在BCD △中,由正弦定理得sin sin sin sin CD CBD A a BD C C c∠∠===∠∠,而12BD CD =,可得2a c =,代入22b a ac -=,可得=b ,由余弦定理得222222(2)co 2s 8c c a b c C ab +-+-===.19.如图,在四棱锥P ABCD -中,棱PA ⊥平面ABCD ,底面四边形ABCD 是矩形,6PA AD ==,点N 为棱PD 的中点,点E 在棱AD 上,3AD AE =.(1)求证:PC AN ⊥;(2)已知平面PAB 与平面PCD 的交线l 与直线BE 所成角的正切值为12,求二面角N BE D --的余弦值.【答案】(1)证明见解析(2)27【解析】【分析】(1)利用线线垂直证线面垂直,再由线面垂直的性质证线线垂直即可;(2)建立合适的空间直角坐标系,利用空间向量求二面角即可.【小问1详解】因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,又因为四边形ABCD 是矩形,所以AD CD ⊥,因为,PA AD A PA CD ⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,因为AN ⊂平面PAD ,所以CD AN ⊥.因为N 为PD 中点,PA AD =,所以PD AN ⊥,因为PD CD D ⋂=,所以AN ⊥平面PCD ,因为PC ⊂平面PCD ,所以AN PC ⊥.【小问2详解】在矩形ABCD 中,//AB CD ,CD ⊂平面PCD ,AB ⊂/平面PCD ,所以//AB 平面PCD .又AB ⊂平面PAB ,平面PAB ⋂平面PCD l =,所以//AB l .所以l 与直线BE 所成角即为ABE ∠.在Rt ABE △中,123AE AD ==,AB AE ⊥,所以4tan A AE A E B B ∠==.以{},,AB AD AP 为正交基底建立如图所示的空间直角坐标系,则(4,0,0)B ,(0,2,0)E ,(0,3,3)N 所以(4,2,0)BE =- ,(4,3,3)BN =-.设平面BNE 的法向量为(,,)m x y z = ,则4204330m BE x y m BN x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,取23,6z x y =⇒=-=-,可得(3,6,2)m =-- .又(0,0,6)AP = 为平面BDE 的一个法向量,所以122cos ,67m 7m AP AP m AP ⋅===⨯ .由图可知,二面角N BE D --为锐角,所以二面角N BE D --的余弦值为27.20.人工智能(AI )是一门极富挑战性的科学,自诞生以来,理论和技术日益成熟.某公司研究了一款答题机器人,参与一场答题挑战.若开始基础分值为m (*m ∈N )分,每轮答2题,都答对得1分,仅答对1题得0分,都答错得1-分.若该答题机器人答对每道题的概率均为12,每轮答题相互独立,每轮结束后机器人累计得分为X ,当2X m =时,答题结束,机器人挑战成功,当X 0=时,答题也结束,机器人挑战失败.(1)当3m =时,求机器人第一轮答题后累计得分X 的分布列与数学期望;(2)当4m =时,求机器人在第6轮答题结束且挑战成功的概率.【答案】(1)分布列见解析,()3E X =(2)111024【解析】【分析】(1)利用离散型随机变量的分布列与期望公式计算即可;(2)根据超几何分布分类讨论计算即可.【小问1详解】当3m =时,第一轮答题后累计得分X 所有取值为4,3,2,根据题意可知:()1114224P X ==⨯=,()11132222P X ==⨯⨯=,()1112224P X ==⨯=,所以第一轮答题后累计得分X 的分布列为:X 432()P X 141214所以()1114323424E X =⨯+⨯+⨯=.【小问2详解】当4m =时,设“第六轮答题后,答题结束且挑战成功”为事件A ,此时情况有2种,分别为:情况①:前5轮答题中,得1分的有3轮,得0分的有2轮,第6轮得1分;情况②:前4轮答题中,得1分的有3轮,得1-分的有1轮,第5.6轮都得1分;所以()3232335411111111C C 4244441024P A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.21.如图,已知椭圆2222:1(0)x y M a b a b+=>>的左右顶点分别为A 、B ,P 是椭圆M 上异于A 、B 的动点,满足14PA PB k k ⋅=-,当P 为上顶点时,ABP 的面积为2.(1)求椭圆M 的方程;(2)若直线AP 交直线:4l x =于C 点,直线CB 交椭圆于Q 点,求证:直线PQ 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)设椭圆上顶点0(0,)P b ,根据题意求出,a b 即可得解;(2)分直线PQ 斜率是否存在,设()11,P x y ,()22,Q x y ,(4,)C t ,先根据斜率不存在求出定点M ,方法1,联立直线AC 与椭圆方程,求出,P Q 两点的坐标,然后证明,,P M Q 三点共线即可.方法2,当直线PQ 斜率存在时,设直线PQ 为y kx m =+,联立方程,利用韦达定理求出12x x +,12x x ,再结合已知,求出,k m 的关系,即可得出结论.方法3,易得3BQ PA k k =,根据椭圆的对称性可得3PB QA k k =,再利用斜率公式构造对偶式,进而可求出PQ 的方程,从而可得出结论.【小问1详解】设椭圆上顶点0(0,)P b ,则002214P A P B b b b k k a a a =⋅==--⋅-,又01222ABP S ab =⨯=△,两式联立可解得2a =,1b =,所以椭圆M 的方程为2214x y +=;【小问2详解】设()11,P x y ,()22,Q x y ,(4,)C t ,当直线PQ 斜率不存在时,12x x =,12y y =-则直线:(2)6t AC y x =+,:(2)2t BC y x =-所以()()11112,622t y x t y x ⎧=+⎪⎪⎨⎪-=-⎪⎩,可解得11x =,此时直线PQ 方程为1x =,过定点(1,0);下面证明斜率存在时,直线PQ 也经过(1,0),法1(设而求点):联立直线AC 与椭圆方程:22(2),61,4t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩整理得()2222944360t x t x t +++-=,()()42216494360t t t ∆=-+->,由韦达定理有212429t x t --=+,即2121829t x t -=+,所以()1126269t t y x t =+=+,所以P 点坐标为2221826,99t t t t ⎛⎫- ⎪++⎝⎭,同理可得Q 点坐标为222222,11t t t t ⎛⎫-- ⎪++⎝⎭,设点(1,0)M ,则222936,99t t MP t t ⎛⎫-= ⎪++⎝⎭ ,22232,11t t MQ t t ⎛⎫--= ⎪++⎝⎭因为2222229326309191t t t t t t t t ---⋅-=++++,所以//MP MQ ,所以直线PQ 过定点(1,0)M ,证毕.法2(直曲联立):当直线PQ 斜率存在时,设直线PQ 为y kx m =+,由6PA t k =,2BQ t k =,可知3BQ PA k k =,而14PA PB k k ⋅=-,可得34BQ PB k k =-⋅,即()()21122112322224y y y y x x x x ⋅==-----,整理得()121212346120x x y y x x +-++=①,联立直线PQ 与椭圆方程:2214y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222418440k x kmx m +++-=,所以()()()222222644414416410k m k m k m∆=-+-=+->,则2241k m +>,由韦达定理有122841km x x k +=-+,21224441m x x k -=+②,所以()()()2222121212122441m k y y kx m kx m k x x km x x m k -=++=+++=+⋅③,将②③代入①得2222224448346120414141m m k km k k k --⨯+⨯+⨯+=+++,可得(2)()0k m k m ++=,所以2m k =-或m k =-,当2m k =-时,直线PQ 为2y kx k =-,经过(2,0)B ,舍去,所以m k =-,此时直线PQ 为y kx k =-,经过定点(1,0),直线PQ 过定点得证.法3(构造对偶式):由6PA t k =,2BQ t k =,可知3BQ PA k k =,又14PA PB k k ⋅=-,由椭圆对称性易知14QA QB k k =-⋅,所以3PB QA k k =,可得21211221121221121212322362326322y y x x x y x y y y y y x y x y y y x x ⎧=⨯⎪-+-=--⎧⎪⇒⎨⎨-=--⎩⎪=⨯⎪-+⎩①②,由①②可得122121x y x y y y =--,直线PQ 为()121112y y y y x x x x --=--,令0y =得,1221211x y x y x y y -==-,所以直线PQ 过定点(1,0),证毕.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.22.已知函数()e e x x f x a -=-,(R a ∈).(1)若()f x 为偶函数,求此时()f x 在点()()0,0f 处的切线方程;(2)设函数()()(1)g x f x a x =-+,且存在12,x x 分别为()g x 的极大值点和极小值点.(ⅰ)求实数a 的取值范围;(ⅱ)若(0,1)a ∈,且()()120g x kg x +>,求实数k 的取值范围.【答案】(1)20y +=(2)(i )(0,1)(1,)⋃+∞;(ii )(,1]-∞-【解析】【分析】(1)根据偶函数的定义,求出a 的值,然后利用导数求切线方程.(2)(ⅰ)对()g x 进行求导,将()g x 既存在极大值,又存在极小值转化成()0g x =必有两个不等的实数根,利用导数得到()g x 的单调性和极值,进而即可求解;(ⅱ)对()g x 进行求导,利用导数分析()g x 的极值,将()()120g x kg x +>恒成立转化成11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,构造函数,利用导数分类讨论求解即【小问1详解】()f x 为偶函数,有()e e ()e e x x x x f x a f x a ---=-==-,则1a =-,所以()e e x x f x -=--,()e ex x f x -'=-+所以(0)2f =-,(0)0f '=所以()f x 在点(0,(0))f 处的切线方程为20y +=.【小问2详解】(ⅰ)()()(1)e e (1)x x g x f x a x a a x -=-+=--+,()()2e 1e 1e (1)e 1()e e (1)e e x x x x x x x x a a a g x a a ----++'=+-+==,因为函数()g x 既存在极大值,又存在极小值,则()0g x '=必有两个不等的实根,则0a >,令()0g x '=可得0x =或ln x a =-,所以ln 0a -≠,解得0a >且1a ≠.令{}min 0ln ,m a =-,{}max 0ln ,n a =-,则有:x (,)m -∞m (,)m n n (,)n +∞()g x '+0-0+()g x 极大值 极小值可知()g x 分别在x m =和x n =取得极大值和极小值,符合题意.综上,实数a 的取值范围是(0,1)(1,)⋃+∞.(ⅱ)由(0,1)a ∈,可得ln 0a ->,所以10x =,2ln x a =-,()11g x a =-,()21(1ln )g x a a a =-++且有()()210g x g x <<,由题意可得[]11(1)ln 0a k a a a -+-++>对(0,1)a ∀∈恒成立,由于此时()()210g x g x <<,则0k <,所以()()()1ln 11k a a k a +>--,则11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,令ln 11()11x h x x k x -⎛⎫=--⋅ ⎪+⎝⎭,其中01x <<,则2222212(1)211112()1(1)(1)(1)x x x x k k h x x k x x x x x ⎛⎫+--++ ⎪⎛⎫⎝⎭'=--⋅== ⎪+++⎝⎭,令2210x x k ++=,则()2224144k k k -∆=-=.①当0∆≤,即1k ≤-时,()0h x '≥,()h x 在(0,1)上是严格增函数,所以()(1)0h x h <=,即11ln 11a a k a -⎛⎫<-⋅ ⎪+⎝⎭,符合题意;(2)当0∆>,即10k -<<时,设方程2210x x k ++=的两根分别为3x ,4x 且34x x <,则3420x x k +=->,341x x =,则3401x x <<<,则当31x x <<时,()0h x '<,则()h x 在()3,1x 上单调递减,所以当31x x <<时,()(1)0h x h >=,即11ln 11a a k a -⎛⎫>-⋅ ⎪+⎝⎭,不合题意.综上所述,k 的取值范围是(,1]-∞-.。
数学文试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
本卷满分150分,考试时间:1 20分钟。
所有答案均在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷 选择题(共50分)一、选择题(本题包括10小题,每小题5分,共50分。
每小题只有一个选项符合题意。
请把正确答案填涂在答题卷的相应位置) 1.已知平面向量(1,2),(2,),a b m a b ==-且,则m= ( )A .1B .-1C . 4D .-4 2.16cos()3π-=( )A . -12B .C .12D3. 已知集合{2,1,0,1,2},{|28,},x M N x x x R =--=<<∈则M N =( )A . {-1,0,1}B .{0,1}C . {0,1,2}D .{1,2}4.数列{}n a 是首项a 1=4的等比数列,且4a 1,a 5,-2a 3成等差数列,则其公比为( )A . 1B . -1C .1或-1D5.已知x ,y ,z 均为复数,则2x z y +>是20x z y +->成立的什么条件 ( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D . 既不充分也不必要条件 6.若0a b >>,则下列不等式中总成立的是 ( )A . 11a b b a +>+ B .11a b a b +>+C .11b b a a +>+D .22a b a a b b+>+7. 将函数y=sin2x 的图象向左平移4π个单位,再向上平移1个单位,所得图象的函数解析式是( )A . y=cos2xB . y=2cos 2x C .1sin(2)4y x π=++D .22sin y x =8.已知数列{}n a 的通项公式是2123201421sin(),2n n a n a a a a π+=++++=则( )A .201320142⨯B .201420152⨯C .201320132⨯D . 201420142⨯9.已知定义在R 上的函数()f x 满足()(4)f x f x =--,当2x ≥- 时,()35xf x =- 若函数()f x 在区间(a ,a+1)()a Z ∈上有零点,则a= ( )A . 2或-6B . 1或-7C . 2或-7D . 1或-610.已知函数2()1f x x mx m nx =++,以下四个命题中正确的个数有几个( ) ①当0m >时,函数()y f x =有零点 ②若函数()y f x =有零点,则0m > ③存在0m <,函数()y f x =有唯一的零点 ④若函数()y f x =有唯一的零点,则1m ≥-A . 1个B . 2个C . 3个D . 4个 第Ⅱ卷 非选择题(共100分)二、填空题(本大题包括5小题,每小题5分,共25分。
考试说明: 1.本卷分第I 卷(选择题)和第II 卷(非选择题),试题分值150分,考试时间:120分钟。
2.所有答案均要答在答题卷上,否则无效。
考试结束后只交答题卷。
第I 卷 选择题(共50分)一、选择题(本大题包括10小题,每小题5分,共50分.在每小题给出的四个选项中只有一项是符合题意的,请把正确答案填涂在答题卡的相应位置.) 1.函数11y x nx=的定义筠 A .(0,+∞.) B .(0,)(,)e e +∞ C .(0,1)(1,)+∞ D .(,)e +∞2.已知sin1sin 2sin 3,,123a b c ===,则a ,b,c 的大小关系是A .a b c >>B .a>c>bC .c>a>bD .c>b>a3.下列命题中的假命题是 A . 1,20x x R -∀∈>B .*2,(1)0x N x ∀∈-> C .,11x R gx ∃∈<D .,tan 2x R x ∃∈=4.函数()3xf x e x =+-的零点所在的区间为 A .(一l ,0)B .(0,12) C .(12,1) D .(1,12) 5.“y= ax 2—2x +1”在区间(,1]-∞上是单调递减函数的充分而不必要条件是 A .01a ≤≤ B .01a <≤ C .11a -<≤ D .a>l 6.函数y= 2sin2x 的图象与直线y=a 相交,则其相邻两个交点之间的最大距离为 A .2πB .πC .32πD . 2π7.将0,l ,1,2,3这五个数字排成的五位数中,3不在个位的个数为 A .6 B .13 C .16 D .398.函数()1||(0)f x x n x x =≠的大致图像是9.已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x k ≤的解集为[m ,m+6],则实数k 的值是 A .3 B .6C .9D .1210.已知定义在R 上的函数()y f x =满足条件3()()2f x f x +=-,且函数3()4y f x =-是奇函数,给出以下 ①函数()f x 是周期函数; ②函数()f x 的图象关于点(一34)对称; ③函数()f x 是偶函数:④函数()f x 在R 上是单调函数.其中真命题的个数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题共100分)二、填空题:本题5小题,每小题5分,共25分.请把正确答案写在答题卷上. 11.已知集合2{|10},{|20}A x mx B x Z x x =-==∈+≤,若AB A =,则满足条件的实数m 的值为____ 。
2024~2025学年(上)安徽高三8月份联考数学(答案在最后)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足23z z +=-(i 为虚数单位),则z =().A.1+B.1C.1-D.1-2.已知向量()2,1a = ,()2,b m m =- ,若a b ∥ ,则m =().A.4- B.2- C.2D.43.在等比数列{}n a 中,若23138a a a =,则48a a =().A.2B. C.4D.84.设a ,b 是两条不同的直线,α,β是两个不同的平面,若a α⊂,b β⊂,αβ⊥,则“a β⊥”是“a b ⊥r r”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知集合()(){},ln 1A x y y x ==+,(){}22,1B x y xy =+=,则A B ⋂中的元素个数为().A.1B.2C.3D.46.22π7πsinsin 1212-=().A.2B.12C.12-D.2-7.某公司进行招聘,甲、乙、丙被录取的概率分别为23,45,34,且他们是否被录取互不影响,若甲、乙、丙三人中恰有两人被录取,则甲被录取的概率为().A.1013B.23 C.713D.7308.已知双曲线()222:10y C x b b-=>的左焦点为F ,过坐标原点O 作C 的一条渐近线的垂线l ,直线l 与C交于A ,B 两点,若ABF △的面积为3,则C 的离心率为().A.3B.C.2D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆22:416C x y +=的左、右焦点分别为1F ,2F ,P 是C 上的任意一点,则()A.C 的离心率为12B.128PF PF +=C.1PF 的最大值为4+D.使12F PF ∠为直角的点P 有4个10.若01a b <<<,则().A.a b +>+B.cos sin a b >C .log a bb a>D.ln ln a b a b-<-11.在四棱锥S ABCD -中,已知底面ABCD 为梯形,2222AD AB BC CD SD =====,AS =,则下列说法正确的是().A.四边形ABCD 的面积为4B.棱SB 的长度可能为C.若SD AB ⊥,则点A 到平面SBD 的距离为1D.若SD AB ⊥,则四棱锥S ABCD -外接球的半径为2三、填空题:本题共3小题,每小题5分,共15分.12.甲、乙、丙、丁4名老师分到3所不同的乡村学校支教,若每名老师只去一所学校,每所学校都有老师去,且甲不和别的老师去同一所学校,则不同的支教分派方案有__________种.13.已知函数()()cos f x x ωϕ=+在区间24,33⎡⎤-⎢⎥⎣⎦上单调递增,且42233f f ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,则()2f =__________.14.在平面直角坐标系xOy 中,M 为曲线ln xy x=上一点且位于第一象限,将线段OM 绕x 轴旋转一周,得到一个圆锥的侧面,再将其展开成扇形,则该扇形的圆心角的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且平面PAD ⊥平面ABCD ,PD AD ⊥.(1)证明:⊥BC 平面PCD ;(2)若4PA =,E 为棱PC 的中点,求直线PC 与平面ABE 所成角的正弦值.16.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin sin BC A B=+.(1)求C ;(2)若32a b c +=且3a =,求ABC V 的外接圆半径.17.已知抛物线()2:20E y px p =>的焦点为F ,过点F 且互相垂直的两条动直线分别与E 交于点A ,B和点C ,D ,当AB CD =时,8AB =.(1)求E 的方程;(2)设线段AB ,CD 的中点分别为M ,N ,若直线AB 的斜率为正,且18FN FM=,求直线AB 和CD 的方程.18.无人驾驶被视为推动社会进步和改善生活质量的重要工具,但其安全性和对劳动就业的影响也受到人们的质疑.为了解某大学的学生对无人驾驶的态度,随机调查了该校96名大学生,调查结果如下表所示:对无人驾驶的态度支持中立反对频数483216用样本的频率分布估计该校每名学生对无人驾驶态度的概率分布,且学生的态度相互独立.为衡量学生对无人驾驶的支持程度,每名支持者得5分,每名中立者得3分,每名反对者得1分.(1)从该校任选2名学生,求他们的得分不相同的概率.(2)从该校任选3名学生,求他们的得分之和为7的概率.(3)从该校任选n 名学生,其中得分为5的学生人数为X ,若30.944nn P X ⎛⎫≤≤≥ ⎪⎝⎭,利用下面所给的两个结论,求正整数n 的最小值.结论一:若随机变量(),B n p ξ ,则随机变量η=近似服从正态分布()0,1N ;结论二:若随机变量()0,1N ξ ,则()1.280.9P ξ≤≈,()1.650.95P ξ≤≈.19.已知函数()221ln 11x x f x x x x -=--+-.(1)求()f x 的定义域;(2)求()f x 在区间10,2⎛⎫ ⎪⎝⎭上的零点个数;(3)设10,2k ⎛⎫∈ ⎪⎝⎭,证明:()()()22211111nk k k k k k -+++<+-L .附:()()2222211ln 111x x x x x x x '⎛⎫-+= ⎪+--+-⎝⎭,()()22212ln 111x x x x x x x x '--⎛⎫= ⎪+--+-⎝⎭.2024~2025学年(上)安徽高三8月份联考数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】AD 【11题答案】【答案】AC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】18【13题答案】【答案】12##0.5【14题答案】【答案】24e 1+四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)证明见详解(2)5【16题答案】【答案】(1)2π3C =(2)3【17题答案】【答案】(1)24y x=(2):210AB x y --=,:220CD x y +-=【18题答案】【答案】(1)1118(2)772(3)11【19题答案】【答案】(1)(),111122,,⎛⎛⎫+-∞--+∞ ⎝⎭⎝⎭(2)1(3)证明见解析。
安徽省合肥八中2007—2008学年度上学期高三第二次月考数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合I={1,2,3,4},A={1},B={2,4},则=⋃B C A I ( ) A .{1} B .{1,3} C .{3} D .{1,2,3} 2.若集合A={1,m 2},B={2,4},则“m=2”是“A ∩B={4}”的 ( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 3.曲线),2(2e e y x 在点=处的切线与坐标轴所围三角形的面积为 ( )A .249eB .22eC .22eD .2e4.设)(x f 为可导函数,且12)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点))1(,1(f 处的切线的斜率是( )A .-2B .-1C .21 D .25.设函数⎩⎨⎧≤>+-=-)4(2)4( )1(log )(43x x x x f x 的反函数为=+=--)7()81()(11a f a f x f ,则,且( )A .-2B .-1C .1D .26.函数))((R x x f y ∈=的图象如图所示,则当0<a<1时,函数)(log )(x f x g a =的单调区间是( )A .]21,0[B .),21[)0,(+∞⋃-∞C .]1,[+a aD .)1,21[)0,(⋃-∞7.函数)65(log 221+-=x x y 的单调减区间为( )A .),25(+∞B .)2,(-∞C .)25,(-∞D .(3,+ ∞)8.设函数)(x f 定义在实数集上,它的图象关于直线x=1对称,且当1≥x 时,13)(-=xx f ,则有 ( )A .)32()23()31(f f f <<B .)23()31()32(f f f <<1321239.设)()()(|,13|)(b f a f c f a b c x f x >><<-=且,则下列关系式中一定成立的是( )A .bc33>B .ab 33>C .233<+acD .233>+ac10.若]),[(3||b a x y x ∈=的值域为[1,9],则a b a 222-+的取值范围是 ( )A .[2,4]B .[4,12]C .[2,23]D .[4,16]二、填空题:本大题共5小题,每小题5分,把答案填在题中横线上。
安徽省皖南八校届高三〔上〕12月联考数学试卷〔理科〕参考答案与试题解析一、选择题:本大题共10小题,每题5分,共50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕等于〔〕A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:直接利用两个复数代数形式的乘除法法那么,运算求得结果.解答:解:=﹣2i=1+i﹣2i=1﹣i,应选C.点评:此题主要考查两个复数代数形式的乘除法,属于根底题.2.〔5分〕集合A={1,2,3,4,5},B={〔x,y〕|x∈A,y∈A,x<y,x+y∈A},那么集合B中的元素个数为〔〕A.2B.3C.4D.5考点:元素与集合关系的判断.专题:计算题.分析:通过集合B,利用x∈A,y∈A,x<y,x+y∈A,求出x的不同值,对应y的值的个数,求出集合B中元素的个数.解答:解:因为集合A={1,2,3,4,5},B={〔x,y〕|x∈A,y∈A,x<y,x+y∈A},当x=1时,y=2或y=3或y=4;当x=2时y=3;所以集合B中的元素个数为4.应选C.点评:此题考查集合的元素与集合的关系,考查根本知识的应用.3.〔5分〕各项均为正数的等差数列{a n}中,a2•a12=49,那么a7的最小值为〔〕A.7B.8C.9D.10考点:等差数列的性质.专题:等差数列与等比数列.分析:由条件可得得 a7=,再利用根本不等式a7的最小值.解答:解:由等差数列的性质可得 a7=,∵等差数列{a n}中,各项均为正数,a2•a12=49,∴≥=7,当且仅当 a2 =a12 时,等号成立,故那么a7的最小值为 7,应选A.点评:此题主要考查等差数列的性质应用,根本不等式的应用,属于中档题.4.〔5分〕某8个数的平均数为5,方差为2,现又参加一个新数据5,此时这9个数的平均数为,方差为S2,那么〔〕A.B.C.D.考点:极差、方差与标准差;众数、中位数、平均数.专题:计算题;概率与统计.分析:由题设条件,利用平均数和方差的计算公式进行求解.解答:解:∵某8个数的平均数为5,方差为2,现又参加一个新数据5,此时这9个数的平均数为,方差为S2,∴==5,=,应选A.点评:此题考查平均数和方差的计算公式的应用,是根底题.解题时要认真审题,仔细解答.5.〔5分〕〔•东城区一模〕命题:“假设x⊥y,y∥z,那么x⊥z〞成立,那么字母x,y,z 在空间所表示的几何图形不能〔〕A.都是直线B.都是平面C.x,y是直线,z是平面D.x,z是平面,y是直线考平面与平面之间的位置关系;空间中直线与平面之间的位置关系.点:分析:此题考查的知识点是空间中直线与直线、直线与平面、平面与平面之间的位置判断,我们可根据空间中点、线、面之间的位置关系判定或性质定理对四个答案逐一进行分析,即可得到答案.解答:解:假设字母x,y,z在空间所表示的几何图形都是直线,那么由线线夹角的定义,我们易得两条平行线与第三条直线所成夹角相等,故A不满足题意.假设字母x,y,z在空间所表示的几何图形都是平面那么由面面夹角的定义,我们易得两个平行平面与第三个平面所成夹角相等,故B不满足题意.假设字母x,y,z在空间所表示的几何图形x,y是直线,z是平面假设x⊥y,y∥z,时,x也可能与z平行,故C满足题意.假设字母x,y,z在空间所表示的几何图形x,z是平面,y是直线那么由面面垂直的判定定理易得结论正确故D不满足题意.点评:线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由想性质,由求证想判定〞,也就是说,根据条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.6.〔5分〕“2012”含有数字0,1,2,且有两个数字2,那么含有数字0,1,2,且有两个相同数字2或1的四位数的个数为〔〕A.18 B.24 C.27 D.36考点:排列、组合及简单计数问题.专题:计算题;概率与统计.分析:分类讨论,满足题意的四位数,1、2开头的四位数各6个,即可得到结论.解答:解:由题意,1开头的四位数,其中2个1有6个,2个2有3个;2开头的四位数,其中2个2有6个,2个1有3个,故满足题意的四位数的个数为9+9=18个应选A.点评:此题考查计数原理的运用,考查学生分析解决问题的能力,属于根底题.7.〔5分〕〔•武汉模拟〕执行如以以下图的程序框图,假设输出的结果是9,那么判断框内m的取值范围是〔〕A.〔42,56] B.〔56,72] C.〔72,90] D.〔42,90〕考点:循环结构.专题:阅读型.分析:由中该程序的功能是计算2+4+6+…值,由循环变量的初值为1,步长为1,最后一次进入循环的终值为9,即S=72,由此易给出判断框内m的取值范围.解答:解:∵该程序的功能是计算 2+4+6+…值,由循环变量的初值为1,步长为1,最后一次进入循环的终值为9,第1次循环:S=0+2=2 k=1+1=2第2次循环:S=2+4=6 k=2+1=3第3次循环:S=6+6=12 k=3+1=4第4次循环:S=12+8=20 k=4+1=5…第7次循环:S=42+14=56 k=7+1=8第8次循环:S=56+16=72 k=8+1=9退出循环.此时S=72,不满足条件,跳出循环,输出k=9 那么判断框内m的取值范围是m∈〔56,72].应选B.点评:此题主要考查了循环结构,是算法中重要的一种题型,同时考查了分析问题的能力,属于根底题.8.〔5分〕设命题p:〔x,y,k∈R,且k>0〕命题q:〔x﹣3〕2+y2≤25〔x,y∈R〕,假设P是q的充分不必要条件,那么k的取值范围是〔〕A.〔0,3] B.〔0,6] C.〔0,5] D.[1,6]考简单线性规划;必要条件、充分条件与充要条件的判断.点:专题:计算题.分析:命题p:命题q:〔x﹣3〕2+y2≤25〔x,y∈R〕,p是q的充分不必要条件可得p⇒q,说明p所表示的区域在q所表示的区域内部,画出p和q的可行域,利用数形结合的方法进行求解;解答:解:由题意可得,p是q的充分不必要条件,可得p⇒q,说明p所表示的区域在q所表示的区域内部,数形结合,画出p和q的区域范围,如以以以下图:B〔k,4﹣〕,可知只需满足条件:∴,解得0<k≤6;应选B;点评:此题主要考查线性规划问题,解题的过程中用到了数形结合的方法,解决此题的关键是能够正确画出可行域,此题是一道中档题;9.〔5分〕过双曲线的左焦点F作直线交双曲线的两条渐近线与A,B两点,假设,那么双曲线的离心率为〔〕A.B.C.2D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用向量的线性运算及数量积运算,可得∠BOF=∠AOB=∠AOx=60°,由此可求双曲线的离心率.解答:解:∵,∴,∴∵,∴B为FA的中点∴∠BOF=∠AOB=∠AOx=60°∴∴双曲线的离心率为e==2.应选C点评:此题考查双曲线的离心率,考查向量知识的运用,考查学生的计算能力,属于根底题.10.〔5分〕函数f〔x〕=1+x﹣,设F〔x〕=f〔x+4〕,且函数F〔x〕的零点均在区间[a,b]〔a<b,a,b∈Z〕内,圆x2+y2=b﹣a的面积的最小值是〔〕A.πB.2πC.3πD.4π考点:圆的标准方程;函数的零点.专题:计算题;导数的概念及应用;直线与圆.分析:利用导数研究函数f〔x〕的单调性,得函数f〔x〕是R上的增函数.再用零点存在性定理,得f〔x〕在R上有唯一零点x0∈〔﹣1,0〕,结合函数图象的平移知识可得数F〔x〕的零点必在区间〔﹣5,﹣4〕.由此不难得到b﹣a的最小值,进而得到所求圆面积的最小值.解答:解:∵f〔x〕=1+x﹣,∴当x<﹣1或x>﹣1时,f'〔x〕=1﹣x+x2﹣x3+…+x=>0.而当x=﹣1时,f'〔x〕=>0∴f'〔x〕>0对任意x∈R恒成立,得函数f〔x〕是〔﹣∞,+∞〕上的增函数∵f〔﹣1〕=〔1﹣1〕+〔﹣﹣〕+…+〔﹣﹣〕<0,f〔0〕=1>0 ∴函数f〔x〕在R上有唯一零点x0∈〔﹣1,0〕∵F〔x〕=f〔x+4〕,得函数F〔x〕的零点是x0﹣4∈〔﹣5,﹣4〕∴a≤﹣5且b≥﹣4,得b﹣a的最小值为﹣4﹣〔﹣5〕=1∵圆x2+y2=b﹣a的圆心为原点,半径r=∴圆x2+y2=b﹣a的面积为πr2=π〔b﹣a〕≤π,可得面积的最小值为π应选:A点评:此题给出关于x的多项式函数,求函数零点所在的区间长度的最小值.着重考查了函数的零点、圆的标准方程和利用导数研究函数的性质等知识点,属于中档题.二、填空题:本大题共5小题,每题5分,共25分.把答案填在答题卷中的横线上. 11.〔5分〕展开式中不含x3项的系数的和为0 .考点:二项式系数的性质.专题:计算题.分析:把x=1代入可得所有项的系数的和,由二项式定理可得含X3项的系数为1,两个系数的差即为所求.解答:解:把x=1代入可得展开式中所有项的系数的和为〔1﹣2〕6=1,而含X3项为:=x3,即x3系数为1,故展开式中不含X3项的系数的和为:1﹣1=0,故答案为:0点评:此题考查二项式系数的性质,赋值是解决问题的关键,属根底题.12.〔5分〕〔•东莞二模〕某个几何体的三视图如以以下图,那么这个几何体的体积是 6 .考点:由三视图求面积、体积.专题:计算题.分析:由中的三视图,我们可分析出几何体的形状及底面边长高等信息,代入棱锥体积公式,可得答案.解答:解:由中的三视图可得该几何体是一个以俯视图为底面,以2为高的四棱锥故这个几何体的体积V=Sh=•3×3×2=6故答案为:6点评:此题考查的知识点是由三视图求体积,其中根据的三视图分析出几何体的形状是解答的关键.13.〔5分〕设非零向量、,,满足||=||=||,+=,那么sin<,>= .考点:平面向量数量积的运算;数量积表示两个向量的夹角.专题:平面向量及应用.分析:由向量式可得=﹣=﹣,而cos==,代入可得其值,进而可得要求的值.解答:解:∵+=,∴,平方可得=﹣=﹣,∴cos===,∴sin=,故答案为:点评:此题考查向量的夹角公式,涉及向量的简单运算,属根底题.14.〔5分〕函数f〔x〕=sinωx+acosωx〔a>0,ω>0〕的图象关于直线x=对称,点〔〕是函数图象的一个对称中心,那么a+ω的最小值是.考点:正弦函数的对称性;y=Asin〔ωx+φ〕中参数的物理意义.专题:三角函数的图像与性质.分析:由f〔x〕=sinωx+acosωx〔a>0,ω>0〕的图象关于直线x=对称,可得f〔﹣〕=f〔〕=0,进而得到ω=k,再由a>0,ω>0,可得ω=3n+1,n∈N,此时a为定值,故当ω取最小值时,a+ω取最小值解答:解:∵f〔x〕=sinωx+acosωx〔a>0,ω>0〕的图象关于直线x=对称,∴f〔﹣〕=f〔〕=0∴﹣sin+acos=sin+acos=0;∴a=tan=﹣tan=tan〔﹣〕∴=﹣+kπ,k∈Z即ω=k∵a>0,ω>0∴ω=3n+1,n∈N此时a=tan〔n+〕π=故当ω=1时,a+ω的最小值是+1故答案为:+1点评:此题考查三角函数的性质,求得a是关键,考查正弦函数的对称性,考查分析、转化与运用三角知识解决问题的能力,属于难题.15.〔5分〕假设函数y=f〔x〕对定义域的每一个值x1,都存在唯一的x2,使y=f〔x1〕f〔x2〕=1成立,那么称此函数为“滨湖函数〞.以下命题正确的选项是②③.〔把你认为正确的序号都填上〕①y=是“滨湖函数〞;②y=+sinx〔x∈[]〕I是“滨湖函数〞;③y=2x是“滨湖函数〞;④y=lnx是“滨湖函数〞;⑤y=f〔x〕,y=g〔x〕都是“滨湖函数〞,且定义域相同,那么y=f〔x〕g〔x〕是“滨湖函数〞考点:抽象函数及其应用;函数的值.专题:新定义;函数的性质及应用.分析:利用“滨湖函数〞的定义,逐个分析①②③④⑤五个函数,能够得到结果.解答:解:对于①,对应的x1,x2不唯一,∴①不一定是“滨湖函数〞;对于②,函数y=是[﹣]上的单调增函数,对[﹣,]内的每一个值∈[],,∴在[﹣,]内存在唯一的x2,使=∈[]成立,∴②是“滨湖函数〞;对于③,∵y=2x,2x•2﹣x=1,∴③是“滨湖函数〞;对于④,y=lnx有零点,∴④一定不是y=lnx“滨湖函数〞;对于⑤,∵y=f〔x〕,y=g〔x〕都是“滨湖函数〞,且定义域相同,∴对于定义域中每一个x1,都存在唯一的x2,使y=f〔x1〕f〔x2〕=1和y=g〔x1〕g 〔x2〕=1成立,∵两个x2不一定相等,∴y=f〔x1〕g〔x1〕•f〔x2〕g〔x2〕=1不一定成立,∴⑤不是“滨湖函数〞.故答案为:②③.点评:此题考查函数的性质的根本应用,解题时要认真审题,注意理解“滨湖函数〞的概念.三、解答题:本大题共6小题,共75分.解容许写出文字说明、证明过程或演算步骤.解答写在答题卷上的指定区域内.16.〔12分〕〔•资阳二模〕△ABC中,角A、B、C对边分别是a、b、c,满足.〔Ⅰ〕求角A的大小;〔Ⅱ〕求的最大值,并求取得最大值时角B、C的大小.考点:余弦定理;平面向量数量积的运算;正弦函数的定义域和值域.专题:计算题.分析:〔Ⅰ〕通过化简向量的表达式,利用余弦定理求出A的余弦值,然后求角A的大小;〔Ⅱ〕通过A利用2012年6月7日 17:54:00想的内角和,化简为C的三角函数,通过C的范围求出表达式的最大值,即可求出最大值时角B、C的大小.解答:解〔Ⅰ〕由,化为2bccosA=a2﹣b2﹣c2﹣2bc,〔2分〕由余弦定理a2=b2+c2﹣2bccosA得4bccosA=﹣2bc,∴,〔4分〕∵0<A<π,∴.〔6分〕〔Ⅱ〕∵,∴,.=.〔8分〕∵,∴,∴当C+=,取最大值,解得B=C=.〔12分〕点评:此题借助向量的数量积考查余弦定理以及三角函数的最值,考查计算能力.17.〔12分〕如图,平行四边形ABCD中,AD=2,CD=,∠ADC=45°,AE⊥BC,垂足为E,沿直线AE将△BAE翻折成△B′AE,使得平面B′AE⊥平面AECD.连接B′D,P是B′D上的点.〔Ⅰ〕当B′P=PD时,求证:CP⊥平面AB′D;〔Ⅱ〕当B′P=2PD时,求二面角P﹣AC﹣D的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:综合题.分析:〔Ⅰ〕由,得出E′E⊥EC,建立空间直角坐标系.通过•=0,•=0得出CP⊥AB′,CP⊥AD,证出CP⊥平面AB′D;〔Ⅱ〕设P〔x,y,z〕,那么=〔x,y,z﹣1〕,=〔2﹣x,1﹣y,﹣z〕,由=2得出P〔,,〕,分别求出面PAC 的法向量,平面DAC的法向量,利用向量的夹角求出二面角P﹣AC﹣D 的大小.解答:解:〔Ⅰ〕∵AE⊥BC,平面B′AE⊥平面AECD,∴E′E⊥EC.如图建立空间直角坐标系,…〔2分〕那么A〔0,1,0〕,B′〔0,0,1〕,C〔1,0,0〕,D〔2,1,0〕,E〔0,0,0〕,P〔1,〕.=〔0,﹣1,1〕,=〔2,0,0〕,=〔0,〕.…〔4分〕∵•=0,∴CP⊥AB′•=0,∴CP⊥AD又AB′∩AD=A,∴CP⊥平面AB′D;…〔7分〕〔Ⅱ〕设P〔x,y,z〕,那么=〔x,y,z﹣1〕,=〔2﹣x,1﹣y,﹣z〕,由=2得解得x= y=,z=,∴P〔,,〕=〔,,〕,=〔1,﹣1,0〕…〔10分〕设面PAC 的法向量为=〔x,y,z〕,那么.取x=y=1,z=﹣3.,那么=〔1,1,﹣3〕,…〔12分〕又平面DAC的法向量为=〔0,0,1〕,设二面角P﹣AC﹣D的大小为θ,那么cosθ===.…〔14分〕点评:此题考查空间直线和平面垂直的判定,二面角大小求解.考查空间想象、推理论证能力.利用空间向量的方法,能降低思维难度,思路相对固定,是人们研究解决几何体问题又一有力工具.18.〔12分〕某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关假设有失败即结束,后两关假设有失败再给一次从失败的关开始继续向前闯的时机.某人前三关每关通过的概率都是,后两关每关通过的概率都是.〔1〕求该人获得奖金的概率;〔2〕设该人通过的关数为ξ,求随机变量ξ的分布列及数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:〔1〕设A n〔n=1,2,3,4,5〕表示该人通过第n关,那么该人获得奖金的概率为P=P 〔A1A2A3A4A5〕+P〔〕+P〔〕,即可求得结论;〔2〕确定变量的取值,求出相应的概率,即可求随机变量ξ的分布列及数学期望.解答:解:〔1〕设A n〔n=1,2,3,4,5〕表示该人通过第n关,那么A n〔n=1,2,3,4,5〕相互独立,且P〔A n〕=〔n=1,2,3〕,P〔A4〕=P〔A5〕=∴该人获得奖金的概率为P=P〔A1A2A3A4A5〕+P〔〕+P〔〕=+2×=;〔2〕ξ的可能取值为0,1,2,3,4,5,那么P〔ξ=0〕=;P〔ξ=1〕==;P〔ξ=2〕==;P〔ξ=3〕==;P〔ξ=4〕==;P〔ξ=5〕=,ξ的分布列为ξ 0 1 2 3 4 5P∴Eξ=1×+2×+3×+4×+5×=.点评:此题考查概率的求法,考查离散型随机变量的分布列与数学期望,考查学生的计算能力,属于中档题.19.〔13分〕抛物线P的方程是x2=4y,过直线l:y=﹣1上任意一点A作抛物线的切线,设切点分别为B、C.〔1〕证明:△ABC是直角三角形;〔2〕证明:直线BC过定点,并求出定点坐标.考点:恒过定点的直线;直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:〔1〕设A〔m,﹣1〕,B〔x1,y1〕,C〔x2,y2〕,利用导数的几何意义可得=x1,化简得﹣2mx1﹣4=0.同理可得﹣2mx2﹣4=0,故有 x1+x2=2m,x1•x2=﹣4.计算AB和AC的斜率之积等于﹣1,从而得到AB⊥AC,即△ABC是直角三角形.〔2〕求得BC所在的直线方程为 y﹣y1=〔x﹣x1〕,化简为y=mx+1,显然过定点〔0,1〕.解答:解:〔1〕证明:设A〔m,﹣1〕,B〔x1,y1〕,C〔x2,y2〕.∵抛物线P的方程是x2=4y,∴y′=.∴=x1,∴+1=﹣mx1,∴﹣2mx1﹣4=0.同理可得,﹣2mx2﹣4=0,∴x1+x2=2m,x1•x2=﹣4.∵K AB•K AC=x1•x2==﹣1,∴AB⊥AC,即△ABC是直角三角形.〔2〕证明:BC所在的直线方程为 y﹣y1=〔x﹣x1〕,化简可得 y﹣=〔x1+x2〕〔x1﹣x2〕,即 y=mx+1,显然,当x=0时,y=1,故直线BC过定点〔0,1〕.点评:此题主要考查函数的导数的几何意义,判断两条直线垂直的方法,直线过定点问题,属于中档题.20.〔13分〕函数f〔x〕=,其中a>0.〔1〕求f〔x〕的单调区间;〔2〕是否存在实数a使f〔x〕<1在x∈R+上恒成立?假设存在求出a的取值范围;假设不存在说明理由.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专导数的综合应用.题:分析:〔1〕在定义域内解不等式f′〔x〕>0,f′〔x〕<0即得到函数的单调区间;〔2〕假设f〔x〕<1在x∈R+上恒成立,即ln〔1+x〕<ax在R+上恒成立.构造函数h〔x〕=ln〔1+x〕﹣ax〔x∈R+〕,只需找满足不等式h〔x〕<0的a值即可.解答:解:〔1〕f′〔x〕=,设g〔x〕==1﹣﹣ln 〔1+x〕,那么g′〔x〕=〔1+x〕﹣2﹣=.可知g〔x〕在〔﹣1,0〕上递增,在〔0,+∞〕上递减,所以f〔x〕在〔﹣1,0〕,〔0,+∞〕上是减函数,即f〔x〕的单调递减区间为〔﹣1,0〕,〔0,+∞〕.〔2〕假设f〔x〕<1在x∈R+上恒成立,即ln〔1+x〕<ax在R+上恒成立.设h〔x〕=ln〔1+x〕﹣ax〔x∈R+〕,那么h′〔x〕=﹣a,①假设a≥1,那么x∈R+时,h′〔x〕<0恒成立,所以h〔x〕<h〔0〕=0符合题意;②假设a≤0,显然不符合题意;③假设0<a<1,那么h′〔x〕=﹣a=0,有x=﹣1,所以x∈〔0,〕时h′〔x〕≥0,所以y=h〔x〕在[0,﹣1]上为增函数,当x∈[0,﹣1]时,h〔x〕>h〔0〕=0,所以不符合题意.综上,a≥1.点评:此题考查应用导数研究函数的单调性、最值问题,不等式的证明问题常转化为函数的最值处理.21.〔13分〕正项数列{a n}中a1=1,前n项和S n满足2S n=a n a n+1;数列{b n}是首项和公比都等于2的等比数列.〔1〕求数列{a n}的通项公式;〔2〕求数列{a n b n}的前n项和〔3〕记f〔n〕=,T n=,求证:.考点:数列递推式;数列的求和;等差数列与等比数列的综合.专题:等差数列与等比数列.分〔1〕通过2S n=a n a n+1;推出数列的递推关系式,推出数列是等差数列,然后求数列{a n}析:的通项公式;〔2〕通过数列{b n}是首项和公比都等于2的等比数列,求出b n,利用错位相减法求解数列{a n b n}的前n项和.〔3〕通过f〔n〕=,化简T n=的表达式,求出T1,T2,当n≥3时转化T n,与T n,然后证明.解答:解:〔1〕因为2S n=a n a n+1;所以n=1时2S1=a1•a2,a1=1,所以a2=2,∵2S n=a n a n+1;∴2S n+1=a n+1a n+2;可得2a n+1=a n+1a n+2﹣a n a n+1;∵a n>0∴a n+2﹣a n=2;∵a1=1,a2=2,∴数列{a n}是等差数列,a n=n.〔2〕数列{b n}是首项和公比都等于2的等比数列,所以b n=2n,数列{a n b n}的前n项和S n=a1b1+a2b2+…+a n b n=1×2+2×22+…+n×2n…①2S n=1×22+2×23+…+〔n﹣1〕×2n+n×2n+1…②所以②﹣①得S n=n×2n+1﹣〔2+22+…+2n〕=〔n﹣1〕2n+1+2.〔3〕证明∵f〔n〕=,T n==,T1==,T2===,当n≥3时T n=≥=又T n==综上点评:此题考查等差数列与等比数列综合应用,数列与不等式的综合应用,考查数列求和的方法,考查分析问题解决问题的能力.。
安徽省合肥八中2015届高三上学期第二次段考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)2014°是第()象限角.A.一B.二C.三D.四2.(5分)已知集合A={x|x2﹣5x﹣14≤0},B={x|m+1<x<2m﹣1},且B≠∅,若A∪B=A,则()A.﹣3≤m≤4B.﹣3<m<4 C.2<m<4 D.2<m≤43.(5分)下列选项叙述错误的是()A.命题“若x≠l,则x2﹣3x+2≠0”的逆否命题是“若x2﹣3x+2=0,则x=1”B.若p∨q为真命题,则p,q均为真命题C.若命题p:∀x∈R,x2+x+1≠0,则¬p:∃x∈R,x2+x+1=0D.“x>2”是“x2﹣3x+2>0”的充分不必要条件4.(5分)已知角α的终边上一点的坐标为(),角α的最小正值为()A.B.C.D.5.(5分)设2a=5b=m,且,则m=()A.B.10 C.20 D.1006.(5分)已知函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是()A.B.C.D.7.(5分)(2cos2)dx的值是()A.πB.2 C.π﹣2 D.π+28.(5分)设函数g(x)是二次函数,f(x)=,若函数f[g(x)]的值域是[0,+∞),则函数g(x)的值域是()A.(﹣∞,﹣1]∪[1,+∞)B.[0,+∞)C.(﹣∞,﹣1]∪[0,+∞)D.[1,+∞)9.(5分)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D.10.(5分)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0二、填空题:本大题共5小题,每小题5分,共25分,请将答案写在答题卷的相应位置上. 11.(5分)函数f(x)=2sin(),x∈[﹣π,0]的单调递减区间为.12.(5分)设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是.13.(5分)已知2sin2α=﹣sinα,α∈(,π),则tanα=.14.(5分)利民厂某产品的年产量在100吨至300吨之间,年生产的总成本y(万元)与年生产量x(吨)之间的关系可近似第表示为y=﹣30x+4000,则每吨的成本最低时的年产量为吨.15.(5分)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:①函数为R上的l高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域是[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);其中正确的命题是(填序号)三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(12分)已知集合A={x|x2﹣3x+2≤0},集合B为函数y=x2﹣2x+a的值域,集合C={x|x2﹣ax﹣4≤0},命题p:A∩B≠∅;命题q:A⊆C.(1)若命题p为假命题,求实数a的取值范围;(2)若命题p∧q为真命题,求实数a的取值范围.17.(12分)已知函数f(x)=3﹣2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;(2)如果对任意的x∈[1,4],不等式恒成立,求实数k 的取值范围.18.(12分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且(2b﹣c)cosA=acosC.(Ⅰ)求角A的大小;(Ⅱ)若角B=,BC边上的中线AM的长为,求△ABC的面积.19.(13分)已知函数f(x)=x2﹣(1+2a)x+alnx(a为常数).(1)当a=﹣1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.20.(13分)已知函数f(x)=sin cos+cos2.(Ⅰ)将f(x)写成Asin(ωx+φ)+b的形式,并求出该函数图象的对称中心;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b2=ac,求f(B)的取值范围.21.(13分)已知函数f(x)=﹣lnx++(1﹣a)x+2.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)若0<x<1,求证:f(1+x)<f(1﹣x);(Ⅲ)若A(x1,y1),B(x2,y2)为函数y=f(x)的图象上的两点,记k为直线AB的斜率,若x0=,f′(x)为f(x)的导函数,求证:f′(x0)>k.安徽省合肥八中2015届高三上学期第二次段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)2014°是第()象限角.A.一B.二C.三D.四考点:象限角、轴线角.专题:三角函数的求值.分析:要判断2014°角的位置,我们要将其化为k•360°+α的形式,然后判断α角的终边所在的象限,即可得到答案.解答:解:∵2014°=5×360°+214°,∵180°<214°<270°,故2014°是第三象限角.故选:C点评:本题考查的知识点是象限角与轴线角,判断角的位置关键是根据象限角的定义,判断出角的终边落在哪个象限中.2.(5分)已知集合A={x|x2﹣5x﹣14≤0},B={x|m+1<x<2m﹣1},且B≠∅,若A∪B=A,则()A.﹣3≤m≤4B.﹣3<m<4 C.2<m<4 D.2<m≤4考点:集合关系中的参数取值问题.专题:计算题.分析:条件A∪B=A的理解在于:B是A的子集,其中B也可能是空集.先化简集合A,根据B是A的子集列出不等关系,解之即得.解答:解:A={x|x2﹣5x﹣14≤0}={x|﹣2≤x≤7},∵A∪B=A,∴B⊆A.又B≠∅,∴解得:2<m≤4故选D.点评:本题主要考查集合的运算性质A∪B=A,一般A∪B=A转化成B⊆A来解决.若是A∩B=A,一般A∩B=A转化成A⊆B来解决.3.(5分)下列选项叙述错误的是()A.命题“若x≠l,则x2﹣3x+2≠0”的逆否命题是“若x2﹣3x+2=0,则x=1”B.若p∨q为真命题,则p,q均为真命题C.若命题p:∀x∈R,x2+x+1≠0,则¬p:∃x∈R,x2+x+1=0D.“x>2”是“x2﹣3x+2>0”的充分不必要条件考点:命题的真假判断与应用.专题:规律型.分析:A“若p则q,“的逆否命题为“若﹣p则﹣q“.故A正确;B p∨q为真命题说明p 和q中至少有一个为真;C是全称命题与存在性命题的转化;D从充要条件方面判断.解答:解:A原命题为“若p则q,“,则它的逆否命题为“若﹣p则﹣q“.故正确;B当p,q中至少有一个为真命题时,则p∨q为真命题.故错误.C正确.D 由x2一3x+2>0解得x<1或x>2显然x>2⇒x<1或x>2但x<1或x>2不能得到x>2故“x>2”是“x2一3x+2>0”的充分不必要条件,故正确.故选B点评:本题主要考查了四种命题的关系、充要条件的转化、全称命题与存在性命题的相互转化.4.(5分)已知角α的终边上一点的坐标为(),角α的最小正值为()A.B.C.D.考点:终边相同的角.专题:计算题.分析:将点的坐标化简,据点的坐标的符号判断出点所在的象限,利用三角函数的定义求出角α的正弦,求出角α的最小正值解答:解:=∴角α的终边在第四象限∵到原点的距离为1∴∴α的最小正值为故选D点评:已知一个角的终边上的一个点求角的三角函数值,应该利用三角函数的定义来解决.5.(5分)设2a=5b=m,且,则m=()A.B.10 C.20 D.100考点:指数式与对数式的互化;对数的运算性质.专题:计算题;压轴题.分析:直接化简,用m代替方程中的a、b,然后求解即可.解答:解:,∴m2=10,又∵m>0,∴.故选A点评:本题考查指数式和对数式的互化,对数的运算性质,是基础题.6.(5分)已知函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是()A.B.C.D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:由题意可得A+m=4,A﹣m=0,解得 A 和m的值,再根据周期求出ω,根据函数图象的对称轴及φ的范围求出φ,从而得到符合条件的函数解析式.解答:解:由题意m=2.A=±2,再由两个对称轴间的最短距离为,可得函数的最小正周期为π可得,解得ω=2,∴函数y=Asin(ωx+φ)+m=±2sin(2x+φ)+2.再由是其图象的一条对称轴,可得+φ=kπ+,k∈z,即φ=kπ,故可取φ=,故符合条件的函数解析式是 y=﹣2sin(2x+)+2,故选B点评:本题主要考查利用y=Asin(ωx+∅)的图象特征,由函数y=Asin(ωx+∅)的部分图象求解析式,属于中档题.7.(5分)(2cos2)dx的值是()A.πB.2 C.π﹣2 D.π+2考点:定积分.专题:导数的概念及应用.分析:根据函数的积分公式进行计算即可.解答:解:(2cos2)dx=(1+cox)dx=(x+sinx)|=+1+1=2+π.故选:D点评:本题主要考查函数积分的计算,要求熟练掌握常见函数的积分公式.8.(5分)设函数g(x)是二次函数,f(x)=,若函数f[g(x)]的值域是[0,+∞),则函数g(x)的值域是()A.(﹣∞,﹣1]∪[1,+∞)B.[0,+∞)C.(﹣∞,﹣1]∪[0,+∞)D.[1,+∞)考点:函数的值域.专题:计算题;函数的性质及应用.分析:由函数f[g(x)]的值域是[0,+∞),f(x)=求f(x)的定义域,则函数g(x)的值域是f(x)的定义域的子集,且又由g(x)是二次函数得答案.解答:解:∵f(x)=,又∵函数f[g(x)]的值域是[0,+∞),∴g(x)∈(﹣∞,﹣1]∪[0,+∞),又∵函数g(x)是二次函数,∴﹣∞与+∞不可能同时存在,故排除A、C;又∵要取到0;故选B.点评:本题考查了函数的定义域与值域,属于基础题.9.(5分)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D.考点:利用导数研究函数的单调性;函数的图象与图象变化.专题:函数的性质及应用;导数的概念及应用.分析:先求出函数f(x)e x的导函数,利用x=﹣1为函数f(x)e x的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.解答:解:由y=f(x)e x=e x(ax2+bx+c)⇒y′=f′(x)e x+e x f(x)=e x[ax2+(b+2a)x+b+c],由x=﹣1为函数f(x)e x的一个极值点可得,﹣1是方程ax2+(b+2a)x+b+c=0的一个根,所以有a﹣(b+2a)+b+c=0⇒c=a.法一:所以函数f(x)=ax2+bx+a,对称轴为x=﹣,且f(﹣1)=2a﹣b,f(0)=a.对于A,由图得a>0,f(0)>0,f(﹣1)=0,不矛盾,对于B,由图得a<0,f(0)<0,f(﹣1)=0,不矛盾,对于C,由图得a<0,f(0)<0,x=﹣>0⇒b>0⇒f(﹣1)<0,不矛盾,对于D,由图得a>0,f(0)>0,x=﹣<﹣1⇒b>2a⇒f(﹣1)<0与原图中f(﹣1)>0矛盾,D不对.法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立.故选:D.点评:本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.10.(5分)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数的值;不等关系与不等式.专题:函数的性质及应用.分析:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b 的取值范围即可.解答:解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a <1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.点评:熟练掌握函数的单调性、函数零点的判定定理是解题的关键.二、填空题:本大题共5小题,每小题5分,共25分,请将答案写在答题卷的相应位置上. 11.(5分)函数f(x)=2sin(),x∈[﹣π,0]的单调递减区间为.考点:正弦函数的单调性.专题:三角函数的图像与性质.分析:利用三角函数的图象和性质以及复合函数单调性之间的关系即可得到结论.解答:解:∵f(x)=2sin(),∴f(x)=﹣2sin(x),∴函数f(x)=﹣2sin(x)的递减期间即为y=2sin(x)递增区间,由,得,k∈Z,∴当k=0,函数的递减区间为,∴当x∈[﹣π,0]的单调递减区间为,故答案为:.点评:本题主要考查三角函数的图象性质,利用复合函数单调性之间单调性的关系是解决本题的关键.12.(5分)设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是2.考点:扇形面积公式.专题:计算题.分析:设扇形的圆心角的弧度数为α,半径为r,弧长为l,面积为S,由面积公式和周长可得到关于l和r的方程组,求出l和r,由弧度的定义求α即可.解答:解:S=(8﹣2r)r=4,r2﹣4r+4=0,r=2,l=4,|α|==2.故答案为:2.点评:本题考查弧度的定义、扇形的面积公式,属基本运算的考查.13.(5分)已知2sin2α=﹣sinα,α∈(,π),则tanα=.考点:二倍角的正弦;同角三角函数间的基本关系.专题:三角函数的求值.分析:把已知的等式左边展开二倍角的正弦,求出角α的余弦值,则正切值可求.解答:解:由2sin2α=﹣sinα,得:4sinαcosα=﹣sinα,因为α∈(,π),所以sinα≠0,所以cosα=,则sinα=所以.故答案为点评:本题考查了二倍角的正弦公式和同角三角函数基本关系式,求解时注意角的范围,是基础题.14.(5分)利民厂某产品的年产量在100吨至300吨之间,年生产的总成本y(万元)与年生产量x(吨)之间的关系可近似第表示为y=﹣30x+4000,则每吨的成本最低时的年产量为200吨.考点:函数的值.专题:函数的性质及应用.分析:设每吨的平均成本为W(万元/吨),则W==≥2,由此利用均值不等式能求出x=200吨时,每吨平均成本最低,且最低成本为10万元.解答:解:设每吨的平均成本为W(万元/吨),则W==≥2,当且仅当,即x=200吨时,每吨平均成本最低,且最低成本为10万元.故答案为:200.点评:本题考查函数值的求法,是中档题,解题时要认真审题,注意均值不等式的合理运用.15.(5分)设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:①函数为R上的l高调函数;②函数f(x)=sin2x为R上的π高调函数;③如果定义域是[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);其中正确的命题是②③(填序号)考点:命题的真假判断与应用.专题:函数的性质及应用.分析:根据高调函数的定义证明条件f(x+1)≥f(x)是否成立即可.解答:解:①∵函数f(x)=()x为R上的递减函数,故①不正确,②∵sin2(x+π)≥sin2x∴函数f(x)=sin2x为R上的π高调函数,故②正确,③如果定义域为[﹣1,+∞)的函数f(x)=x2为[﹣1,+∞)上m高调函数,则,解得m≥2,即实数m的取值范围[2,+∞),∴③正确.故答案为:②③.点评:本题主要考查与函数有关的新定义的应用,弄清新定义的本质,找到判断的标准是解本题的关键.三、解答题:本大题共6小题,共75分,解答应写出必要的文字说明,证明过程或演算步骤. 16.(12分)已知集合A={x|x2﹣3x+2≤0},集合B为函数y=x2﹣2x+a的值域,集合C={x|x2﹣ax﹣4≤0},命题p:A∩B≠∅;命题q:A⊆C.(1)若命题p为假命题,求实数a的取值范围;(2)若命题p∧q为真命题,求实数a的取值范围.考点:复合命题的真假;集合关系中的参数取值问题.专题:计算题.分析:由题意可得A={x|1≤x≤2},B={y|y≥a﹣1},C={x|x2﹣ax﹣4≤0},(1)由命题p为假命题可得A∩B=∅,可求a(2)由题意可得A∩B≠∅且A⊆C,结合集合之间的基本运算可求a的范围解答:解:∵y=x2﹣2x+a=(x﹣1)2+a﹣1≥a﹣1∴A={x|x2﹣3x+2≤0}={x|1≤x≤2},B={y|y≥a﹣1},C={x|x2﹣ax﹣4≤0},(1)由命题p为假命题可得A∩B=∅∴a﹣1>2∴a>3(2)∵命题p∧q为真命题命题∴p,q都为真命题即A∩B≠∅且A⊆C.∴解可得0≤a≤3点评:本题考查解决二次不等式的求解,二次函数值域的求解,集合的基本运算及复合命题的真假与构成其简单命题真假的关系.17.(12分)已知函数f(x)=3﹣2log2x,g(x)=log2x.(1)当x∈[1, 4]时,求函数h(x)=[f(x)+1]•g(x)的值域;(2)如果对任意的x∈[1,4],不等式恒成立,求实数k 的取值范围.考点:函数恒成立问题;函数的值域.专题:综合题.分析:(1)利用配方法化简函数,根据函数的定义域,即确定函数的值域;(2)利用换元法化简函数,再对新变元分类讨论,同时结合分离参数法,利用基本不等式,即可求得结论.解答:解:(1)…(2分)因为x∈[1,4],所以log2x∈[0,2],…(4分)故函数h(x)的值域为[0,2]…(6分)(2)由得(3﹣4log2x)(3﹣log2x)>k•log2x令t=log2x,因为x∈[1,4],所以t=log2x∈[0,2]所以(3﹣4t)(3﹣t)>k•t对一切的t∈[0,2]恒成立…(8分)1°当t=0时,k∈R;…(9分)2°当t∈(0,2]时,恒成立,即…(11分)因为,当且仅当,即时取等号…(12分)所以的最小值为﹣3…(13分)综上,k∈(﹣∞,﹣3)…(14分)点评:本题考查函数的值域,考查恒成立问题,解题的关键是分离参数,利用基本不等式求最值.18.(12分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且(2b﹣c)cosA=acosC.(Ⅰ)求角A的大小;(Ⅱ)若角B=,BC边上的中线AM的长为,求△ABC的面积.考点:正弦定理;余弦定理.专题:计算题.分析:(1)利用正弦定理把中的边换成角的正弦,进而利用两角和公式进行化简整理求得cosA,进而求得A.(2)由(1)知,进而可知三角形为等腰三角形和C的值,设AC=x,进而用余弦定理建立等式求得x,进而用三角形面积公式求得答案.解答:解:(1)因为,所以,则,所以,于是(2)由(1)知而,所以AC=BC,设AC=x,则又.在△AMC中由余弦定理得AC2+MC2﹣2AC•MCcosC=AM2,即,解得x=2,故.点评:本题主要考查了正弦定理和余弦定理的应用.在解三角形问题中,常需要用正弦定理和余弦定理完成边角互化,来解决问题.19.(13分)已知函数f(x)=x2﹣(1+2a)x+alnx(a为常数).(1)当a=﹣1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:综合题.分析:(1)求导函数,确定切线的斜率,从而可求曲线y=f(x)在x=1处切线的方程;(2)求导函数,求出函数的零点,再进行分类讨论,从而可确定函数y=f(x)在区间(0,1)上的单调性与单调区间.解答:解:(1)当a=﹣1时,f(x)=x2+x﹣lnx,则∴f(1)=2,f′(1)=2∴曲线y=f(x)在x=1处切线的方程为y﹣2=2(x﹣1)即y=2x;(2)由题意得,由f′(x)=0,得①当时,令f′(x)>0,x>0,可得0<x<a或;令f′(x)<0,x>0,可得∴函数f(x)的单调增区间是(0,a)和,单调减区间是;②当时,,当且仅当x=时,f′(x)=0,所以函数f(x)在区间(0,1)上是单调增函数;③当时,令f′(x)>0,x>0,可得0<x<a或a<x<1;令f′(x)<0,x>0,可得∴函数f(x)的单调增区间是(0,)和(a,1),单调减区间是;④当a≥1时,令f′(x)>0,x>0,可得0<x<;令f′(x)<0,x>0,可得∴函数f(x)的单调增区间是(0,),单调减区间是.点评:本题重点考查导数知识的运用,考查导数的几何意义,考查函数的单调性,利用导数的正负确定函数的单调性是关键.20.(13分)已知函数f(x)=sin cos+cos2.(Ⅰ)将f(x)写成Asin(ωx+φ)+b的形式,并求出该函数图象的对称中心;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b2=ac,求f(B)的取值范围.考点:三角函数中的恒等变换应用;余弦定理.专题:三角函数的图像与性质.分析:(Ⅰ)首先,化简函数解析式,然后,利用f(x)=0,求解其对称中心;(Ⅱ)结合余弦定理和基本不等式,然后,根据B的范围求解f(B)的取值范围.解答:解:(Ⅰ)由=0,即即对称中心的横坐标为…(6分)(Ⅱ)由已知b2=ac,,∴,∴即f(x)的值域为.综上所述,,f(x)值域为.…(13分)点评:本题重点考查了三角恒等变换公式及其灵活运用、三角函数的图象与性质等知识,属于中档题.21.(13分)已知函数f(x)=﹣lnx++(1﹣a)x+2.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)若0<x<1,求证:f(1+x)<f(1﹣x);(Ⅲ)若A(x1,y1),B(x2,y2)为函数y=f(x)的图象上的两点,记k为直线AB的斜率,若x0=,f′(x)为f(x)的导函数,求证:f′(x0)>k.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)构造函数g(x)=ln(1﹣x)﹣ln(1+x)+2x,利用导数求其最大值为0,即得结论;(Ⅲ)利用斜率公式及导数的几何意义及(Ⅱ)的结论即可得证.解答:解:(Ⅰ)f′(x)=﹣+ax+(1﹣a)=,∴当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增;(Ⅱ)f(1+x)﹣f(1﹣x)=ln(1﹣x)﹣ln(1+x)+2x,令g(x)=ln(1﹣x)﹣ln(1+x)+2x,∴g′(x)=,∵0<x<1,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.∴f(1+x)<f(1﹣x).(Ⅲ)k==+a(x2﹣x1)+1﹣a,f′(x0)=﹣+ax0+1﹣a>+a(x2﹣x1)+1﹣a,⇔<⇔ln>2,令x2>x1>0,=t,(0<t<1),∴=,ln>2⇔ln>2t⇔ln(1+t)﹣ln(1﹣t)+2t<0,由(Ⅱ)可知上式成立.∴f′(x0)>k成立.点评:本题主要考查利用导数研究函数的单调性、求函数的最值等知识,考查学生分析问题,解决问题的能力,注意构造法的合理应用,逻辑性强,属于难题.。
安徽省合肥八中等2014届高三上学期联考(二)数学理试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
本卷满分150分,考试时间:1 20分钟。
所有答案均在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷 选择题(共50分)一、选择题(本题包括10小题,每小题5分,共50分。
每小题只有一个选项符合题意。
请把正确答案填涂在答题卷的相应位置) 1. 已知i 是虚数单位,则11i ii i +++= ( )A .3122i - B .3122i +C .1322i - D .1322i + 2. 设集合{}2|60,Q x x x x N =--<∈,且P Q ⊆,则满足条件的集合P 的个数是( )A .4B . 8C . 16D . 无数个3.设p 、q 是两个命题,21251:1(||3)0,:066p og x q x x ->-+>,则p 是q 的 ( )A . 充分而不必要条件B .必要而不充分条件C . 充分不必要条件D .既不充分也不必要条件4. 函数()s i n()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()sin 2g x x =的图像,则只要将()f x 的图像 ( )A .向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度D .向左平移12π个单位长度5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若1s in c o s ,2,4s in C B A ==S △( )A .4B .3C . 2D . 16.将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有 ( ) A . 10种 B .20种 C . 36种 D .52种7.在△ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( )三角形A .等腰直角B . 钝角C . 锐角D . 非等腰的直角8.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足121..9n n n a a a ++>的最大正整数n 的值为 ( )A . 3B . 4C . 5D . 69. 已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2)()f x f x +=-,且当[0,2)x ∈ 时,2()1(1)f x o g x =+ ,则(2013)(f f +-的值为( ) A .-2 B . -1 C .1 D . 210.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足{}.3|,21,,O A O B O A O B P O P O AO B Rλμλμλμ+====++≤∈所表示的区域的面积是 ( )A .B .C .D 第Ⅱ卷 非选择题(共100分)二、填空题(本大题包括5小题,每小题5分,共25分。
安徽省合肥八中等2014届高三上学期联考(二)
数学理试题
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
本卷满分150分,考试时间:1 20分钟。
所有答案均在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷 选择题(共50分)
一、选择题(本题包括10小题,每小题5分,共50分。
每小题只有一个选项符合题意。
请
把正确答案填涂在答题卷的相应位置) 1. 已知i 是虚数单位,则11i i
i i ++
+= ( )
A .
3122
i - B .3122
i +
C .
13
22
i - D .
1322
i + 2. 设集合{}
2|60,Q x x x x N =--<∈,且P Q ⊆,则满足条件的集合P 的个数是
( ) A .4 B . 8
C . 16
D . 无数个
3.设p 、q 是两个命题,2
12
51
:1(||3)0,:066
p og x q x x ->-
+>,则p 是q 的 ( )
A . 充分而不必要条件
B .必要而不充分条件
C . 充分不必要条件
D .既不充分也不必要条件
4. 函数()sin()f x A x ωϕ=+(其中0,||2
A π
ϕ><
)的图象如图所示,为了得到
()sin 2g x x =的图像,则只要将()f x 的图像
( )
A .向右平移
6π
个单位长度 B .向右平移12π
个单位长度
C .向左平移6π
个单位长度
D .向左平移12
π
个单位长度
5.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若1sin cos ,2,4sin C
B A
=
=S △
ABC=
4( )
A .4
B .3
C . 2
D . 1
6.将4个颜色互不相同的球全部收入编号为1和2的两个盒子里,使得放入每个盒子里的
球的个数不小于该盒子的编号,则不同的放球方法有 ( ) A . 10种 B .20种 C . 36种 D .52种
7.在△ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以
1
3
为第三项,9为第六项的等比数列的公比,则这个三角形是( )三角形
A .等腰直角
B . 钝角
C . 锐角
D . 非等腰的直角
8.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足121..9
n n n a a a ++>的最大正整数n 的值为 ( )
A . 3
B . 4
C . 5
D . 6
9. 已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2)()f x f x +=-,且当
[0,2)x ∈ 时,2()1(1)f x og x =+ ,则(2013)(2014)f f +-的值为
( ) A .-2 B . -1 C .1 D . 2
10.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足
{}
.3|,21,,OA OB OAOB P OP OA OB R λμλμλμ+====++≤∈u u u r u u u r u u u r u u u r u u u r u u u r u u u r 所表示的区域
的面积是 ( )
A .
2 B .
2 C .
2
D
.
2
第Ⅱ卷 非选择题(共100分)
二、填空题(本大题包括5小题,每小题5分,共25分。
请把正确答案写在答题卷上)
11.
设函数1
221,0(),,0
x x f x x x -⎧-≤⎪
=⎨⎪>⎩若0()1f x >,则x 0的取值范围是 。
12.已知△OFQ 的面积为S
,且1.1,,22
OF FQ S OF FQ θ=<<
u u u r u u u r u u u r u u u r 若则夹角的取值范围是 。
13.若函数2
()()f x x x c =-在x=2处有极大值,则常数c 的值为 。
14.数列{a n }的通项公式cos 2
n n a n π
= ,其前n 项和为S n ,则S 2013= 。
15.给出下列四个命题:
①,tan tan ;
αβαβ∃><使得
②()42
f x ππ
θ∈若是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,(,),则
(sin )(cos );f f θθ>
③在△ABC 中,“6
A π
>
”是“1
sin 2
A >
”的充要条件;
④若函数()y f x =的图象在点(1,(1))M f 处的切线方程是1
22
y x =
+,则(1)'(1)3f f +=其中所有正确命题的序号是 。
三、解答题(本题包括6小题,共75分。
请把解题过程和正确答案写在答题卷上). 16.(满分12分)
设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=2bsinA 。
(Ⅰ)求B 的大小; (Ⅱ)求cosA+sinC 的取值范围。
17.(满分12分)
已知,a b <且满足2
2
60,60,a a b b --=--=数列{},{}n n a b 满足a 1=1,a 2=-6a ,a n+1=6a n -9a n-1
**1(2,),()n n n n n N b a ba n N +≥∈=-∈
(Ⅰ)求证数列{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式n a ; 18.(满分12分)
在△ABC 中,设..BC CA CA AB =u u u r u u u r u u u r u u u r
(Ⅰ)判断△ABC 的形状:
(Ⅱ)22[,],.33
BA BC B BA BC ππ+=∈u u u r u u u r u u u r u u u r 若且求的取值范围。
19.(满分13分)
某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周
的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。
(规定:各科达到预先设定的人数时称为满座,否则称
(I)求数学辅导讲座在周一、周三、周五都不满座的概率;
(II)设周三各辅导讲座满座的科目数为ζ,求随机变量ζ的分布列和数学期望。
20.(满分13分)
已知二次函数2
()()f x x ax a x R =-+∈同时满足; ①不等式()0f x ≤的解集有且只有一个元素;
②在定义域内存在120x x <<,使得不等式12()()f x f x >成立. 设数列{}n a 的前n 项和()n S f n =. (Ⅰ)求函数()f x 的表达式: (Ⅱ)求数列{}n a 的通项公式;
(Ⅲ)设各项均不为0的数列{}n c 中,所有满足11.0i c c +<的整数i 的个数称为这个数列
{}n c 的变号数,令*1()n n
a
c n N a =-
∈,求数列{}n c 的变号数, 21.(满分13分)
已知函数()11f x ax a x nx =+-+。
(Ⅰ)求()f x 的单调区间
(Ⅱ)已知函数有极小值2
e --.若,k Z ∈且()(1)0
f x k x -->对任意(1,)x ∈+∞恒成
立,求k 的最大值;。