第二讲插值与数据拟合模型
- 格式:doc
- 大小:204.00 KB
- 文档页数:8
插值与拟合大多数数学建模问题都是从实际工程或生活中提炼出来的,往往带有大量的离散的实验观测数据,要对这类问题进行建模求解,就必须对这些数据进行处理。
其目的是为了从大量的数据中寻找它们反映出来的规律。
用数学语言来讲,就是要找出与这些数据相应的变量之间的近似关系。
对于非确定性关系,一般用统计分析的方法来研究,如回归分析的方法。
对于确定性的关系,即变量间的函数关系,一般可用数据插值与拟合的方法来研究。
插值与拟合就是要通过已知的数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数对已知数据有较高的拟合进度。
如果要求这个近似函数经过所有已知的数据点,则称此类问题为插值问题。
当所给的数据较多时,用插值方法所得到的插值函数会很复杂,所以,通常插值方法用于数据较少的情况。
其实,通常情况下数据都是由观测或试验得到的,往往会带有一定的随机误差,因而,要求近似函数通过 所有的数据点也是没有必要的。
如果不要求近似函数通过所有的数据点,而是要求他能较好地反映数据的整体变化趋势,则解决这类问题的方法称为数据拟合。
虽然插值与拟合都是要构造已有数据的近似函数,但因对近似要求的准则不同,因此二者在数学方法上有很大的差异。
一、引例简单地讲,插值是对于给定的n 组离散数据,寻找一个函数,使该函数的图象能严格通过这些数据对应的点。
拟合并不要求函数图象通过这些点,但要求在某种准则下,该函数在这些点处的函数值与给定的这些值能最接近。
例1:对于下面给定的4组数据,求在110=x 处y 的值。
这就是一个插值问题。
我们可以先确定插值函数,再利用所得的函数来求110=x 处y 的近似值。
需要说明的是这4组数据事实上已经反映出x 与y 的函数关系为:x y =,当数据量较大时,这种函数关系是不明显的。
也就是说,插值方法在处理数据时,不论数据本身对应的被插值函数)(x f y =是否已知,它都要找到一个通过这些点的插值函数,此函数是被插值函数的一个近似,从而通过插值函数来计算被插值函数在未知点处的近似值。
数学建模插值与拟合数据插值与拟合插值与插值函数:已知由(可能未知或⾮常复杂)产⽣的⼀批离散数据,且个互异插值节点,在插值区间内寻找⼀个相对简单的函数,使其满⾜下列插值条件:再利⽤已求得的计算任⼀⾮插值节点的近似值,这就是插值。
其中称为插值函数,称为被插函数。
最⼩⼆乘拟合:已知⼀批离散的数据,互不相同,寻求⼀个拟合函数,使与的误差平⽅和在最⼩⼆乘意义下最⼩。
在最⼩⼆乘意义下确定的称为最⼩⼆乘拟合函数。
1)Lagrange插值法a.待定系数法:假设插值多项式,利⽤待定系数法即可求得满⾜插值条件的插值函数。
关键在于确定待定系数。
b.利⽤基函数的构造⽅法⾸先构造个满⾜条件:的次插值基函数,再将其线性组合即可得如下的Lagrange插值多项式:其中c.Lagrange插值余项注:上述两种构造⽅法所得的Lagrange插值多项式是⼀样的,即满⾜插值条件的Lagrange插值多项式是唯⼀的。
2)分段线性插值作分段线性插值的⽬的在于克服Lagrange插值⽅法可能发⽣的不收敛性缺点。
所谓分段线性插值就是利⽤每两个相邻插值节点作线性插值,即可得如下分段线性插值函数:其中特点:插值函数序列具有⼀致收敛性,克服了⾼次Lagrange插值⽅法的缺点,故可通过增加插值节点的⽅法提⾼其插值精度。
但存在于节点处不光滑、插值精度低的缺点。
3)三次样条插值三次样条插值的⽬的在于克服Lagrange插值的不收敛性和提⾼分段线性插值函数在节点处的光滑性。
所谓三次样条插值⽅法就是在满⾜下列条件:a.b.在每个⼦区间上是三次多项式的三次样条函数中寻找满⾜如下插值条件:以及形如等边界条件的插值函数的⽅法。
特点:三次样条插值函数序列⼀致收敛于被插函数,因此可通过增加节点的⽅法提⾼插值的精度。
4)插值⽅法的Matlab实现⼀维数据插值MATLAB中⽤函数interp1来拟合⼀维数据,语法是YI = INTERP1(X,Y,XI,⽅法)其中(X,Y)是已给的数据点,XI 是插值点,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲线⽐较平滑例:x=0:.12:1; x1=0:.02:1;y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,'o'); hold on;y1=interp1(x,y,x1,'spline');plot(x1,y1,':')如果要根据样本点求函数的定积分,⽽函数⼜是⽐较光滑的,则可以⽤样条函数进⾏插值后再积分,在MATLAB 中可以编写如下程序:function y=quadspln(x0,y0,a,b)f=inline(‘interp1(x0,y0,x,’’spline’’)’,’x’,’x0’,’y0’);y=quadl(f,a,b,1e-8,[],x0,y0);现求six(x)在区间[0,pi]上的定积分,只取5点x0=[0,0.4,1,2,pi];y0=sin(x0);I=quadspln(x0,y0,0,pi)结果得到的值为 2.01905,精确值为2⼆元函数插值:MATLAB中⽤函数interp2来拟合⼆维⽹格(X,Y)上的数据Z,语法是YI = INTERP2(X,Y, Z,XI, YI,⽅法)其中(X,Y,Z)是已给的数据点,(XI,YI)是插值点坐标,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲⾯⽐较平滑例:[x,y]=meshgrid(-3:.6:3,-2:.4:2);z=(x.^2-2*x).*exp(-x.^2-y.^2-x..*y);[x1,y1]=meshgrid(-3:.2:3,-2:.2:2);%⽣成⽹格,x1和y1均为同样size的矩阵z1=interp2(x,y,z,x1,y1,’spline’); %z1是矩阵,size 和x1,y1相同surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);-33如果数据不是在⽹格上取的,则可⽤函数griddata 来解决语法是YI = griddata(X,Y, Z ,XI, YI ,‘v4’)其中(X , Y ,Z )是已给的数据点,(XI ,YI )是插值点坐标,其中除了⽅法‘v4’外还有 'linear' -线性插值,默认 'cublc' -逐段三次Hermite 插值 'nearest' 其中‘v4’⽅法⽐较好例x=-3+6*rand(200,1); %⽣成随机点的x坐标向量xy=-2+4*rand(200,1); %⽣成随机点的y坐标向量yz=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); % 上述点的样本值向量z[x1,y1]=meshgrid(-3:.2:3,-2:.2:2); %⽣成⽹格,x1和y1均为同样size的矩阵z1=griddata(x,y,z,x1,y1,’v4’);surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);⽣成的图类似上图。
插值:求过已知有限个数据点的近似函数。
拟合:已知有限个数据点,求近似函数,可不过已知数据点,只要求在某种意义下它在这些点上的总偏差最小。
插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。
而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。
常见的插值:拉格朗日多项式插值、牛顿插值、分段线性插值、 Hermite 插值和三次样条插值。
拟合:拟合的实现分为MATLAB和excel实现。
MATLAB的实现就是polyfit函数:主要是多项式拟合。
更复杂的函数拟合,使用的是最小二乘法,或者其他方法。
但是需要经验公式:例如:此代码比较简单,大家自己看书就能立刻看明白。
关于拟合:拟合可以用excel,也可以用MATLAB,关于excel的用法。
大家自己探索,提示:添加趋势线。
关于matlab,需要了解一些函数:Polyfit polyval 其余参考MATLAB汇总中的MATLAB常用函数参考。
Polyfit是多项式拟合:需要输入x,y的数据,x和y个数一致,然后polyfit(x,y,n)n表示需要拟合的次数。
Polyval一般套用在polyfit后,用法看上图。
插值:插值是相对拟合略微麻烦一点点:插值的函数 interp2,这个大家经常见,关于interp2的用法网上介绍的很多。
这里有一个需要注意的事项就是:以下为例:x0=[1200:400:4000];y0=[1200:400:3600];z0=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1180 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];[xi,yi]=meshgrid(1200:10:4000,1200:10:3600);%网格化处理,这一步很多人会忘掉,往往会输入为:x1=1200:10:4000;y1=1200:10:3600的形式注意zil=interp2(x0,y0,z0,xi,yi,'linear');%使用linear进行插值,可以替换,更多的可以在MATLAB中使用help interp2mesh(xi,yi,zil)---------------------------------------------------------------------下面我们简单介绍meshgrid intrerp griddate重要,需要了解,尤其第四条(最后一页)interp2与griddata的区别1. meshgridmeshgrid用于从数组a和b产生网格。
插值与拟合§1多项式插值问题已知函数)(x f y =在n+1个互异结点处的函数值,如下表所示:求一个n 次多项式P n (x ),使得P n (x i )=y i ,i =1,2,……,n 。
并利用P n (x )近似未知函数f (x )。
从几何上看就是寻找一条n 次多项式曲线y = P n (x ),使其通过平面上已知的n+1个点:y 1y一、Lagrange 插值)()()()(1100x l y x l y x l y x P n n n +++=其中,ni x x x x x l j i nij j j ni j j i ,,2,1,)()()(00 =-∏-∏=≠=≠=二、Newton 插值)())(](,,,[))(](,,[)](,[)(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f y x P 其中,10110)()(],[x x x f x f x x f --=nk x x x x x f x x x f x x x f k k k k ,,2,1,],,,[],,,[],,,[01102110 =--=-随着插值结点的增多,插值多项式的次数也增加。
然而多项式次数越高,近似效果未必越好,反而容易出现高次插值的Runge现象,为此需要考虑下面的分段插值问题。
三、分段插值1、分段线性插值在相邻两个结点[x k,x k+1]内,求一条线段近似函数f(x),x∈[x k,x k+1]。
2、分段抛物插值在相邻三个结点之间用抛物线近似未知函数。
四、样条插值分段线性插值虽然避免了高次多项式插值的Runge 现象,然而在插值结点处又产生了新问题:不光滑。
为了克服这一现象,引入三次样条插值:在相邻两个结点之间用三次多项式函数s i (x )近似未知未知函数,并保证在插值结点处满足衔接条件:)1,,1()()(),()(),()(111-=''='''='=+++n i x s x s x s x s x s x s i i i i i i i i i i i i五、Matlab插值命令yi=interp1(x,y,xi,'method')(x,y):插值节点;xi:被插值点;yi:xi处的插值结果;method:插值方法;‘nearest’最邻近插值;‘linear’线性插值;‘spline’三次样条插值;‘cubic’立方插值。
插值与拟合方法在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度.插值问题:要求这个近似函数(曲线或曲面)经过所已知的所有数据点.通常插值方法一般用于数据较少的情况.数据拟合:不要求近似函数通过所有数据点,而是要求它能较好地反映数据的整体变化趋势。
共同点:插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法,由于对近似要求的准则不同,因此二者在数学方法上有很大的差异.插值问题的一般提法:已知某函数)(x f y =(未知)的一组观测(或试验)数据),,2,1)(,(n i y x ii⋅⋅⋅=,要寻求一个函数)(x φ,使iiy x =)(φ),,2,1(n i ⋅⋅⋅=,则)()(x f x ≈φ.实际中,常常在不知道函数)(x f y =的具体表达式的情况下,对于i x x =有实验测量值iy y =),,2,1,0(n i ⋅⋅⋅=,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ),,2,1,0(n i ⋅⋅⋅=称此问题为插值问题,并称函数)(x φ为)(x f 的插值函数,nx x x x ,,,,21⋅⋅⋅称为插值节点,),,2,1,0()(n i y x ii⋅⋅⋅==φ称为插值条件,即)()(iiix f y x ==φ),,2,1,0(n i ⋅⋅⋅=,则)()(x f x ≈φ.(1) 拉格朗日(Lagrange )插值设函数)(x f y =在1+n 个相异点nx x x x ,,,,21⋅⋅⋅上的函数值为ny y y y ,,,,21⋅⋅⋅,要求一个次数不超过n 的代数多项式nnnx a x a x a a x P +⋅⋅⋅+++=221)(使在节点i x 上有),,2,1,0()(n i y x P ii n ⋅⋅⋅==成立,称之为n 次代数插值问题,)(x P n称为插值多项式.可以证明n 次代数插值是唯一的.事实上: 可以得到j n j n i i j in y x x xx x P j i ∑∏==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式:101001011)(y x x x x y x x x x x P --+--=当n =2时,有三点二次(抛物线)插值多项式:2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----=(2)牛顿(Newton ) 插值牛顿插值的基本思想:由于)(x f y =关于二节点10,x x 的线性插值为)()()()()()()()()(00101000010101x x x x x f x f x p x x x x x f x f x f x p ---+=---+= 假设满足插值条件)2,1,0()()(2===i x p y x f iii的二次插值多项式一般形式为))(()()(1212x x x x c x x c c x p --+-+= 由插值条件可得⎪⎩⎪⎨⎧=--+-+=-+=)())(()()()()(21202202101011000x f x x x x c x x c c x f x x c c x f c 可以解出⎪⎪⎪⎩⎪⎪⎪⎨⎧------=--==020101121220101100)()()()()()(),(x x x x x f x f x x x f x f c x x x f x f c x f c所以))(()())(()()(10211020102x x x x c x p x x x x c x x c c x p --+=--+-+=类似的方法,可以得到三次插值多项式等,按这种思想可以得到一般的牛顿插值公式.函数的差商及其性质对于给定的函数)(x f ,用),,,(10n x x x f ⋅⋅⋅表示关于节点nx x x ,,,1⋅⋅⋅的n 阶差商,则有一阶差商:01011)()(),(x x x f x f x x f --=,121221)()(),(x x x f x f x x f --= 二阶差商:021021210),(),(),,(x x x x f x x f xx x f --=n 阶差商:0110211),,,(),,,(),,,(x x x x x f x x x f x x x f n n n n -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-差商有下列性质:(1)差商的分加性:∑∏=≠=-=⋅⋅⋅nk nk j j j kk n x xx f xx x f 0)(01)()(),,,(.(2)差商的对称性:在),,,(1nx x x f ⋅⋅⋅中任意调换jix x ,的次序其值不变.牛顿插值公式: 一次插值公式为))(,()()(01001x x x x f x f x p -+=二次插值公式为))()(,,()())()(,,())(,()()(1021011021001002x x x x x x x f x p x x x x x x x f x x x x f x f x p --+=--+-+=于是有一般的牛顿插值公式为)())()(,,,()()())()(,,,())()(,,())(,()()(11010111010102100100----⋅⋅⋅--⋅⋅⋅+=-⋅⋅⋅--⋅⋅⋅+⋅⋅⋅+--+-+=n n n n n n x x x x x x x x x f x p x x x x x x x x x f x x x x x x x f x x x x f x f x p可以证明:其余项为))(())()(,,,,()(11010n n n x x x x x x x x x x x x f x R --⋅⋅⋅--⋅⋅⋅=-实际上,牛顿插值公式是拉格朗日插值公式的一种变形,二者是等价的.另外还有著名的埃尔米特(Hermite )插值等.(3)样条函数插值方法样条,实质上就是由分段多项式光滑连接而成的函数,一般称为多项式样条.由于样条函数的特殊性质,决定了样条函数在实际中有着重要的应用.样条函数的一般概念定义 设给定区间],[b a 的一个分划b x x x a n=<⋅⋅⋅<<=∆1:,如果函数)(x s 满足条件:(1) 在每个子区间),,2,1](,[1n i x x ii ⋅⋅⋅=-上是k 次多项式; (2) )(x s 及直到k -1阶的导数在],[b a 上连续.则称)(x s 是关于分划△的一个k 次多项式样条函数,nx x x ,,,1⋅⋅⋅称为样条节点,121,,,-⋅⋅⋅n x x x 称为内节点,nx x ,0称为边界节点,这类样条函数的全体记作),(k S P∆,称为k 次样条函数空间.若),()(k S x s P∆∈,则)(x s 是关于分划△的k 次多项式样条函数.k 次多项式样条函数的一般形式为∑∑=-=+-+=ki n j k j jii k x x k i x x s 011)(!!)(βα其中),,1,0(k i i=α和)1,,2,1(-=n j jβ均为任意常数,而)1,,2,1(,0,)()(-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jj kj kj在实际中最常用的是2=k 和3的情况,即为二次样条函数和三次样条函数. 二次样条函数:对于],[b a 上的分划b x x x a n=<⋅⋅⋅<<=∆1:,则)2,()(!2!2)(11222102∆βαααP n j j jS x x x x x s ∈-+++=∑-=+其中)1,2,1(,0,)()(22-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x j j j j . 三次样条函数:对于],[b a 上的分划b x x xa n =<⋅⋅⋅<<=∆10:,则)3,()(!3!3!2)(1133322103∆βααααP n j j jS x x x x x x s ∈-++++=∑-=+其中)1,2,1(,0,)()(33-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jjj j .1 二次样条函数插值)2,()(2∆∈P S x s 中含有2+n 个待定常数,故应需要2+n 个插值条件,因此,二次样条插值问题可分为两类:问题(1):已知插值节点ix 和相应的函数值),,2,1,0(n i y i⋅⋅⋅=,以及端点0x (或n x )处的导数值0'y (或ny '),求)2,()(2∆∈PS x s 使得⎩⎨⎧'=''='⋅⋅⋅==))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.1)问题(2):已知插值节点ix 和相应的导数值),,2,1,0(n i y i⋅⋅⋅=',以及端点0x (或n x )处的函数值0y (或ny ),求)2,()(2∆∈P S x s 使得⎩⎨⎧==⋅⋅⋅='='))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.2)事实上,可以证明这两类插值问题都是唯一可解的.对于问题(1),由条件(5.1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=+='==-+++==++==++=∑-=00210211222102121211112020201002)(,,3,2,)(2121)(21)(21)(y x x s n j y x x x x x s yx x x s y x x x s j j i i j i jj j ααβααααααααα 引入记号T n ),,,,,(11210-=ββααα X 为未知向量,T nn y y y y ),,,,(10'= C 为已知向量, ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=-0010)(21)(21211)(212110211211021212212222211200x x x x x x x x x x x x x x x n n n n n A 于是,问题转化为求方程组C AX =的解Tn ),,,,,(1121-=ββααα X 的问题,即可得到二次样条函数的)(2x s 的表达式.对于问题(2)的情况类似.2.三次样条函数插值由于)3,()(3∆∈P S x s 中含有3+n 个待定系数,故应需要3+n 个插值条件,因此可将三次样条插值问题分为三类: 问题(1):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,n x 处的导数值0'y ,ny ',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧='='⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.3)问题(2):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,nx 处的二阶导数值0y '',n y '',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧=''=''⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.4)问题(3):类似地,求)3,()(3∆∈PSx s 使满足条件⎪⎩⎪⎨⎧=+=-==)2,1,0)(0()0(),,1,0()(0)(3)(33k x s x s n j y x s k n k j j(5.5)这三类插值问题的条件都是3+n 个,可以证明其解都是唯一的〔8〕.一般的求解方法可以仿照二次样条的情况处理方法,在这里给出一种更简单的方法.仅依问题(1)为例,问题(2)和问题(3)的情况类似处理.由于在)3,()(3∆PS x s ∈区间],[b a 上是一个分段光滑,且具有二阶连续导数的三次多项式,则在子区间],[1+j jx x 上)(3x s ''是线性函数,记),,,1,0)((3n j x s d jj =''=为待定常数.由拉格朗日插值公式可得nj x x h h x x d h x x d x s j j j jj j jj j ,,1,0,,)(1113=-=-+-=''+++显然jjj h d dx s -='''+13)(在],[1+j jx x上为常数.于是在],[1+j j x x 上有31233)(6)(2))(()(j jjj j j j j j x x h d d x x d x x x s y x s --+-+-'+=+(5.6)则当1+=j x x 时,由(5.6)式和问题(1)的条件得121231362)()(+++=-++'+=j j jj j j j j j j y h d d h d h x s y x s故可解得)2(6)(113+++--='j j j jjj j d d h h y y x s(5.7)将(5.7)式代入(5.6)式得)1,,1,0](,[,)(6)(2)()2(6)(1312113-=∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=++++n j x x x x x h d d x x d x x d d h h y y y x s j j j jj j j jj j j j j j j j(5.8) 在],[1j j x x-上同样的有),,2,1](,[,)(6)(2)()2(6)(131112111111113n j x x x x x h d d x x d x x d d h h y y y x s j j j j j j j j j j j j j j j j =∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=------------(5.9) 根据)(3x s的一阶导数连续性,由(5.9)式得)()2(6)0(311113j j j j j j j j x s d d h h y y x s '=++-=-'---- 结合(5.7)式整理得⎪⎪⎭⎫ ⎝⎛---+=++++--+-+----11111111162j j j j j j j j j j j j j j j j j h y y h y y h h d h h h d d h h h 引入记号⎪⎪⎭⎫ ⎝⎛---+=+=--+--111116,j j j j j j j j j j j j j h y y h y y h h c h h h a ,111--+=-j j j j h h h a .则)1,,2,1(,2)1(11-==++-+-n j c d a d d a j j j j j j(5.10)再由边界条件:nny x s y x s '=''=')(,)(33得⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--'=+⎪⎪⎭⎫ ⎝⎛'--=+----111100010106262n n n n n n n h y y y h d d y h y y h d d(5.11)联立(5.10),(5.11)式得方程组C D A =⋅(5.12)其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=----2121212112112200n n n n a a a a a aA ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n n d d d d 110 D ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--'⎪⎪⎭⎫ ⎝⎛'--=----111110001066n n n n n n hy y y h c c y h y y h C 由方程组(6.12)可以唯一解出),,1,0(n j d j=,代入(5.8)式就可以得三次样条函数)(3x s 的表达式.B样条函数插值方法磨光函数实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质.如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用.由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理.定义 若)(x f 为可积函数,对于0>h ,则称积分⎰+-=22,1)(1)(hx h x h dt t f h x f为)(x f 的一次磨光函数,h 称为磨光宽度.同样的,可以定义)(x f 的k 次磨光函数为)1()(1)(22,1,>=⎰+--k dt t f h x f hx h x h k h k事实上,磨光函数)(,x f h k 比)(x f 的光滑程度要高,且当磨光宽度h 很小时)(,x f h k 很接近于)(x f .等距B样条函数对于任意的函数)(x f ,定义其步长为1的中心差分算子δ如下:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=2121)(x f x f x f δ在此取0)(+=x x f ,则002121+++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=x x x δ是一个单位方波函数(如图5-1),记0)(+=Ωx x δ.并取1=h ,对)(0x Ω进行一次磨光得++++-+++-+++--+-+=-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰)1(2)1(2121)()(11212100212101x x x dt t dt t dt t t dt t x x xx x x x x x ΩΩ显然)(1x Ω是连续的(如图5-2).)(1x Ωo1-1/2 0 1/2 x -1 0 1 x 图5-1图5-2类似地可得到k 次磨光函数为kk j jk j k j k x k C x ++=+⎪⎭⎫ ⎝⎛-++-=Ω∑21!)1()(11 实际上,可以证明:)(x kΩ是分段k 次多项式,且具有1-k 阶连续导数,其k 阶导数有2+k个间断点,记为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j x j.从而可知)(x kΩ是对应于分划+∞<<⋅⋅⋅<<<-∞∆+110:k x x x 的k 次多项式样条函数,称之为基本样条函数,简称为k 次B样条.由于样条节点为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j xj是等距的,故)(x k Ω又称为k 次等距B样条函数.对于任意函数)(x f 的k 次磨光函数,由归纳法可以得到 [4,8] :⎪⎭⎫⎝⎛+≤≤--Ω=⎰∞+∞--22)()(1)(1,h x t h x dt t f htx h x f k h k 特别地,当1)(=x f 时,有1)(11⎰+∞∞--=-dt htx hk Ω,从而1)(⎰+∞∞-=dx x k Ω,且当k ≥1时有递推关系⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-Ω⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+Ω⎪⎭⎫ ⎝⎛++=Ω--212121211)(11x x k x k x k x k k k一维等距B样条函数插值等距B样条函数与通常的样条如下的关系: 定理设有区间],[b a 的均匀分划nab h n j jh x x j -=⋅⋅⋅=+=),,,1,0(:0∆,则对任意 k 次样条函数),()(k S x S p k ∆∈都可以表示为B样条函数族1021-=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+---n j k j k k j h x x Ω的线性组合[14].根据定理 5.1,如果已知曲线上一组点()jjy x ,,其中),,1,0,0(0n j h jh x x j⋅⋅⋅=>+=,则可以构造出一条样条磨光曲线(即为B样条函数族的线性组合)⎪⎭⎫⎝⎛--=∑--=j h x x c x S n kj k j k 01)(Ω 其中)1,,1,(-⋅⋅⋅+--=n k k j c j为待定常数.用它来逼近曲线,既有较好的精度,又有良好的保凸性.实际中,最常用的是3=k 的情况,即一般形式为⎪⎭⎫ ⎝⎛--=∑+-=j h x x c x S n j j 01133)(Ω 其中3+n 个待定系数)1,,0,1(+⋅⋅⋅-=n j c j可以由三类插值条件确定.由插值条件(5.3)得()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'='==-='=-'='∑∑∑+-=+-=+-=n n j j n i n j j i n j j y j n c h x S ni y j i c x S y j c h x S 113311330113031)(,,1,0,)(1)(ΩΩΩ(5.13)注意到)(3x Ω的局部非零性及其函数值:61)1(,32)0(33=±=ΩΩ,当2≥x 时0)(3=x Ω;且由)21()21()(223--+='x x x ΩΩΩ知,21)1(,0)0(33=±'='ΩΩ,当2≥x 时0)(3='x Ω.则(5.13)中的每一个方程中只有三个非零系数,具体的为⎪⎩⎪⎨⎧'=+-==++'=+-+-+--n n n i i i i y h c c n i y c c c y h c c 2,,1,0,6421111011(5.14)由方程组(5.14)容易求解出)1,,0,1(+⋅⋅⋅-=n j c j,即可得到三次样条函数)(3x S 表达式.类似地,由插值条件(5.4)得待定系数的)1,,0,1(+⋅⋅⋅-=n j c j所满足的方程组为⎪⎩⎪⎨⎧''=+-==++''=+-+-+--nn n n i i i i y h c c c n i y c c c y h c c c 21111021012,,1,0,642(5.15)由插值条件(5.5)得待定系数的)1,,0,1(+⋅⋅⋅-=n j cj所满足的方程组为⎪⎪⎩⎪⎪⎨⎧==++=-+---=-++-=-+-+-+-+--+--+--ni y c c c c c c c c c c c c c c c c c c c i i i i n n n n n n n n ,,1,0,640)()(2)(0)(0)(0)()(4)(1111011111111011(5.16)方程组(5.15),(5.16)也都是容易求解的.注:上述等距B样条插值公式也适用于近似等距的情形,但在端点0x 和n x 处误差可能较大,实际应用时,为了提高在端点0x 和nx 处的精度,可以适当向左右延拓几个节点.二维等距B样条函数插值设有空间曲面),(y x f z =(未知),如果已知二维等距节点()()τj y ih x y x ji++=0,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij⋅⋅⋅=⋅⋅⋅=,则相应的B样条磨光曲面的一般形式为⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--=∑∑--=--=j y y i h x x c y x s l m lj k ij n ki τΩΩ0011),( 其中),,2,1,0;,,2,1,0(m j n i c ij⋅⋅⋅=⋅⋅⋅=为待定常数,l k ,可以取不同值,常用的也是2,=l k 和3的情形.这是一种具有良好保凸性的光滑曲面(函数),在工程设计中是常用的,但只能使用于均匀分划或近似均匀分划的情况.(4) 最小二乘拟合方法最小二乘拟合方法的思想:由于一般插值问题并不总是可解的(即当插值条件多于待定系数的个数时,其问题无解),同时,问题的插值条件本身一般是近似的,为此,只要求在节点上近似地满足插值条件,并使它们的整体误差最小,这就是最小二乘拟合法.最小二乘拟合方法可以分为线性最小二乘拟合方法和非线性最小二乘拟合方法.线性最小二乘拟合方法设{}m k kx 0)(=φ是一个线性无关的函数系,则称线性组合∑==mk k k x a x 0)()(φφ为广义多项式.如三角多项式:∑∑==+=mk k mk kkx b kx ax 0sin cos )(φ.设由给定的一组测量数据),(iiy x 和一组正数),,2,1(n i w i⋅⋅⋅=,求一个广义多项式∑==mk k k x a x 0)()(φφ使得目标函数[]21)(∑=-=ni i i i y x w S φ(5.17)达到最小,则称函数)(x φ为数据),,2,1)(,(n i y x ii⋅⋅⋅=关于权系数),,2,1(n i w i⋅⋅⋅=的最小二乘拟合函数,由于)(x φ关于待定系数ia 是线性的,故此问题又称为线性最小二乘问题. 注意:这里{}m k kx 0)(=φ可根据实际来选择,权系数iw 的选取更是灵活多变的,有时可选取1=i w ,或nw i 1=,对于nw i1=,则相应问题称为均方差的极小化问题.最小二乘拟合函数的求解要使最小二乘问题的目标函数(5.17)达到最小,则由多元函数取得极值的必要条件得),,2,1,0(0m k a Sk==∂∂ 即),,2,1,0(0)()(10m k x y x a w i k ni i m k i k k i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡-∑∑==φφ 亦即),,2,1,0()()()(001m k x y w a x x w n i i k i i j mj n i i k i j i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡∑∑∑===φφφ(5.18)是未知量为ma a a a ,,,,21⋅⋅⋅的线性方程组,称(5.18)式为正规方程组.实际中可适当选择函数系{}m k kx 0)(=φ,由正规方程组解出ma a a a ,,,,210⋅⋅⋅,于是可得最小二乘拟合函数∑==mk kk x a x 0)()(φφ.一般线性最小二乘拟合方法将上面一元函数的最小二乘拟合问题推广到多元函数,即为多维线性最小二乘拟合问题.假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=和一组线性无关的函数系{}N k nk x x x 021),,,(=⋅⋅⋅φ,求函数∑=⋅⋅⋅=⋅⋅⋅Nk n k k n x x x a x xx 02121),,,(),,,(φφ对于一组正数mw w w ,,,21⋅⋅⋅,使得目标函数[]2121),,,(∑=⋅⋅⋅-=mi ni i i i i x x x y w S φ达到最小.其中待定系数N a a a a,,,,210⋅⋅⋅由正规方程组),,2,1,0(),(),(0N k y a Nj k j k j⋅⋅⋅==∑=φφφ确定,此处ini i i k mi i k ni i i k mi ni i i j i k j y x x x w y x x x x x x w ),,,(),(),,,(),,,(),(21121121⋅⋅⋅=⋅⋅⋅⋅⋅⋅=∑∑==φφφφφφ注:上面的函数φ关于ia 都是线性的,这就是线性最小二乘拟合问题,对于这类问题的正规组总是容易求解的.如果φ关于ia 是非线性的,则相应的问题称为非线性最小二乘拟合问题.非线性最小二乘拟合方法假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=,要求一个关于参数),,2,1,0(N j a j⋅⋅⋅=是非线性的函数),,,;,,,(1021Nn a a a x x x ⋅⋅⋅⋅⋅⋅=φφ对一组正数mw w w ,,,21⋅⋅⋅使得目标函数[]21102110),,,;,,,(),,,(∑=⋅⋅⋅⋅⋅⋅-=⋅⋅⋅mi N ni i i i i N a a a x x x y w a a a S φ达到最小,则称之为非线性最小二乘问题.这类问题属于无约束的最优化问题,一般问题的求解是很复杂的,通常情况下,可以采用共轭梯度法、最速下降法、拟牛顿法和变尺度法等方法求解.实例:黄河小浪底调水调沙问题问题的提出2004年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表5-1: 试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米·84··85·注:以上数据主要是根据媒体公开报道的结果整理而成的,不一定与真实数据完全相符.现在,根据试验数据建立数学模型研究下面的问题:(1) 给出估算任意时刻的排沙量及总排沙量的方法;(2) 确定排沙量与水流量的变化关系.模型的建立与求解对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现.考虑到实际中排沙量应该是随时间连续变化的,为了提高精度,我们采用三次B样条函数进行插值.下面构造三次B样条函数)(x S y =.由试验数据,时间是每天的早8点和晚8点,间隔都是12个小时,共24个点)24,,2,1(⋅⋅⋅=i t i.为了计算方便,令)23,,,1,0(122128⋅⋅⋅=+⎥⎦⎤⎢⎣⎡⋅+-=i i t x i i(5.19)则it 对应于)23,,1,0(1⋅⋅⋅=+=i i x i.于是以)23,,1,0(⋅⋅⋅=i x i为插值节点(等距),步长1=h .其相应的排沙量为)23,,1,0(⋅⋅⋅=i y i 对应关系如下表:·86·表5-2: 插值数据对应关系单位:排沙量为公斤函数)(x S y =所满足的条件为 (1)23,,1,0,)(⋅⋅⋅==i y x S ii;(2) 3500)(,56400)(2223222323231212-=--≈'='=--≈'='x x y y x S y x xy yx S y .取)(x S 的三次B样条函数一般形式为∑-=⎪⎭⎫⎝⎛--=24103)(j j j h x x c x S Ω·87·其中)24,,1,0,1(⋅⋅⋅-=j cj为待定常数,1=h .在这里⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<+-+-≤+-=Ω2,021,342611,3221)(23233x x x x x x x x x且易知⎪⎪⎪⎩⎪⎪⎪⎨⎧≥±===Ω2,01,610,32)(3x x x x和⎪⎪⎩⎪⎪⎨⎧≥±===Ω'2,01,210,0)(3x x x x 根据B样条函数的性质,)(x S ''在[]23,x x 上连续,则有()∑-=--'='='2413)(j jj xx c x S y Ω由插值条件(1),(2)可得到下列方程组()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'=''=-'='⋅⋅⋅==-=∑∑∑-=-=-=23241323024130241323)()(23,,1,0,)(y j c x S y j c x S i y j i c x S j j j j i j j i ΩΩΩ 即⎪⎩⎪⎨⎧'=+-'=+-⋅⋅⋅==++-+-23242311112223,,1,0,64y c c y c c i y c c c i i i i 将232324112,2y c c y c c '+='-=-代入前24个方程中的第一个和最后一个,便可得到方程组F AC =,其中·88·⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅=⨯232102424,421410141014124c c c c C A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'-'+=3400048000684000458400266626232322100 y y y y y y F显然A 为满秩阵,方程组F AC =一定有解,用消元法求解可得问题的解为56044.39830=c , 4117111.2031=c , 2159510.7882=c , 9189845.6433=c ,1203106.6364=c , 8239727.8115=c ,8249182.1166=c , 1263543.7217=c ,9287842.9988=c , 2302284.2839=c ,4317419.86810=c , 1304836.24311=c ,3307635.15912=c ,6305423.11913=c ,2270672.36214=c ,4240287.43115=c ,0154177.91216=c ,4103000.92017=c ,99818.406218=c , 43725.454719=c ,49279.775020=c ,32155.445221=c , 2098.444222=c ,7450.777923=c ,-450.777924311.2034,2232324011='+=='-=-y c c y c c . 将)24,,1,0,1(⋅⋅⋅-=j c j代入()∑-=--==24131)(j jj x c x S y Ω(5.20)即得排沙量的变化规律.由(5.19)和(5.20)式可得到第i 时间段(12小时为一段)内,任意时刻]12,0[∈t 的排沙量.则总的排沙量为()dt j t c dx x S Y j j⎰∑⎰-=--Ω==284824132411)(经计算可得1110844.1⨯=Y 吨,即从6月29日至7月10日小浪底水库排沙总量大约为1.844亿吨,此与媒体报道的排沙量基本相符.对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少.显然,变化规律并非是线性的关系,为此,我们问题分为两部分,从开始水流量增加到最大值2720立方米/每秒(即增长的过程)为一段,从水流量的最大值到结束为第二段,分别来研究水流量与排沙量的关系.具体数据如表5-3和5-4.表5-3: 第一阶段试验观测数据 单位:水流为立方米/每秒,含沙量为公斤/立方米表5-4: 第二阶段试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米对于第一阶段,由表5-3用Matlab作图(如图5-3)可以看出其变化趋势,我们用多项式作最小二乘拟合.·90··91·图5-3设拟合函数为∑==mk kk x a x 1)(φ确定待定常数),,1,0(m k ak=使得211111102])([∑∑∑===⎥⎦⎤⎢⎣⎡-=-=i i i m k k i k i i y x a y x S φ有最小值.于是可以得到正规方程组为m k x y a x mj i k i i j i j k i ,,1,0,0111111 ==⎪⎭⎫⎝⎛∑∑∑===+ 当3=m 时,即取三次多项式拟合,则3,2,1,0,1113111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑==+=+=+=k x y a x a x a x a x i k i i i k i i k i i k i i k i求解可得73321108423.1,103172.1,3.1784,-2492.9318--⨯=⨯-===a a a a .于是可得拟合多项式为332213)(x a x a x a a x +++=φ,最小误差为847.72=S ,拟合效果如图所示.·92·图:三次拟合效果,带*号的为拟合曲线.类似地,当4=m 时,即取四次多项式拟合,则正规方程组为4,3,2,1,0111411143111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑∑==+=+=+=+=k x y a x a x a x a x a x i ki i i k i i k i i k i i k i i k i求解可得104633210109312.1,1094.1,102626.7,12.0624,-7434.6557---⨯-=⨯=⨯-===a a a a a 于是可得拟合多项式为443322104)(x a x a x a x a a x ++++=φ,最小误差为102.66=S ,拟合效果如图5-5所示.图5-5:四次拟合效果,带*号的为拟合曲线.从上面的三次多项式拟合和四次多项拟合效果来看,差别不大.基本可以看出排沙量与水流量的关系.图5-6:第二段三·93··94· 次多项式拟合效果对于第二阶段,由表5-4可以类似地处理.我们用线性最小二乘法作三次和四多项式拟合.拟合效果如图5-6和5-7所示,最小误差分别为5.459=S 和1.236=S . 从拟合效果来看,显然四次多项式拟合要比三次多项式拟合好的多.图5-7:第二段四次多项式拟合效果。
一、插值与数据拟合模型一、下面先看一个例子。
例1 用最小二乘法求一个形如2bx a y +=的经验公式,数据如下:解 polyfit 函数)。
代码如下。
x=[19 25 31 38 44];y=[19.0 32.3 49.0 73.3 98.8];x1=x.^2;x1=[ones(5,1),x1’];ab=x1\y’x0=[19:0.2:44];y0=ab(1)+ab(2)*x0.^2;clfplot(x,y,’o’, x0,y0,’-r’);多项式拟合是线性拟合问题(注意:无论拟合的多项式次数是多少,多项式拟合都是线性拟合!)。
但在实际应用中,有时还需要作非线性拟合问题。
所谓线性拟合问题是指:需要拟合的函数中的未知常数都线性的。
如函数2bx a y +=中,常数b a ,是线性的。
但bx e ax y +=、bx ae y =中的常数b a ,都是非线性。
这种函数的拟合问题称为非线性拟合问题。
有的非线性拟合问题可以化为线性拟合问题。
例如在函数bx ae y =中,两边取对数,得bx a y +=ln ln ,再令a a ln 1=,y z ln =,则要拟合的函数就成bx a z +=1,这样就变成线性拟合问题了。
但也有不能化成线性拟合问题的情况,如函数bx e ax y +=就是这样。
在MATLAB5.3中求非线性拟合问题的函数是curvefit 。
例2 在区间]3,1[-内拟合函数bx e ax y +=。
解 用非线性拟合函数curvefit 来拟合。
先建立拟合函数。
% 建立拟合函数,文件名是nxxyhhx.m ,必须与函数名相同。
% 要拟合的函数中参数用x 表示,即x(1)=a x(2)=b ;% 而拟合函数中x 的值则用xdata 表示。
function v=nxxyhhx(x,xdata)v=x(1)*xdata+exp(x(2)*xdata);以下指令在命令窗中进行。
clf;x=linspace(-1,3,10);y1=2*x+exp(-0.1*x); %原型函数plot(x,y1,'-k')hold ony=y1+1.2*(rand(size(x))-0.5); %将原型函数加一些扰动plot(x,y,'*g')x0=[2.5,-0.5];a=curvefit('nxxyhhx',x0,x,y) %用原始实验数据拟合函数nxxyhhx (x),vpa([a(1),a(2)],8) % nxxyhhx (t)表达式中各项的系数。
y2=nxxyhhx(a,x);plot(x,y2,'-r')legend('原型函数','原始数据','用原始数据拟合的结果',4);二、血液流量问题小哺乳动物与小鸟的心跳速度比大哺乳动物与大鸟的快。
如果动物的进化为每种动物确定了最佳心跳速度,为什么各种动物的最佳心跳速度不一样呢?由于热血动物的热量通过身体表面散失,所以它们要用大量的能量维持体温,而冷血动物在休息时只需要极少的能量,所以正在休息的热血动物似乎在维持体温。
可以认为,热血动物可用的能量与通过肺部的血液流量成正比。
(1)试建立一个模型,将体重与通过心脏的基础(即休息时的)血液流量联系起来,用下面的数据检验你的模型。
(2)有许多可得到脉搏数据但没有血液流量数据的动物,建立一个模型将体重与基础脉搏联系起来,用下面的数据检验你的模型。
(3)在检验你在(1)和(2)中的模型时会出现不一致,试进行分析。
这里只对该问题作一些拟合方面的练习。
符号用w表示动物的体重,单位:千克用v表示动物的基础血液流量,单位:公升/分用t表示动物的年龄,单位:岁用n表示动物的脉搏,单位:次/分假设动物的基础血液流量与动物的体重之间存在一定的函数关系)v=,可(wf以用表一中的数据来拟合这个函数。
函数)(wf是一个什么样的函数呢?由于我们对“动物的基础血液流量与动物的体重”之间的关系并不清楚,所以只有根据表一中的数据得出函数)f一些(w性质。
先将表一中的数据用MATLAB软件作出图形。
从图上可以看出,这个函数关系)v=应当是一个单调增加的函数。
因此,拟合的函数如果不具有这一性f(w质的话,就不能作为是好的选择。
一般地,可以假设函数)f是一个多项式,通常,这个多项式的次数不要超(w过3、4次,具体可根据拟合的效果来定。
当然也可以用其它函数来拟合。
为了提高拟合的效果,函数)(w f 还可以用分段函数来拟合。
以下是用分段函数拟合的结果:⎪⎩⎪⎨⎧∈-+-∈-+-+-==]24,16[,6265.7431526.9204756.0]16,1.4[,0649.433418.219727.21706.00033.0)(2234w w w w w w w w w f v拟合函数图形是:问题1:写出拟合函数)(w f v =和作出上面图形的MATLAB 指令。
同样可以拟合人的基础血液流量与体重之间的函数关系)(w g v =,可以用表二中的数据来拟合这个函数。
这里用4次多项式来拟合,拟合的结果是:]72,18[,98.16340.41728.000351.0000025.0234∈-+-+-=w w w w w v拟合函数图形是:问题2:写出拟合函数)(w g v =和作出上面图形的MATLAB 指令。
将上面拟合出来的函数)(w f v =和)(w g v =在它们的公共定义域]24,18[上的图形画出来,如下图所示。
从图形上可以看出人类与动物之间的差异。
问题3:写出作出上面图形的MATLAB 指令。
下面考虑动物、人类的体重与基础脉搏的函数关系。
假设人类的体重与基础脉搏之间的函数关系是)(1n H w =,利用表二中的数据来拟合这个函数。
这里用3次多项式拟合。
拟合的结果是:]96,60[,216.4502450.16143347.00002566.0)(231∈-+-==n n n n n H w其图形是:问题4:写出拟合函数)(1n H w =和作出上面图形的MATLAB 指令。
假设哺乳动物的体重与基础脉搏之间的函数关系是)(2n H w =,利用表五中的数据来拟合这个函数。
这里用分段函数来拟合。
由于当100<n 时,w 变化激烈,所以用多项式已不能描述其变化的规律,可用其它函数来拟合。
拟合的结果是:⎪⎩⎪⎨⎧<⨯≥+-==100,1056493.7100,7835.140345386.0)(6122n n n n n H w图形如下。
问题5:写出拟合函数)(2n H w =和作出上面图形的MATLAB 指令。
假设小鸟类、大鸟类的体重与基础脉搏之间的函数关系分别是)(31n H w =和)(32n H w =,利用表三、四中的数据来拟合这两个函数。
拟合的结果是:]615,135[,685.29561275.10031454.00000021.0)(2331∈+-+-==n n n n n H w]401,65[,1004631.2)(31032∈⨯==n n n H w 其图形如下。
问题6:写出拟合函数)(31n H w =和)(32n H w =和作出上面图形的MATLAB 指令。
下面考虑人类的基础血液流量与基础脉搏的函数关系。
假设人类的基础血液流量与基础脉搏之间的函数关系是)(n U v =,利用表二中的数据来拟合这个函数。
拟合结果是:]96,60[,322.9893316.37482394.000217132.0)(23∈+-+-==n n n n n U v考虑复合函数)]([1n H g v ==-.2489e-4*(.256557e-3*n^3-.143347*n^2+16.2450*n-450.216)^4+.3506e-2*(.256557e-3*n^3-.143347*n^2+16.2450*n-450.216)^3-.1728*(.256557e-3*n^3-.143347*n^2+16.2450*n-450.216)^2+.1113457380e-2*n^3-.622125980*n^2+70.5033000*n-1970.917440;用MATLAB 软件画出上面两个函数的图形:由上图可以看出,两者有较大的差异。
原因就是前面的假设不合理,或不够完善。
下面我们假设人类的的基础血液流量是体重和年龄的二元函数),(t w V v =,用表二中的数据来拟合该函数。
用二元二次多项式来拟合。
结果是:),(t w V v =1606.1471439.484792.00171689.00896015.0025085.022++---=t w t wt w 问题7:写出以上相应的MATLAB 程序和作出上面图形的MATLAB 指令。
三、水塔流量估计某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约两个小时。
水塔是一个高12.2米、直径17.4米的正圆柱。
按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作。
下表是某一天的水位测量记录、试估计任何时刻(包括水泵正供水时)从水。