2014人教版七年级数学下册期中复习题_(3)
- 格式:doc
- 大小:148.82 KB
- 文档页数:11
第11题图第10题图2013-2014学年第二学期七年级数学期中试卷题 号 一 二 三 总 分 得 分一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项,请将正确选项的代号填在题后的括号内.)1.三条直线相交于一点,构成的对顶角共有( )A .3对B .4对C .5对D .6对2.16的算术平方根是 ( )A 、±4B 、4C 、±2D 、23.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30°B.25°C.20°D.15°4.如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠第6题图ECO =30°,则∠DOT 等于( )A.30°B.45°C. 60°D. 120°5.在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限6.在俄罗斯方块游戏中,已拼成的图案如图所示,现又出现一小方块拼图向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整的图案,使其自动消失.( )A.向右平移1格B.向左平移1格C.向右平移2格D.向右平移3格7.如图,数轴上表示1-,2-的对应点为A 、B ,点C 在数轴上,且AC =AB ,则点C 所表示的数是 ( )A. 12-B. 21-C. 22-D. 22-8.一只跳蚤在第一象限及 x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(5,0)B. (4,0)C.(0,5)D.(5,5)二、填空题(本大题共8小题,每小题3分,共24分.)9.23-的相反数是_________,绝对值是_________.10.如图,已知AB ∥CD , 则图中与∠1互补的角有 个. 11.如图,已知直线a ∥b ,∠1=40°,∠2=60°,则∠3等于 ° .12. 点P 在第三象限,且横坐标与纵坐标的积为12,写出三个符合条件的P 点的坐标:、 、 .13.小红做了棱长为5cm 的一个正方体盒子,小明说:“我做的盒子的体积比你的大218cm 3.” 则小明的盒子的棱长为 cm ;14.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使点A 与坐标原点O 重合,则B 平移后的坐标是 .15.观察下列计算过程:112 =121,121=11;1112=12321,12321=111;因此猜想76543211234567898=_______16.下列说法中,正确..的是 (本题有若干个答案;多填、错填得零分,少填酌情扣分。
2013-2014学年新版人教版七年级下学期数学期中考试试题(1)2012-2013七年级下学期期中考试数学试卷(新人教版)一、选择题:(共12小题,每小题2分,共24分)1、4的算术平方根值等于( ) A .2 B .-2 C .±2 D .22、一个自然数a 的算术平方根为x ,则a+1的立方根是( ) A .31x + B .23(1)x + C .321a + D .321x +3、如图所示,点E 在AC 的延长线上,下列条件中能判断...CDAB //( )A.43∠=∠ B. 21∠=∠ C.DCED ∠=∠ D.180=∠+∠ACD D4、如图,AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC 的度数为( )A .30°B .60°C .90°D .120°5、A (―4,―5),B (―6,―5),则AB 等于( ) A 、4 B 、2 C 、5 D 、36、由点A (―5,3)到点B (3,―5)可以看作( )EDC BA 4321第3题第4第710、若3x +=3,则(x+3)2的值是( )A .81B .27C .9D .311、|6-3|+|2-6|的值为( ) A .5 B .5-26 C .1 D .26-112、已知⎩⎨⎧=+=+25ny x y mx 的解为⎩⎨⎧-==13y x ,则mmn )2(等于( ) A 、4 B 、8 C 、16 D 、32二、填空题:(共12小题,每小题2分,共24分)1、-127的立方根为 。
2、在下列各数 中无理数有 个。
32,16,7,-π,-32,2,203,-5,38,925,0,0.5757757775……(相邻两个5之间的7的个数逐次加1).3、如图,BD 平分∠ABC ,ED ∥BC ,∠1=250,则∠2= °,∠3= °4、如图,计划把河水引到水池A 中,先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是 。
初中数学试卷 桑水出品北京师大附中2014—2015学年度第二学期期中考试初 一 数 学 试 卷试卷说明:本试卷满分120分,考试时间为120分钟.一.选择题:(本题共30分,每小题3分)1. 下列图形中,由AB ∥CD ,能使∠1=∠2成立的是( )A .B .C .D .2.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是( )A .直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形3.以下列各组线段为边,能组成三角形的是( )A .1cm, 2cm, 4cm B. 8cm, 6cm, 4cm C. 12cm, 5cm, 6cm D. 2cm, 3cm, 6cm4.下列计算中,正确的个数是( )个. ①811的平方根是91±; 2(5)5-=-; ③25 =±5; ④3-8 = -2; 235=A.0 B. 1 C. 2 D. 35.如图,如果在阳光下你的身影的方向为北偏东60︒方向,那么太阳相对于你的方向是( ) .A .南偏西60︒B .南偏西30︒C .北偏东60︒D .北偏东30︒6.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50°B .30°C .20°D .15°7.如果a >b ,c <0,那么下列不等式成立的是( )A .a b c c> B .c -a >c -b C .ac >bc D. a +c >b+c 8. 不等式组⎩⎨⎧≤-<-3x 204x 2的解集在数轴上表示正确的是( ) A B C D9. 若3―a 在实数范围内有意义,则a 的取值范围是( ).A .a ≥3B .a ≤3C .a ≥―3D .a ≤―310. 若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是( ) 1 2 3B D A PC D CB AA.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7二.填空题:(本题共30分,每小题3分)(请将答案填在答题纸上)11.如图,把长方形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=______.12.2)2(-的算术平方根是_____________.13.计算:(3.14―π)2-|2-π|=__________. 14. 已知不等式12-3x m m ->()的解集是x >2,则m = . 15.设a <b <0,则关于x 的不等式组⎩⎨⎧><-ax b x 1的解集是___________.16.如下图,小陈从O 点出发,前进10米后向右转20O ,再前进10米后又向右转20O ,……,这样一直走下去,他第一次回到出发点O 时一共走了_______米.17.若实数x 、y 满足412112+-+-=x x y ,则xy 21的平方根是______. 18. 如下图,AB ∥CD ,且∠BAP =60°-α,∠APC =45°+α, ∠PCD =30°-α,则α=_________.19.如下图,△ABC 中,D 、E 是BC 边上的点,∠BAD=∠BDA ,∠CAE=∠CEA ,∠DAE=BAC ∠31,则∠BAC 的度数为______.16题 18题 19题 20.如图,将图1三边长都是2cm 的三角形沿着它的一边向右平移1cm 得图2,再沿着相同方向向右平移1cm 得图3,若按照这个规律平移,则图5中所有三角形周长的和是______cm ;图n (n ≥2). 北京师大附中2014—2015学年度第二学期期中考试初 一 数 学 试 卷 答 题 纸班级 姓名 学号_______ 成绩_______一.选择题(请将选择题的答案填在下列表格中)本题共30分,每小题3分 题号 1 2 3 4 56 7 8 9 101A E D CB F11题1312523-+≥-x x 答案二.填空题(请将填空题的答案填在下列表格中)本题共30分,每小题3分三.解答题:(本题共60分,每小题5分)21.计算:(1))131)(951()31(32--+- (2)64273--2316--3- 22.解不等式,并把它的解集在数轴上表示出来. (1))34(2125-<-x x ; (2) 23.已知不等式组:⎪⎩⎪⎨⎧-->+++<-4138)1(3282)12(3x x x x (1)求此不等式组的整数解;(2)若上述整数解满足方程a x ax 26-≤+,化简11--+a a .24.如图所示,A 、B 两地位于某高速铁路沿线(直线)的两侧.(1)为方便A 、B 两地居民互相交往,A 、B 两地商议,在高速铁路沿线的某地P 点架一座立交桥,然后各自修一条通往立交桥的公路.请问在单位路程造价相同的情况下,桥架在何处,才能使修路的总造价最低?(要求:在图中标出架桥的位置,并写出所依据的数学原理).(2)由于B 地居民人数较多,铁路部门决定在沿线离B 地最近的地方Q 设一个车站,方便人们乘坐火车,请你画出车站应在的位置,并写出所依据的数学原理.25.如图,AD ∥BC ,点E 在BD 的延长线上,且BE 平分∠ABC ,若∠A =70°,求:∠A DE 的度数.26.如图,△ABC 中,∠B=26°,∠C=70°,AD 平分∠BAC ,AE ⊥BC 于E , EF ⊥AD 于F ,求∠DEF 的度数. 27.如图,请你从给出的①、②、③中选择两个作为题设,剩下一个作为结论,组成一个真命题并证明.①EF ⊥BC ,AD ⊥BC ; ②AB // DG ;③∠1=∠2.(写出完整的条件和结论,不能只写序号): 题设(已知): ; 结论(求证): .题号11 12 13 14 15 答案题号16 17 18 19 20 答案 AC BD FE A EC B D证明:28.我校初一年级学生计划去春游,现有36座和42座两种客车供选择租用,根据报名参加的人数,只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,这辆车的空余座位超过6个,车上学生超过24人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)我校初一年级共有多少人报名参加春游?(2)请你帮忙设计最省钱...的租车方案. 29. 已知两个大小相同的含30°角的直角三角板ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上, AB 与EF 交于点G . 直线BC 与DE 交于点H ,∠C =∠EFB =90º,∠E =∠ABC =30º.(1)如图(2)将三角板ABC 绕点F 逆时针旋转一个大小为α的角,当AB //FD 时,求∠EGB +α的度数;(2)在将三角板ABC 绕点F 逆时针旋转α角)600(︒<<︒α的过程中,请你判断∠EGB 与α的数量关系是否发生变化;如果不变,请写出并证明这个关系;如果改变,请说明理由.30.对于三个数a b c 、、,{},,M a b c 表示,,a b c 这三个数的平均数,{}min ,,a b c 表示a b c 、、这三个数中最小的数,如:{}12341,2,333M -++-==,{}min 1,2,31-=-;{}1211,2,33a a M a -+++-==,{}()()1min 1,2,11a a a a ≤-⎧⎪-=⎨->-⎪⎩. 解决下列问题:(1)填空:若{}min 2,22,422x x +-=,则x 的取值范围是 ;(2)①若{}{}2,1,2min 2,1,2M x x x x +=+,那么x = ;②根据①,你发现结论“若{}{},,min ,,M a b c a b c =,那么 ”(填,,a b c 大小关系);③运用②,填空:若{}{}22,2,2min 22,2,2M x y x y x y x y x y x y +++-=+++-,则x y += .。
七年级数学下学期期中测试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个“七”字形,与∠1是同位角的是()A、∠2B、∠3C、∠4D、∠53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°5、下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形6、一个正数x的平方根是2a-3与5-a,则x的值是()。
A.64B.36C.81D.497、如图,已知:∠1=∠2,∠3=∠4,∠A=80°,则∠BOC等于()A、95°B、120°C、130°D、无法确定8、若a*=1.1062,b*=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A 与坐标原点0重合,则B平移后的坐标是()。
A.(0,-2)B.(4,2)C.(4,4)D.(2,4)二、填空题(本大题共7小题,每小题4分,共28分)11、用科学记数法表示9349000(保留2个有效数字)为________________.12、如图1直线AB,CD,EF相交与点O,图中∠AOE的对顶角是_________,∠COF的补角是__________。
13、如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:______________________________14、多项式4x²+4mx+36是一个完全平方式,则m=_____________.15、如图,AC平分∠BAD,∠DAC=∠DCA,填空:因为AC平分∠BAD,所以∠DAC= _______,又因为∠DAC=∠DCA,所以∠DCA= _______,所以AB∥_______。
2013-2014学年下期期中考试卷七年级数学亲爱的同学们,相信你通过努力在知识与能力方面都得到了提高,也体会到 了数学的实际应用价值,现在请让我们一起仔细审题,冷静思考,认真作答,相 信成功将属于你! 一.细心选一选•(每题3分,共24分) 1.在平面直角坐标系中,点 A.第一象限 B.第二象限 C . 】 第三象限 D.第四象限 2. 下列等式正确的是【A .• (「3)2 =- 3 B . . 144 =± 12 C.3-8 = 2D .—■■■< 25 = — 53. 估计.10+1的值在【】A.1 到2之间B.2到3之间C.3到4之间D.4 到5之间 4. 如图,下列能判定 AB // CD 的条件的个数是【(1) Z B /BCD =180 (2) .1 = . 2 ; (3). 3 = • 4 ;(4) Z B Z 5A.1个 B.2 个 C.3个个-1,2 )在【 】】第4题图第5题图第6题图5.A. 6. A.10 7. 如图,若在象棋盘上建立直角坐标系,使 则炮”位于点(-2,1) B. (1,-1) C. (-1,2)将一副直角三角板 ABC 和EDF 如图放置 落在AC 边上,且ED // BC ,则.CEF ° B.15 ° C.20 ° 将”位于点-2),象”位于(3, -2) 【A .C.8.D. (1 , -2) (其中.A =60° , . F =45 的度数为D.25 李明同学早上骑自行车上学, 中途因道路施工步行一段路, 骑自行车的平均速度是 250米/分钟,步行的平均速度是 的距离是2900米•如果他骑车和步行的时间分别为 x ,【 】1x y = _t y 4 B .250x 80y =29001x y = _4D.、80x+250y =2900已知点 A (1,0),B (0, x y = 1580x 250y 二 2900 x y = 15 250x 80y二 2900),使点E】 到学校共用时 80米/分钟.他家离学校 y分钟,列出的方程是 15分钟.他2),点P 在x 轴上,且△ PAB 的面积为5,则点P 的坐标是( ) A . (-4, 0)B. (6, 0)C . (-4, 0)或(6, 0)D. (0, 12)或(0, -8)精心填一填.(每题2分,共14分) 9. 命题 "同旁内角互补,两直线平行” 题设是 ________________ 结论是 _______________10.81的平方根是 ____________11已知$ = 2是二元一次方程组 严+ by = 8的解,则a + b = y =1 bx + ay=112. 如图,要把池中的水引到 D 处,可过D 点引DCLAB 于C,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ____________ . ________13. 如图,把一个长方形纸片沿 EF 折叠后,点D , C 分别落在D', C 的位置.若/ EFB=65°则/ AED 的度数为 ____________ 。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )A. 130B. 140C. 50D. 403. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A 小于5cm PA = B. 等于5cm PA = C. 大于5cm PA = D. 不确定 4. 下列图形中1∠与2∠是同位角是( ) A B. C. D. 5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±6. –27的立方根与81的平方根之和是 A. 0B. –6C. 0或–6D. 67. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个8. 若点M 的坐标是(a ,b),且a>0,b<0,则点M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( )A. 1B. 12C. 14D. 12- 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4 B. 3 C. 2 D. 1二、填空题:(每题3分,共30分)11. 如图所示,直线AB,CD,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .12. 如图,直线a ∥b ,则∠ACB =______13. 比较大小:12π-________1214. 已知|a -5|3b +=0,那么a -b =_______.15. 81________,25的相反数是________.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴距离相等,则点P 的坐标是_____.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.三、解答题(共60分)21. 计算: (1)3352335(2)|23|2+(32339718111682⎛⎫--- ⎪⎝⎭22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.25. 如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?29. 如图,AD ∥BC ,BE 平分∠ABC 交AD 于点E ,BD 平分∠EBC.(1)若∠DBC =30°,求∠A 的度数;(2)若点F 在线段AE 上,且7∠DBC -2∠ABF =180°,请问图中是否存在与∠DFB 相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.答案与解析一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180°[答案]A[解析][分析] 运用平行线的判定方法进行判定即可.[详解]解:选项A 中,∠1=∠2,只可以判定AC//BD (内错角相等,两直线平行),所以A 错误; 选项B 中,∠3=∠4,可以判定AB//CD (内错角相等,两直线平行),所以正确;选项C 中,∠5=∠B ,AB//CD (内错角相等,两直线平行),所以正确;选项D 中,∠B +∠BDC =180°,可以判定AB//CD (同旁内角互补,两直线平行),所以正确; 故答案为A.[点睛]本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键. 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )A. 130B. 140C. 50D. 40[答案]C[解析][分析]先由已知与平角定义推出∠3=∠5,利用同位角相等,两直线平行得a ∥b ,在利用平行线的性质即可求出∠2.[详解]根据平角定义得∠4+∠5=180º,又∵34180∠+∠=︒,∴∠3=∠5,∴a ∥b ,∴∠1=∠2,∵∠1=50º,∴∠2=50º,故选择:C .[点睛]本题考查平行线的判定与性质,以及平角定义,掌握平角定义与平行线的判定和性质是解题关键. 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A. 小于5cm PA =B. 等于5cm PA =C. 大于5cm PA =D. 不确定[答案]B[解析][分析]根据点到直线的距离的定义得出即可.[详解]解:根据点到直线的距离的定义得出P 到直线l 的距离是等于5cm PA =,故选:B .[点睛]本题考查了点到直线的距离的定义,能熟记点到直线的距离的定义的内容是解此题的关键,注意:从直线外一点到这条直线的垂线段的长度,叫点到直线的距离.4. 下列图形中1∠与2∠是同位角的是( ) A. B. C. D.[答案]C[解析][分析]同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,据此进行判断即可.[详解]解:A 图不符合同位角定义,故此选项错误;B 图不符合同位角定义,故此选项错误;C 图符合同位角定义,可知答案是C ;D 图不符合同位角定义,故此选项错误.故选:C .[点睛]本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±[答案]B[解析][分析]利用正数的平方根有两个,它们是互为相反数,列出方程,解方程求出4a =,再求某数即可.[详解]某数x 的两个不同的平方根是23a +与15a -,列方程得:23a ++15a -=0,合并得:3120a -=,解得:4a =,当4a =时,23=24311a +⨯+=,则()223=121x a =+.故选择:B .[点睛]本题考查正数的平方根问题,掌握数的平方根的性质,会用正数两个平方根构造方程是解题关键.6. –27A. 0B. –6C. 0或–6D. 6 [答案]C[解析][分析]根据立方根的定义求得-27的立方根是-3,根据平方根的性质±3,由此即可得到它们的和.[详解]∵-27的立方根是-3,,9的平方根是±3,所以它们的和为0或-6.故选C.[点睛]此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.7. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析]利于平行线的定义、平行公理、平行线的性质及垂直的定义分别判断后即可确定正确的选项.[详解]解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;(2)垂直于同一条直线的两条直线平行,故错误,是假命题;(3)两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;(4)在平面内过一点有且只有一条直线与已知直线垂直,正确,是真命题.故选A.[点睛]本题考查了命题与定理的知识,解题的关键是了解平行线的定义、平行公理、平行线的性质及垂直的定义等知识,难度不大.8. 若点M的坐标是(a,b),且a>0,b<0,则点M在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]D[解析]根据各象限内点的坐标符号特征判定,:∵a>0,b<0,∴点M(a,b)在第四象限,故选D9. 若22xy=⎧⎨=⎩是方程1x my-=的一个解,则m的值为( )A. 1B. 12C.14D.12-[答案]B [解析] [分析]把22x y =⎧⎨=⎩代入1x my -=,得到关于m 的方程,解方程即可得到结论. [详解]解:把22x y =⎧⎨=⎩代入1x my -=得,2-2m=1, 解得:m=12, 故选:B .[点睛]本题主要考查的是二元一次方程的解,得到关于m 的方程是解题的关键.10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4B. 3C. 2D. 1[答案]C[解析]由题意得:x=y,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k-1)y=6得2k+2(k-1)=6,解得k=2.故选C . 二、填空题:(每题3分,共30分)11. 如图所示,直线AB,CD,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .[答案]55︒[解析][分析]根据题意由对顶角相等先求出∠ FOD,然后根据AB ⊥CD,∠2与∠ FOD 互为余角,求出即可.[详解]∵CD 、EF 相交于点O ,∴∠FOD=∠1=35︒,∵AB ⊥CD,∴∠2=90︒−∠FOD=903555︒-︒=︒,故答案为:55︒.[点睛]本题考察对顶角相等和垂线的定义及性质,熟练掌握基础知识是解题的关键.12. 如图,直线a ∥b ,则∠ACB =______[答案]78°[解析]如图,延长BC 与a 相交,已知a ∥b ,根据两直线平行,内错角相等可得∠1=∠50°;再由三角形的外角的性质可得∠ACB =∠1+28°=50°+28°=78°.点睛:本题主要考查平行线的性质和三角形外角性质,较为简单,属于基础题.13. 比较大小:12π-________12 [答案][解析][分析] 利用估值比较法3222π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变22π-<-,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小.[详解]∵322π>22832=22<, ∴22π>, ∴22π-<-, ∴12π-<12.故答案为:.[点睛]本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.14. 已知|a -5|=0,那么a -b =_______.[答案]8[解析][分析]利用非负数性质得:a-5=0,b+3=0,可求a,b.[详解]因为|a -5|=0,|a -5|≥≥0,所以,a-5=0,b+3=0,所以,a=5,b=-3.所以,a-b=8.故答案为8点睛]本题考核知识点:非负数性质. 解题关键点:利用非负数性质.15. ________,2的相反数是________.[答案] (1). 3; (2).2.[解析][分析] 根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.[详解]9=3=;=3,∵(222--=-=,∴22,故答案为:2.[点睛]本题考查了算术平方根和相反数的性质,,再求出9的算术平方根,熟悉相关性质是解题的关键.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.[答案](4,0).[解析][分析]根据点在x 轴上的特点解答即可.[详解]解:∵点P (a+1,2a-6)x 轴上,∴2a-6=0,解得,a=3,∴a+1=4∴点P 的坐标是(4,0);故答案为:(4,0).[点睛]本题主要考查了点在x 轴上时纵坐标是0的特点.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____.[答案](33)P ,或(66)P -, [解析][分析]根据点坐标到x 轴的距离即是点的纵坐标的绝对值,点到y 轴距离,即点的横坐标的绝对值,据此解题.[详解](236)P a a -+,到两坐标轴的距离相等, 236a a ∴-=+236a a ∴-=+或236a a -=--解得:1a ∴=-或4a =-当1a =-时,点P 的坐标为(33)P ,当4a =-时,点P 的坐标为(66)P -,故答案:(33)P ,或(66)P -, [点睛]本题考查直角坐标系中,各象限点坐标的特征,是重要考点,难度较易,掌握相关知识是解题关键. 18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.[答案] (1). 1 (2). 0[解析][分析][详解]解:根据题意,得1{1m n m n -=+= 解,得m=1,n=0.故答案是1,0.考点:二元一次方程的定义.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.[答案]514319x y x y ++=+=⎧⎨⎩ [解析][分析]根据比赛总场数和总分数可得相应的等量关系:胜的场数+平的场数+负的场数=14;胜的积分+平的积分=19,把相关数值代入即可.[详解]∵共踢了14场,其中负5场,∴x+y+5=14;∵胜一场得3分,平一场得1分,负一场是0分,共得19分.∴3x+y=19,故列的方程组为514319x y x y ++=+=⎧⎨⎩ , 故答案为514319x y x y ++=+=⎧⎨⎩ [点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.[答案]0[解析][分析]根据非负数的性质列出方程组,求出x 、y 的值代入所求代数式计算即可.[详解]解:由题意得521203260x y x y +-=⎧⎨+-=⎩两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得32y =- 把33,2x y ==-代入2x+4y 得:323402⎛⎫⨯+⨯-= ⎪⎝⎭ 故答案为:0[点睛]本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了解二元一次方程组.三、解答题(共60分)21. 计算:(1)(2)||+(3112-[答案];(3) 52-. [解析][分析](1)合并同类项计算即可;(2),然后根据绝对值的性质去掉绝对值符号计算即可;(3)根据绝对值的性质、开平方及开立方的方法化简计算即可.详解]解:(1)原式==(2)原式=;(3)原式=313135212424422-+=-++-=-. [点睛]本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.22. 解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩[答案](1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩[解析][分析](1)运用代入消元法求解即可;(2)运用加减消元法求解即可.[详解]解:(1)23328y x x y =-⎧⎨+=⎩①②① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩; (2)25324x y x y -=⎧⎨+=⎩①② ①×2+②得,7x=14 解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21x y =⎧⎨=-⎩ [点睛]此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法. 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC111A B C △ (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.[答案](1)先向上平移2 个单位,再向右平移4个点位.(2)画图见详解(3)7.5.[解析][分析](1)由A 到A 1纵坐标变化,说明向上平移2个单位,由B 到B 1横坐标变化说明向右平移4个单位,规律即可发现 ;(2)利用平移的特征先求出A 、B 1、C 1三点坐标,然后在平面直角坐标系中描点A 、B 、C 、A 1、B 1、C 1,再顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1;则△ABC 为原图,△A 1B 1C 1为平移后的图形;(3)先求△A 1B 1C 1的底113A B =,再求底边上的高长为5;利用面积公式求即可.[详解](1)由A 到A 1纵坐标变化为由0到2,说明向上平移2个单位,由B 到B 1横坐标变化为由3到7说明向右平移4个单位,平移的规律为先向上平移2 个单位,再向右平移4个点位;故答案为:先向上平移2 个单位,再向右平移4个点位.(2)440a a +==,,022b b +==,,549c c +==,,527d d +==,,则A 、B 1、C 1三点坐标分别为()00A ,,()172B ,,()197C ,,如图 描点:A 、B 、C 、A 1、B 1、C 1,连线:顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1,结论:则△ABC 为原图,△A 1B 1C 1为平移后的图形.(3)11743A B =-=,11A B 边上的高为725-=,111115357.522A B C S ∆=⨯⨯==. [点睛]本题考查平移规律,画图和三角形面积问题,掌握平移规律发现的方法,画图的步骤与要求,会求钝角三角形的面积是解题关键.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.[答案]125°.[解析][分析]由两直线垂直,求得∠AOE=90°;由∠AOC 与∠EOC 互余,∠EOC=35°,即可得到∠AOC 的度数;再由∠AOD 与∠AOC 互补,即可得出∠AOD 的度数.[详解]∵EO ⊥AB ,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.[点睛]本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.25. 如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.[答案]40°[解析][分析]根据平行线的性质可得∠ACB=∠AED=80°,∠EDC=∠BCD,然后根据角平分线的定义可得∠BCD=12∠ACB=40°,从而求出结论.[详解]解:∵DE∥BC,∠AED=80°∴∠ACB=∠AED=80°,∠EDC=∠BCD ∵CD平分∠ACB,∴∠BCD=12∠ACB=40°∴∠EDC=40°[点睛]此题考查的是平行线的性质和角平分线的定义,掌握平行线的性质是解决此题的关键.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?[答案]需要16张白铁皮做盒身,20张白铁皮做盒底[解析][分析]可设用x张制盒身,则(36-x)张制盒底,可使盒身与盒底正好配套,根据等量关系:一个盒身与两个盒底配成一套.列出方程求解即可.[详解]解:设用x张制盒身,则(36-x)张制盒底,根据题意,得到方程:2×25x=40(36-x),解得:x=16,36-x=36-16=20.答:用16张制盒身,20张制盒底,可使盒身与盒底正好配套.[点睛]本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.[答案]24.5[解析][分析]本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35,算出1辆大车与1辆小车一次可以运货多少吨后,即可计算出3辆大车与5辆小车一次可以运货多少吨.[详解]设大货车每辆装x 吨,小货车每辆装y 吨,根据题意列出方程组为:2315.55635x y x y +=⎧⎨+=⎩, 解这个方程组得:42.5x y =⎧⎨=⎩, ∴3x +5y =24.5.答:3辆大车与5辆小车一次可以运货24.5吨.[点睛]本题考察二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?[答案]骑车用1.25小时,步行用0.25小时.[解析]分析]首先设他骑车用了x 小时,根据骑车时间+步行时间=1.5小时表示出步行时间,再由骑车路程+步行路程=20千米,根据等量关系列出方程组,解方程组即可.[详解]设骑自行车的时间为小时,步行的时间为小时,根据题意得: 1.515520x y x y +=⎧⎨+=⎩,解得1.250.25 xy=⎧⎨=⎩,答:骑车用1.25小时,步行用0.25小时.[点睛]本题考查二元一次方程组的应用,关键是弄懂题意,根据题目中的等量关系列出方程组.29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.[答案](1)∠A=60°;(2)存在,∠DFB=∠DBF.[解析][分析](1)根据角平分线的定义得到∠EBC=2∠DBC=60°,∠ABC=2∠EBC=120°,根据平行线的性质得到∠A+∠ABC=180°,于是得到结论;(2)设∠DBC=x°,则∠ABC=2∠ABE=(4x)°,根据已知条件得到∠ABF=(72x-90)°,求得∠DBF=(90-12x)°,根据平行线的性质得到∠DFB+∠CBF=180°,于是得到∠DFB=(90-12x)°,即可得到结论.[详解]解:(1)∵BD平分∠EBC,∠DBC=30°, ∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC=2∠EBC=120°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=60°.(2)存在∠DFB=∠DBF.理由如下:设∠DBC=x°,则∠ABC=2∠ABE=(4x)°.∵7∠DBC-2∠ABF=180°,∴(7x)°-2∠ABF=180°,∴∠ABF=(72x-90)°,∴∠CBF=∠ABC-∠ABF=(12x+90)°,∠DBF=∠ABC-∠ABF-∠DBC=(90-12 x)°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=(90-12 x)°,∴∠DFB=∠DBF.[点睛]本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1.如图,已知AB //CD ,∠1=100︒,∠2=145︒,则∠F =( )A. 55︒B. 65︒C. 75︒D. 85︒2.下列各式中正确的是( ) A. 497=± B. 3644= X. 93-=- ∆. 84=3.如图,把长方形ABCD 沿EF 折叠后使两部分重合,若130∠=︒,则∠=AEF ( )A. 100︒B. 150︒C. 110︒D. 105︒4.已知命题A :“若a 为实数,2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A. a =1 B. a =0 X. a =﹣1﹣k (k 实数) ∆. a =﹣1﹣k 2(k 为实数)5.若两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角的度数是( ) A. 20°或55° B. 20°或160° C. 20°、20°或55°、125° D. 20°、125°或20°、70° 6.如图,若AB //CD ,∠C 用含α,β,γ的式子表示为( )A. αβγ+-B. βγα+-C. 180αβγ︒++-D. 180αβγ︒-+- 7.下列命题中真命题的个数是( )①平面内,221 3.14, ,0.3010017π⋯,,这5个数中有2个是无理数;③若0m <,则点P(-m ,5)164;⑤经过一点有且只有一条直线与已知直线垂直;⑥同旁内角互补.A. 2B. 3C. 4D. 58.已知:如图,点E ,F 分别在AB ,CD 上,AF ⊥CE ,垂足为点O ,∠1=∠B ,∠A +∠2=90°.求证:AB ∥CD .证明:如图,∵∠1=∠B (已知)∴CE ∥BF (同位角相等,两直线平行)______________∴∠AFC +∠2=90°(等式性质)∵∠A +∠2=90°(已知)∴∠AFC =∠A (同角或等角的余角相等)∴AB ∥CD (内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE =90°(垂直的定义)②∴∠AFB =90°(等量代换)③∵AF ⊥CE (已知)④∵∠AFC +∠AFB +∠2=180°(平角的定义)⑤∴∠AOE =∠AFB (两直线平行,同位角相等)横线处应填写的过程,顺序正确的是( )A. ⑤③①②④B. ③④①②⑤C. ⑤④③①②D. ⑤②④9.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(-3,2),设A1(x,y),则x+y的值是()A. -5B. -1C. 3D. 510.如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m,宽25m,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知AB=CD=1m,EF=GH=1m,记甲、乙地块的绿化面积分别为S1、S2,则S1、S2的大小关系是()A. S1<S2B. S1=S2C. S1>S2D. 无法确定二、填空题(每题3分,共42分)11.若6x-在实数范围内有意义,则x的取值范围为_________________.≈≈,则0.3≈______.12.已知3 1.732,30 5.47713.如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥CD,若∠BOE=2∠BOD,则∠AOF度数为______.14.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.15.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.16.已知点M(3a -8,a -1),点M 在第二、四象限的角平分线上,则点M 的坐标为______.17.一个棱长为8cm 的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm .18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______. 19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.20.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .21.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.22.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若≥PAB 的面积为18,则m ,n 满足的数量关系式为________.23.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次:[10]3[3]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.24.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.三、解答题(共48分)25.计算.(1)解方程:23(2)27x -= (223823)|12-+-(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩ (2)434363552(43)3(43)5344x y x y x y x y -+⎧+=⎪⎪⎨-+⎪-=⎪⎩26.在平面直角坐标系中,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使得点A 移至图中的点A'的位置.(1)平移后所得△A 'B 'C '的顶点B '的坐标为 ,C '的坐标为 ;(2)平移过程中△ABC 扫过的面积为 ;(3)将直线AB 以每秒1个单位长度速度向右平移,则平移 秒时该直线恰好经过点C '.27.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .28.在平面直角坐标系中,A (a ,b )、B (c ,d )、C (7,0),24(2)0a c b d ----= (1)如果a =1,d =2,①求A ,B 两点的坐标;②求线段AB 与y 轴交点N 坐标,并求出△AOB 的面积;(2)如果b =-1,且△AOB 与△ABC 面积和为9,求a 的值或取值范围.答案与解析一、选择题(每题3分,共30分)1.如图,已知AB //CD ,∠1=100︒,∠2=145︒,则∠F =( )A. 55︒B. 65︒C. 75︒D. 85︒【答案】B【解析】【分析】 由题意先求到∠3=∠1=100°,∠4=180°-∠2=35°,再根据三角形的外角即可求出∠F .【详解】解:如图:∵AB //CD ,∠1=100︒,∠2=145︒,∴∠3=∠1=100°,∠4=180°-∠2=35°,∵∠F+∠4=∠3,∴∠F=∠3-∠4=100°-35°=65°;故选:B .【点睛】本题考查了平行线的性质和三角形内角和外角之间的关系,解题的关键是熟练的掌握三角形的内角和外角的关系.2.下列各式中正确的是( ) 497=± 3644= 93-=- 84=【答案】B【解析】【分析】根据算术平方根和立方根的定义分别进行判定即可.【详解】解:A 、497=,故本选项错误;B 、3644=,故本选项正确;C 、9-不成立,因为负数没有算术平方根,故本选项错误;D 、822=,故本选项错误;故选:B .【点睛】本题考查的是算术平方根和立方根,要注意到算术平方根的被开方数是非负数.3.如图,把长方形ABCD 沿EF 折叠后使两部分重合,若130∠=︒,则∠=AEF ( )A. 100︒B. 150︒C. 110︒D. 105︒【答案】D【解析】【分析】根据折叠的性质和∠1=30°可求出∠BFE 的度数,再由平行线的性质即可解答.【详解】解:∵把长方形ABCD 沿EF 折叠后使两部分重合,∴∠BFE=∠EFH ,∵∠BFE+∠EFH+∠1=180°,∠1=30°, 11(18030)1507522BFE EFH ∴∠=∠=︒-︒=⨯︒=︒, 又∵AD ∥BC , ∴∠AEF+∠BFE=180°,∴∠AEF=180°-75°=105°;故选:D .【点睛】本题主要考查了平行线的性质和折叠的性质,要明确折叠的不变性:折叠前后图形全等,据此找出图中相等的角是解答此题的关键.4.已知命题A:“若a为实数,a=”.在下列选项中,可以作为“命题A是假命题”的反例的是()A. a=1 B. a=0 C. a=﹣1﹣k(k为实数) D. a=﹣1﹣k2(k为实数)【答案】D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0时a=,当a<0时a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选D.【点睛】本题考查了二次根式的性质a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.5.若两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角的度数是()A. 20°或55°B. 20°或160°C. 20°、20°或55°、125°D. 20°、125°或20°、70°【答案】C【解析】【分析】首先从两个角的两边分别平行,可得这两个角相等或者互补;然后设其中一个角是x°,由其中一个角比另一个角的3倍少40°来用含x°的式子表示出来这个角,之后根据前面的分析分情况讨论即可.【详解】解:∵两个角的两边分别平行,∴这两个角相等或者互补,设其中一个角是x°,∵其中一个角比另一个角的3倍少40°,∴另一个角是3x°-40°,若这两个角相等,则x=3x-40,解得x=20,∴这两个角的度数是20°和20°;若这两个角互补,则x+3x-40=180,解得x=55,∴这两个角的度数是55°和125°;∴这两个角的度数是20°和20°或55°和125°;故选:C .【点睛】本题考查了平行线的性质和一元一次方程的解法,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补.6.如图,若AB //CD ,∠C 用含α,β,γ的式子表示为( )A. αβγ+-B. βγα+-C. 180αβγ︒++-D. 180αβγ︒-+-【答案】D【解析】【分析】 延长FE 交DC 的延长线与G ,延长EF 交AB 于H ,由平行线的性质和三角形的外角性质得出∠G=∠AHE=∠AFE-∠A=β-α,再由三角形的外角的性质即可得出答案.【详解】解:如图,延长FE 交DC 的延长线与G ,延长EF 交AB 于H ,∵AB ∥CD ,∴∠G=∠AHE=∠AFE-∠A=β-α,∵∠CEG=180°-γ,∴∠ECD=∠G+∠CEG=β-α+180°-γ=180αβγ︒-+-;故选:D.【点睛】本题考查了平行线的性质、三角形外角性质等知识,熟练掌握平行线的性质和三角形的外角性质是解题的关键.7.下列命题中真命题的个数是()①平面内,223.14,,0.3010017π⋯,这5个数中有2个是无理数;③若0m<,则点P(-m,5)4;⑤经过一点有且只有一条直线与已知直线垂直;⑥同旁内角互补.A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据平行、垂直、无理数、坐标系、算术平方根和同旁内角分别判断即可.【详解】解:①平面内,过直线外一点有且只有一条直线与已知直线平行,故本题说法错误;223.14,,0.3010017π⋯,这5个数中只有,0.301001π⋯这2个是无理数,说法正确;③若0m<,则点P(-m,5)在第一象限,说法正确;2,故本题说法错误;⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直,故本题说法错误;⑥两直线平行,同旁内角互补,故本题说法错误;故只有2个是真命题;故选:A.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫假命题;判断命题的真假关键是要熟悉课本中的性质定理.8.已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A. ⑤③①②④B. ③④①②⑤C. ⑤④③①②D. ⑤②④【答案】A【解析】【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【详解】证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)③∵AF⊥CE(已知)①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)④∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行),故选:A.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定和性质,并灵活运用.9.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(-3,2),设A1(x,y),则x+y的值是()A. -5B. -1C. 3D. 5【答案】C【解析】【分析】列出部分An点的坐标,根据坐标的变化寻找规律,规律和A2020的坐标结合起来,即可得出答案.【详解】解:∵设A1(x,y),∴A2(y-1,-x-1),∴A3(-x-1-1,-y+1-1),即A3(-x-2,-y),∴A4(-y-1,x+2-1),即A4(-y-1,x+1),∴A5(x+1-1,y+1-1),即A5(x ,y )与A1相同,可以观察到友好点是4个一组循环的,∵2020÷4=505, ∴A 2020(-3,2)与A4是相同的,1312y x --=-⎧∴⎨+=⎩, 解得12x y =⎧⎨=⎩, ∴x+y=1+2=3;故答案为:C .【点睛】本题考查了规律型中点的坐标变化,解题的关键是找出变化的规律,规律找到之后即可解答本题. 10.如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m ,宽25m ,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知AB =CD =1m ,EF =GH =1m ,记甲、乙地块的绿化面积分别为S 1、S 2,则S 1、S 2的大小关系是( )A. S 1<S 2B. S 1=S 2C. S 1>S 2D. 无法确定【答案】C【解析】【分析】 根据图片,我们可以看到绿化面积就是长方形的面积减去阴影部分的面积,分别求出两个长方形中阴影部分的面积,就可以得出答案.【详解】解:由题意可知:两个图中左右方向的平行四边形小路的面积都是:30×1=30(m²), 两个图中上下方向的平行四边形小路的面积都是:25×1=25(m²),图甲中的重叠部分是1×1=1(m²),21=3025-30-25-1=69(6m )S ∴⨯,如图,分别做PR ∥CD 、NS ∥CD 交QD 于R 、S ,过点N 做NO ⊥PR 于O ,则PRQ NSM ∠=∠,四边形RSNS 是平行西边形,PR=NS=CD=1m ,NO <GH ,GH=1m ,在平行四边形PQMN 中,PQ ∥MN ,PQR NMS ∴∠=∠,易证()PQR NMS AAS ≅,<PQMN PRSN S S PR NO PR GH ∴==⋅⋅,()2111PR GH m ⋅=⨯=,2<1m PQMN S ∴,()2230253025<696m PQMN S S ∴=⨯--+, 1>2S S ∴;故答案为:C .【点睛】本题考查的是面积的问题,这里需要注意添加平行辅助线,计算阴影部分的面积,尤其是S2的面积计算中,要仔细.二、填空题(每题3分,共42分)11.若6x -在实数范围内有意义,则x 的取值范围为_________________.【答案】6x ≥【解析】【分析】根据根式有意义的条件,得到不等式,解出不等式即可【详解】要使6x -有意义,则需要-60x ≥,解出得到6x ≥【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键12.已知3 1.732, 30 5.477≈≈,则0.3≈______.【答案】0.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】解:30 5.477≈,0.3300.010.5477∴≈⨯≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.13.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.【答案】54°【解析】【分析】设∠BOD=x ,∠BOE=2x ;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.【详解】解:设∠BOD=x ,∠BOE=2x ,∵OE平分∠BOC,∴∠COE=∠EOB=2x,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF⊥CD,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.14.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.【答案】-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB=5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.15.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等数有1和0;③若a⊥b,b⊥c,则a⊥c;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.【答案】2【解析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;③若a ⊥b ,b ⊥c ,则∥c a ,本说法错误;④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.16.已知点M(3a -8,a -1),点M 在第二、四象限的角平分线上,则点M 的坐标为______. 【答案】55-,44⎛⎫ ⎪⎝⎭ 【解析】【分析】根据第二、四象限的角平分线上点的横纵坐标互为相反数得到3a-8+a-1=0,然后解出a ,再计算3a-8和a-1.【详解】解:根据题意得3a-8+a-1=0, 解得9a 4=, 95383844a ∴-=⨯-=-, 951144a -=-=, ∴M 点的坐标为55-,44⎛⎫ ⎪⎝⎭; 故答案为:55-,44⎛⎫ ⎪⎝⎭. 【点睛】本题考查了坐标与图形的性质,注意到象限角平分线上的点的特殊性即可正确解答.17.一个棱长为8cm 的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm .【答案】4【解析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm ,再根据水的体积不变来列出等式,解出r 值即可.【详解】解:设这个圆柱形玻璃杯底面半径为rcm ,依题意可得:23328r ππ⋅=,∴232512r =,216r ∴=,∴r 取正值4;故答案为:4.【点睛】本题主要考查了算术平方根的性质和应用,以及圆柱、正方体体积的求法,要熟练掌握相关内容. 18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,______.【答案】3【解析】【分析】利用平方根、立方根的定义求出x 与y 的值,的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-, ∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.【答案】-1【解析】【分析】根据点A 和点B 的坐标以及对应点的坐标确定出平移的方法,从而求出a 、b 的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A 1(2,a),B(0,2),B 1(b ,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a 2-2b=1²-2×1=-1; 故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .【答案】7513【解析】【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =;故答案为:7513. 【点睛】本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.21.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.【答案】105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.22.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若≥PAB 的面积为18,则m ,n 满足的数量关系式为________.【答案】3230m n +=-【解析】【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBPS S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.23.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次:10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.【答案】255【解析】【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案. 【详解】解:25515,153,31,⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦∴对255只需要进行3次操作后变成1,25616,164,42,21,⎡⎤⎡⎤⎡⎤⎡⎤====⎣⎦⎣⎦⎣⎦⎣⎦∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255;故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.24.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.【答案】45°或135°【解析】【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°. 【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.三、解答题(共48分)25.计算.(1)解方程:23(2)27x -=(223823)|12-+-(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩(2)434363552(43)3(43)5344x y x y x y x y -+⎧+=⎪⎪⎨-+⎪-=⎪⎩【答案】(1)125,1x x ==-;(2)0;(3)、(1)x 11y =-⎧⎨=⎩;(2)1213x y ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】【分析】(1)等式两边同时除以3之后,两边同时开方即可;(2)利用开立方、平方和取绝对值分别计算之后,再整理即可;(3)第①个使用加减消元法直接求解,第②个先去分母,整理之后用加减消元法即可求解.【详解】解:(1)23(2)27x -=解:整理得:2(2)9x -=开方得:(2)3-=±x解得:125,1x x ==-;(22|1+-=231-+=0;(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩①②解:①×2+②可得:7x=-7, 解得:x=-1,将x=-1代入①可得2(-1)+y=-1⨯, 解得y=1,∴方程组的解为x11y=-⎧⎨=⎩;(2)434363552(43)3(43)5 344x y x yx y x y-+⎧+=⎪⎪⎨-+⎪-=⎪⎩解:去分母可得5(43)3(43)18 8(43)9(43)15 x y x yx y x y-++=⎧⎨--+=⎩,整理得32618 45115x yx y-=⎧⎨--=⎩①②,①+②×8可得-414138y=,解得13y=-,将y值代入①可得12x=-,∴方程组的解为1213x y⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查的是解一元二次方程、二元一次方程组以及实数的计算,掌握相关的计算法则是解题的关键.26.在平面直角坐标系中,△ABC的三个顶点的位置如图所示.现将△ABC平移,使得点A移至图中的点A'的位置.(1)平移后所得△A'B'C'的顶点B'的坐标为,C'的坐标为;(2)平移过程中△ABC扫过的面积为;(3)将直线AB以每秒1个单位长度的速度向右平移,则平移秒时该直线恰好经过点C'.【答案】(1)(5,3),(8,4);(2)232;(3)5 【解析】【分析】 (1)根据网格结构找出点B 、C 的对应点B ′、C '的位置,顺次连接之后,根据平面直角坐标系写出点B ′,C '的坐标;(2)结合图形可知所求为线段AB 扫过的图形为平行四边形ABB A ''加上三角形A B C '''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题.【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图,∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=, 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .【答案】(1)147C ∠=︒;(2)105AMC ∠=︒;(3)证明过程见解析【解析】【分析】(1)直接添加辅助线AC ,结合三角形的内角和以及平行线的同旁内角即可求解;(2)延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,先根据AN 平分∠PAB ,利用三角形的外角和对顶角,用含∠BAN 的式子来表示∠MHC ,再∵AB ∥CD ,得到2102ECQ CQA BAN ∠=∠=︒-∠,通过CM 平分∠PCE ,得到∠MCH 可以用含∠BAN 的式子来表示,最后利用三角形的内角和即可求出答案;(3)添加辅助线AC ,则180PAC PCA P ∠+∠=︒-∠,MAC MCA ∠+∠=180︒M -∠,结合已知∠AMC =180︒-12∠P ,得到12MAC MCA P ∠+∠=∠,即可求到PAM PCM ∠+∠的值,通过角平分线就知道了BAM DCM ∠+∠,即可求到180BAC DAC ∠+∠=︒,就得到了AB ∥CD .【详解】解:(1)如图,连接AC ,在AMC 中,180MAC MAC MCA ∠+∠+∠=︒,∵AB ∥CD ,180BAC ACD ∴∠+∠=︒,180180360BAM M MCD ∴∠+∠+∠=︒+︒=︒,∵∠A =105︒+α,∠M =108︒-α,∴105(108367)014a a MCD ︒++︒⎡⎤∠=︒-=︒⎣⎦-;(2)如图,延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,∵AN 平分∠PAB ,BAN PAN ∴∠=∠,1802QAP BAN ∴∠=︒-∠,∵∠P =30︒,∴3018022102CQA P QAP BAN BAN ∠=∠+∠=︒+︒-∠=︒-∠,30MHC NHP NAP P BAN ∠=∠=∠-∠=∠-︒,∵AB ∥CD ,2102ECQ CQA BAN ∴∠=∠=︒-∠,∵CM 平分∠PCE ,()11210210522MCH ECP BAN BAN ∴∠=∠=⨯︒-∠=︒-∠,180AMC MHC MCH ∠=︒-∠-∠,()18030(105)105AMC BAN BAN ∴∠=︒-∠-︒-︒-∠=︒;(3)如图,连接AC ,则180PAC PCA P ∠+∠=︒-∠,180MAC MCA M ∠+∠=︒-∠,∵∠AMC =180︒-12∠P , 12MAC MCA P ∴∠+∠=∠, 11802MAC MCA PAC PCA P ∴∠+∠+∠+∠=︒-∠, 即11802PAM PCM P ∠+∠=︒-∠, ∵AN 平分∠PAB ,MC 平分∠PCD ,,BAM PAM DCM PCM ∴∠=∠∠=∠,11802BAM DCM P ∴∠+=︒-∠, 1118018022BCA DCA P P ∴∠+∠=︒-∠+∠=︒, ∴AB ∥CD .【点睛】本题考查的平行线及三角形的综合知识,在这里要注意添加根据题意添加合适的辅助线,这里需要用到三角形的内角和、平行四边形的性质、角平分线的性质以及对顶角等综合性质,难度稍大.28.在平面直角坐标系中,A (a ,b )、B (c ,d )、C (7,0),24(2)0a c b d ----= (1)如果a =1,d =2,①求A ,B 两点的坐标;②求线段AB 与y 轴交点N 坐标,并求出△AOB 的面积;(2)如果b =-1,且△AOB 与△ABC 面积和为9,求a 的值或取值范围.【答案】(1)①A(1,4),B(-3,2);②N(0,72),7ABOS =;(2)3a=-或6a=【解析】【分析】(1)①根据非负数的性质得到a-c-4=0,b-d-2=0,根据a=1,d=2即可求出a和b的值,得到A和B的坐标;②求出直线AB的解析式,令x=0,求到y值,即可得到点N的坐标;(2)当b=-1时,可以求到d=-3,由(1)知c=a-4,即可得出A和B的坐标,算出直线AB的解析式,之后画图来计算△AOB与△ABC的面积,去讨论其和等于9的情况,发现O和C在直线同一侧的时候,面积是变化的值,不同侧的时候,面积是定值等于7,所以将同侧分别画图计算即可得到答案.【详解】解:(1)由题意知:a-c-4=0,b-d-2=0,∵a=1,d=2,∴c=1-4=-3,b=2+2=4,①易得A(1,4),B(-3,2);②设直线AB的解析式为y=kx+n,由题意得423k nk n=+⎧⎨=-+⎩,解得1272kn⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为1722y x=+,令x=0,则72y =, ∴N(0,72 ),()117(13)7222ABO a b S ON x x ∴=⋅⋅+=⨯⨯+=; (2)如果b =-1,则d=-1-2=-3,∵c=a-4,∴(),1,(4,3)A a B a ---, 同②可求得此时直线AB 的解析式为11122y x a =--, 当O 、C 两点在直线的两侧时,如图所示,则1122AOB ABC BOC OAC B A S SS S OC y OC y +=-=⋅⋅-⋅⋅, ∴1173717922AOB ABC S S +=⨯⨯-⨯⨯=≠,可以看到这种情况下不满足题意;当O 、C 两点都在直线的左侧时,如图,作BD⊥x 轴于D,连接DA,则AOB BOD BAD DAO S S S S =--,结合A 、B 两点的坐标可以求到1114334412222AOB Sa a a =⋅-⋅-⨯⨯-⋅-⋅=--, ∵ABC BDC BAD DAC S S S S =--,()()11174334741222ABC S a a ⎡⎤⎡⎤∴=⨯--⨯-⨯⨯-⨯--⨯⎣⎦⎣⎦,5ABC S a ∴=-, 此时,若△AOB 与△ABC 面积和为9,则259a a --+-=,解得3a =-;当O 、C 两点都在直线的右侧时,如图,延长BA 于x 轴交于点E ,由11122AB y x a =--可知, 当y=0时,求得2x a =+,()2,0E a ∴+ ,()()112321222AOB OBE OAE S S S a a a ∴=-=⋅+⋅-⋅+⋅=+, ()()11273271522ABC CBE CAE S S S a a a =-=⨯+-⨯-⨯+-⨯=-, 此时,若△AOB 与△ABC 面积和为9,则259a a ++-=,解得6a =,综上所述,3a =-或6a =.【点睛】本题考查的是平面直角坐标中点的坐标和三角形的面积,我们在计算三角形的面积的时候,要注意利用坐标轴,构造大三角形,这样便于面积的求解.。
北京市154中学2014——2015学年度第二学期初一数学期中练习本试题共3页,共四道大题,满分100分,考试时长90分钟。
题号 一 二 三四 总分得分21 22 23 24 25 26 27 28 29一、单项选择题(本题共10个小题,每小题3分,共30分)1. 有两根长度分别为2,10的木棒,若想钉一个三角形木架,第三根木棒的长度可以是( ). A. 12 B. 10 C. 8 D. 62. 利用数轴确定不等式组2133x x +≤⎧⎨>-⎩的解集,正确的是( ).3. 如右图,下面推理中,正确的是( ). A .∵∠A+∠D=180° ∴AD//BC B .∵∠C+∠D=180° ∴AB//CD C .∵∠A+∠D=180° ∴AB//CDD. ∵∠B+∠C =180° ∴AD//BC4. 通过平移,可将左图中的福娃“欢欢”移动到图( )5. 如图,将一个含30°角的三角板的直角顶点放在直尺的一边上, 如果∠1=115°,那么∠2的度数是( ).A .95°B .85°C .75°D .65°6. .一个多边形的每一个外角都等于40°,则这个多边形的边数为( ).A .6B .7C .8D .97. 64的平方根是( ) A 、8 B 、-8 C 、±8 D 、±48. 在以下实数3π,-22,1.414,16中无理数有( )A .4个B .3个C .2个D .1个9.等腰三角形的两边长分别是4和5,则这个等腰三角形的周长是( ) A .13或14 B.13 C.14 D.无法确定10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤7二、填空题(本题共20分,每题2分) 11.如图所示:直线AB 与CD 相交于O ,已知∠1=30º,OE 是∠BOC 的平分线, 则∠2=_____ º,∠3=_____ º.12.169的算术平方根是__________;81的算术平方根是____________. 13.如图,△ABC 中,∠A=50°,∠ABO=18°,∠ACO=32°,则∠BOC= °.14.计算:2328127()3+-+- =_____ 。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共15小题)1. 下列等式:①24x y +=;②3xy=7;③220x y +=;④12y x-=,二元一次方程的个数是( ) A. 1B. 2C. 3D. 42. 下列事件中,必然事件是( ) A 掷一枚硬币,反面朝上B. 掷一枚质地均匀的骰子,掷得的点数是偶数C. 任意三条线段可以组成一个三角形D. 366人中至少有两个人的生日相同3. 如图,下列给出条件中,能判定ACDE 的是( )A. ∠A +∠2=180°B. ∠1=∠AC. ∠1=∠4D. ∠A =∠34. 已知直线y=x+b 和y=ax -3交于点P(2,1),则关于x ,y 的方程组3x y b ax y -=-⎧⎨-=⎩的解是( )A. 1?2x y =-⎧⎨=-⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 21? x y =-⎧⎨=⎩5. 如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°6. 如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A. 20°B. 30°C. 40°D. 70°7. 如图,周长为68cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A. 40cm 2B. 128cm 2C. 280cm 2D. 140cm 28. 关于x ,y 的二元一次方程组234x y x y k+=⎧⎨-=⎩的解满足2x y -=-,则k 的值是( )A. 3B. -2C. -3D. 59. 如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A.613B.513C.413D.31310. 如图,△ABC 中,AB =AC ,腰AB 的垂直平分线DE 交AB 于点E ,交AC 于点D ,且∠DBC =15°,则∠A 的度数是 ( )A. 50°B. 36°C. 40°D. 45°11. 某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A. 90元B. 72元C. 120元D. 80元12. 如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A. 540°B. 180°nC. 180°(n-1)D. 180°(n+1) 13. 方程组34372x y y x -=-⎧⎨=+⎩解( )A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩14. 方程组11233210x y x y +⎧-=⎪⎨⎪+=⎩的解为( ) A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩15. 如果方程组24x y ax y a+=⎧⎨-=⎩的解是方程3x ﹣5y ﹣28=0的一个解,则a=( )A. 2B. 3C. 7D. 6二.填空题16. 若23(2)0mm x y --+=是关于x ,y 二元一次方程,则m 的值是________.17. 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? 18. 把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是______.19. 已知21m n =-⎧⎨=⎩是关于m,n 的方程组3423am b n m bn a +=⎧⎨+=+⎩的解,则a+b= ________.20. 一副含有30°和45°直角三角尺叠放如图,则图中∠α的度数是______.21. 在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为1 3 ,则袋中绿球的个数为__________个.22. 定义一种关于非零常数a,b的新运算“*”,规定a*b=ax+by,例如3*2=3x+2y.若2*1=8,4*(-1)=10,则x-y的值是__________.23. 如图,△ABC和△CDE都是等边三角形,且∠EBD=72°,则∠AEB的度数是______.三、解答题24. 如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC于点F.(1)求证:∠ADE=∠EFC;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.25. 如图,过点A(0,2),B(3,0)的直线AB与直线CD:y=13x-3 交于D,C为直线CD与y轴的交点.求:(1)直线AB对应的函数表达式;(2)求△ADC的面积.26. 光明中学准备购买一批笔袋奖励优秀同学.现文具店有A、B两种笔袋供选择,已知2个A笔袋和3个B笔袋的价格相同;而购买1个A笔袋和2个B笔袋共需35元.(1)求A.B两种笔袋的单价;(2)根据需要,学校共需购买40个笔袋,该文具店为了支持学校工作,给出了如下两种大幅优惠方案:方案一:A种笔袋六折、B种笔袋四折;方案二:A、B两种笔袋都五折.设购买A种笔袋个数为a(a≥0)个,购买这40个笔袋所需费用为w元.①分别表示出两种优惠方案的情况下w与a之间的函数关系式;②求出购买A种笔袋多少个时,两种方案所需费用一样多.答案与解析一.选择题(共15小题)1. 下列等式:①24x y +=;②3xy=7;③220x y +=;④12y x-=,二元一次方程的个数是( ) A. 1 B. 2C. 3D. 4[答案]A [解析] [分析]根据二元一次方程的定义解答,即可得到答案. [详解]解:24x y +=是二元一次方程,故①正确; 3xy=7,1x ,12y x-=不是二元一次方程,故②③④错误; 故选:A .[点睛]本题考查了二元一次方程的定义,解题的关键是熟练掌握定义,分别进行判断. 2. 下列事件中,必然事件是( ) A. 掷一枚硬币,反面朝上B. 掷一枚质地均匀的骰子,掷得的点数是偶数C. 任意三条线段可以组成一个三角形D. 366人中至少有两个人的生日相同 [答案]D [解析] [分析]根据题意,找到一定会发生的事件,即可得到答案. [详解]解:掷一枚硬币,反面朝上是随机事件,故A 错误;掷一枚质地均匀的骰子,掷得的点数是偶数是随机事件,故B 错误; 任意三条线段可以组成一个三角形是随机事件,故C 错误; 366人中至少有两个人的生日相同是必然事件,故D 正确; 故选:D .[点睛]解决本题需要正确理解必然事件、不可能事件、随机事件概念.必然事件指在一定条件下一定发生的事件.3. 如图,下列给出的条件中,能判定ACDE 的是( )A. ∠A +∠2=180°B. ∠1=∠AC. ∠1=∠4D. ∠A =∠3[答案]B [解析] [分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A 选项:∵∠A+∠2=180°,同旁内角互补,两直线平行,∴ABDF ,不符合题意; B 选项:∵∠1=∠A ,同位角相等,两直线平行,∴ACDE ,符合题意; C 选项:∵∠1=∠4,内错角相等,两直线平行,∴ABDF ,不符合题意; D 选项:∵∠A =∠3,同位角相等,两直线平行,∴ABDF ,不符合题意, 故选:B .[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键,①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行. 4. 已知直线y=x+b 和y=ax -3交于点P(2,1),则关于x ,y 的方程组3x y bax y -=-⎧⎨-=⎩的解是( )A. 1?2x y =-⎧⎨=-⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 21? x y =-⎧⎨=⎩[答案]B [解析] [分析]根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点. [详解]解:已知直线y=x+b 和y=ax -3交于点P(2,1), ∴关于x ,y 的方程组3x y b ax y -=-⎧⎨-=⎩的解是21x y =⎧⎨=⎩;故选:B .[点睛]本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 5. 如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.[详解]解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°10°=40°;故选:B.[点睛]本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.6. 如图,△ABC中,∠BAC=60°,∠C=80°,∠BAC的平分线AD交BC于点D,点E是AC上一点,且∠ADE =∠B,则∠CDE的度数是()A. 20°B. 30°C. 40°D. 70°[答案]B[解析][分析]由三角形的内角和定理,得到∠ADE=∠B=40°,由角平分线的性质,得∠DAE=30°,则∠ADC=70°,即可求出∠CDE的度数.[详解]解:∵△ABC 中,∠BAC =60°,∠C =80°, ∴∠ADE =∠B=40°, ∵AD 平分∠BAC , ∴∠DAE=30°, ∴∠ADC=70°,∴∠CDE=70°40°=30°; 故选:B .[点睛]本题考查了三角形的内角和定理,角平分线的性质,解题的关键是熟练掌握内角和定理和角平分线的性质进行解题.7. 如图,周长为68cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A. 40cm 2B. 128cm 2C. 280cm 2D. 140cm 2[答案]C [解析] [分析]根据2x=5y 结合长方形的周长为68cm ,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,再利用长方形的面积公式即可求出长方形ABCD 的面积. [详解]解:根据题意:有255268x y y x y x x y =⎧⎨+++++=⎩, 解得:104x y =⎧⎨=⎩,∴S=2x •(x+y )=2×10×(10+4)=280. ∴长方形ABCD 的面积为280平方厘米. 故选:C .[点睛]本题考查了二元一次方程组的应用,解题的关键是:根据长方形的对边相等找出2x=5y ;找准等量关系,正确列出二元一次方程组.8. 关于x ,y 的二元一次方程组234x y x y k+=⎧⎨-=⎩的解满足2x y -=-,则k 的值是( )A. 3B. -2C. -3D. 5[答案]C [解析] [分析]根据题意,直接由②①,得到333x y k -=-,结合2x y -=-,即可求出k 的值.[详解]解:∵234x y x y k +=⎧⎨-=⎩①②由②①,得到333x y k -=-, ∴323k x y --==-, 解得:3k =-; 故选:C .[点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组,正确得到323k x y --==-. 9. 如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A.613B.513C.413D.313[答案]B [解析] [分析]由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.[详解]解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P ;故选:B.[点睛]本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.10. 如图,△ABC中,AB=AC,腰AB的垂直平分线DE交AB于点E,交AC于点D,且∠DBC=15°,则∠A 的度数是()A. 50°B. 36°C. 40°D. 45°[答案]A[解析][分析]根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,∠ABC=∠C,然后根据三角形的内角和等于180°方程求解即可.[详解]解:∵AB的垂直平分线DE交AC于D,∴AD=BD,∴∠A=∠ABD,∵AB=AC,∴∠ABC=∠C,∵∠DBC=15°,∴∠ABC=∠C=∠A+15°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故选:A .[点睛]本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,熟记性质与定理并列出方程是解题的关键.11. 某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A. 90元 B. 72元C. 120元D. 80元[答案]C [解析] [分析]设乙商品的成本价格为x 元,则根据甲、乙两件商品以同样的价格卖出,列出方程,即可求出答案. [详解]解:设乙商品的成本价格为x ,则80(120%)(120%)x ⨯+=•-,解得:120x =;∴乙商品的成本价是120元. 故选:C .[点睛]本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确列出一元一次方程进行解题. 12. 如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A. 540°B. 180°nC. 180°(n-1)D. 180°(n+1) [答案]C [解析] [分析]根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案. [详解]解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,…… ∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .[点睛]本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明.13. 方程组34372x y y x -=-⎧⎨=+⎩的解( )A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩[答案]B [解析] [分析]先整理方程组,然后利用代入消元法进行解题,即可得到答案. [详解]解:34372x y y x -=-⎧⎨=+⎩,整理得:34372x y y x =-⎧⎨=+⎩①②,把①代入②,得:13y =, 把13y =代入①,得:3x =-, ∴方程组的解为:313x y =-⎧⎪⎨=⎪⎩;故选:B .[点睛]本题考查了解二元一次方程组,解题关键是熟练掌握代入消元法解二元一次方程组进行解题.14. 方程组11233210x y x y +⎧-=⎪⎨⎪+=⎩的解为( ) A 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩[答案]A [解析] [分析]先整理方程组,然后利用加减消元法进行解题,即可得到答案.[详解]解:11233210x y x y +⎧-=⎪⎨⎪+=⎩, 整理得:3283210x y x y -=⎧⎨+=⎩①②,由①+②,得3x =, 把3x =代入①,得12y =, ∴方程组的解为:312x y =⎧⎪⎨=⎪⎩;故选:A .[点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组进行解题. 15. 如果方程组24x y ax y a+=⎧⎨-=⎩的解是方程3x ﹣5y ﹣28=0的一个解,则a=( )A. 2B. 3C. 7D. 6[答案]A [解析][详解]解:解方程组24x y a x y a +=⎧⎨-=⎩ 得3x ay a=⎧⎨=-⎩代入方程3x −5y −28=0得95280a a +-= 解得2a =故选A二.填空题16. 若23(2)0m m x y --+=是关于x ,y 的二元一次方程,则m 的值是________.[答案] [解析] [分析]根据二元一次方程的定义,得到关于m 的方程,即可求出m 的值. [详解]解:∵23(2)0mm x y --+=是关于x ,y 的二元一次方程,∴23120m m ⎧-=⎨-≠⎩,解得:2m =-; 故答案为:.[点睛]本题考查了二元一次方程的定义,解题的关键是掌握定义,正确得到关于m 的方程,解方程即可. 17. 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? [答案]1 [解析] [分析]设再加入x 只黑球,利用求概率的公式,列出方程,即可求出答案. [详解]解:设再加入x 只黑球,则61203x x +=+,解得:1x =;∴再加入黑球1只,才能使摸出黑球的概率是13; 故答案为:1.[点睛]本题考查了分式方程的应用,以及概率公式,解题的关键是熟练掌握题意,正确列出方程,从而进行解题.18. 把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是______.[答案]70° [解析] [分析]由平行线的性质得到∠1=∠3=40°,由折叠的性质得∠2+∠3=∠ABC ,结合∠2+∠ABC=180°,即可求出∠2的度数. [详解]解:如图,由平行线的性质,得∠1=∠3=40°, 由折叠的性质得∠2+∠3=∠ABC , ∵∠2+∠ABC=180°, ∴2∠2=180°40°, ∴∠2=70°; 故答案为:70°.[点睛]本题考查了矩形和折叠问题,解题的关键是掌握平行线的性质和折叠的性质进行解题.19. 已知21m n =-⎧⎨=⎩是关于m,n 的方程组3423am b n m bn a +=⎧⎨+=+⎩的解,则a+b= ________.[答案]-13 [解析] 试题分析:因为{21m n =-=是关于m,n的方程组{3423am b nm bn a +=+=+的解,所以将m=﹣2,n=1代入方程组得:{231211a b a b -+=-=-①②, ①+②得:2b=﹣10,即b=﹣5,将b=﹣5代入①得:a=﹣8,则a+b=﹣13,考点:二元一次方程组的解.20. 一副含有30°和45°的直角三角尺叠放如图,则图中∠α的度数是______.[答案]105°[解析][分析]由直角三角形的性质,得到∠EBC=45°,∠ECB=30°,由三角形的内角和定理,得到∠BEC=105°,即可得到∠α的度数.[详解]解:如图:∵∠EBC=45°,∠ECB=30°,∴∠BEC=180°45°30°=105°;∴∠=105°;故答案为:105°.[点睛]本题考查了三角形的内角和定理,以及直角三角形的性质,解题的关键是掌握三角形的内角和定李进行解题.21. 在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为1 3 ,则袋中绿球的个数为__________个.[答案]10[解析][分析]根据红球概率公式列出方程,求解即可.[详解]解:设共有x 个绿球,由题意得:151153x -=, 解得:x=10. 故答案为:10.[点睛]本题考查的是随机事件概率的应用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn. 22. 定义一种关于非零常数a ,b 的新运算“*”,规定a *b=ax+by ,例如3*2=3x+2y .若2*1=8,4*(-1)=10,则x -y 的值是__________. [答案]1 [解析] [分析]根据a*b=ax+by ,可得方程组,根据加减消元法,可得答案. [详解]解:∵2*1=8,4* (-1)=10,∴28410x y x y +=⎧⎨-=⎩,解得:32x y =⎧⎨=⎩,∴321x y -=-=; 故答案:1.[点睛]本题考查了新定义的运算法则,以及解二元一次方程组,解题的关键是熟练掌握新定义,正确求出二元一次方程组的解.23. 如图,△ABC 和△CDE 都是等边三角形,且∠EBD=72°,则∠AEB 的度数是______.[答案]132° [解析] [分析]由已知条件推导出△ACE ≌△BCD ,从而∠DBC=∠CAE ,再通过角之间的转化,利用三角形内角和定理能求出∠AEB 的度数.[详解]解:∵△ABC和△CDE都是等边三角形,且∠EBD=72°,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠DBC=∠CAE,∴72°∠EBC=60°∠BAE,∴72°(60°∠ABE)=60°∠BAE,∴∠ABE+∠BAE=48°,∴∠AEB=180°(∠ABE+∠BAE)=180°48°=132°.故答案为:132°.[点睛]本题考查角的大小的求法,是基础题,解题时要注意等边三角形的性质、三角形全等的性质和三角形内角和定理的合理运用.三、解答题24. 如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC于点F.(1)求证:∠ADE=∠EFC;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.[答案](1)证明见详解;(2)42°[解析][分析](1)由DE∥BC,得∠ADE=∠B,然后证明∠B=∠EFC,即可得到结论;(2)由三角形内角和定理,先求出∠B的度数,然后由余角的性质,即可求出∠DCB的度数.[详解](1)证明:∵DE∥BC,∴∠ADE=∠B,∵CD⊥AB,EF⊥CD,∴AB∥EF,∴∠B=∠EFC , ∴∠ADE =∠EFC ;(2)解:∵∠ACB =72°,∠A =60°, ∴∠B=180°72°60°=48°, ∵CD ⊥AB , ∴∠BDC=90°,∴∠DCB=90°48°=42°.[点睛]本题考查了三角形的内角和定理,平行线的性质,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出所需角的度数.25. 如图,过点A(0,2),B(3,0)的直线AB 与直线CD :y=13x-3 交于D ,C 为直线CD 与y 轴的交点. 求:(1)直线AB 对应的函数表达式; (2)求△ADC 的面积.[答案](1)223y x =-+;(2)252[解析] [分析](1)由点A 、B 的坐标,直接利用待定系数法,即可求出直线AB 的函数解析式; (2)先求出点C 和点D 的坐标,然后求出AC 的长度,再利用面积公式,即可得到答案. [详解]解:(1)设直线AB 的解析式为y kx b =+, 把点A 和点B 坐标代入得:230b k b =⎧⎨+=⎩,解得:232k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:223y x =-+; (2)∵直线CD 的解析式为133y x =-, 令0x =,则3y =-,∴点C 的坐标为(0,3-);结合直线AB 与直线CD ,则 223133y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩, 解得:543x y =⎧⎪⎨=-⎪⎩, ∴点D 的坐标为:(5,43-); ∴AC=5,∴△ADC 的面积为:1255522S =⨯⨯=; [点睛]本题考查了一次函数的图像和性质,三角形的面积公式,解题的关键是熟练掌握一次函数的性质,利用待定系数法求出一次函数的解析式.26. 光明中学准备购买一批笔袋奖励优秀同学.现文具店有A 、B 两种笔袋供选择,已知2个A 笔袋和3个B 笔袋的价格相同;而购买1个A 笔袋和2个B 笔袋共需35元.(1)求A .B 两种笔袋的单价;(2)根据需要,学校共需购买40个笔袋,该文具店为了支持学校工作,给出了如下两种大幅优惠方案:方案一:A 种笔袋六折、B 种笔袋四折;方案二:A 、B 两种笔袋都五折.设购买A 种笔袋个数为a (a≥0)个,购买这40个笔袋所需费用为w 元.①分别表示出两种优惠方案的情况下w 与a 之间的函数关系式;②求出购买A 种笔袋多少个时,两种方案所需费用一样多.[答案](1)A 种笔袋的单价为15元,B 种笔袋的单价为10元;(2)①方案一:5160w a =+;方案二:52002w a =+;②当购买A 种笔袋16个时,两种方案所需费用一样多. [解析][分析](1)根据题意,找出题目的等量关系,列出方程组,求出方程组的解,即可得到答案;(2)①根据题意,分别列出方案一和方案二的关系式,即可得到答案;②令两种方案的费用相等,列出方程,解方程即可得到答案.[详解]解:(1)根据题意,设A 种笔袋的单价为x 元,B 种笔袋的单价为y 元,则23235x y x y =⎧⎨+=⎩, 解得:1510x y =⎧⎨=⎩, ∴A 种笔袋的单价为15元,B 种笔袋的单价为10元;(2)①设购买A 种笔袋个数为a (a ≥0)个,则B 种笔袋个数为(40-a )个,则方案一:1560%10(40)40%w a a =⨯+-⨯,∴5160w a =+;方案二:[1510(40)]50%w a a =+-⨯, ∴52002w a =+; ②当两种方案所需费用一样多时,有; 551602002a a +=+, 解得:16a =,∴当购买A 种笔袋16个时,两种方案所需费用一样多.[点睛]本题考查了一元一次方程的应用——方案问题,以及二元一次方程组的应用,解题的关键是正确掌握题意,正确列出方程,从而进行解题.。
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.3.25的算术平方根是_________;(-14)2 的算术平方根是_________. 4.若3x +是4的平方根,的立方根是1y -,则x y +=_________.5.把命题“对顶角相等”改写成“如果…那么…”形式是__________________.6.如图,直线a ∥b ,点B 在直线b 上,AB BC ⊥,若255∠=︒,则1∠=___度.7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x 为____.8.如图,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=__________,∠3=__________.9.实数120的整数部分是_____, 小数部分是_____.10.把下列各数分别填入相应的集合内:32,34,9, -5,-38,0有理数集合:_______________;无理数集合: _______________; 正数集合:__________________;负数集合:_________________.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④13.下列运算中,正确的是( )55-= B. 3.60.6-=- 2(13)13-= 366=±14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为() A. (-5,-4) B. (-4 ,5) C. (4,5) D. (5,-4)15.若点P(m+3,m+1) 在y 轴上,则点P 的坐标为( )A. (0,2)B. (2,0)C. (0,4)D. (0,-2)16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位17.下列命题中,是假命题的是( )A 两点之间,线段最短 B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个19.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C ′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个20.一个数的立方根是 4,这个数的平方根是 ( )A. 8B. -8C. 8 或 -8D. 4 或 -421.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A -3 B. -1 C. 1 D. -3或122.16平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或623.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ 24.已知a<b<0 , 则点A(a-b ,b )在第( )象限A. 一B. 二C. 三D. 四三.解答题25.求下列各式中的值(1)252x =36(2)-3=3826.解方程组25{437x y x y +=+=. 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )答案与解析一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.[答案](1). 0 (2). 0,1 (3). 0,1,-1[解析][分析]利用平方根,算术平方根,以及立方根定义判断即可.[详解]解:一个数的平方根等于它本身,这个数是0;一个数算术平方根等于它本身,这个数是0,1;一个数的立方根等于它本身,这个数是0,1,−1;故答案为:0;0,1;0,1,-1.[点睛]此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.[答案]49[解析][分析]根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.[详解]解:∵一个数的两个平方根分别是a+3与2a-15,∴(a+3)+(2a﹣15)=0,a=4,a+3=4+3=7,7的平方是49,∴这个数是49,故答案为:49.[点睛]此题考查平方根,解题关键在于求出a的值._________;(-14)2 的算术平方根是_________.[答案](1). (2). 1 4[解析] [分析]21()4-的值,再分别计算它们的算术平方根即可得解.[详解5=,5211()416-=,116的算术平方根是14,14.[点睛]本题主要考查了求一个数的平方及算术平方根,熟练掌握相关计算方法是解决本题的关键.4.若3x+是4的平方根,的立方根是1y-,则x y+=_________.[答案]-2或-6[解析]32x+==±,可得x=-1或-5;12y-==-,可得y=-1.所以x+y=-2或-6.5.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.6.如图,直线a∥b,点B在直线b上,AB BC⊥,若255∠=︒,则1∠=___度.[答案]35[解析]⊥[详解]试题分析:因为直线a∥b,根据同位角的知识可知,∠2等于∠3,因为AB BC ∠+∠=︒⇒∠=︒所以1390135点评:本题综合考查了对顶角,同旁内角互补等基本知识的运用7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为____.[答案]165°[解析][分析]根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.[详解]解:∵∠x为下边小三角形外角,∴∠x=30°+(180°-45°)=165°,故答案为:165°.[点睛]本题考查了三角形外角定理,通过三角板拼装来求角度数,将问题实际化.8.如图,已知直线a∥b,c∥d,∠1=115°,则∠2=__________,∠3=__________.[答案](1). 115°(2). 115°[解析]∵a∥b,∠1=115°,∴∠2=∠1=115°.∵c∥d,∴∠3=∠2=115°.点睛:本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.9.120_____,小数部分是_____.[答案](1). 10 (2). 120[解析][分析]利用二次根式的估算,先找出离被开方数最近的两个完全平方数,得出二次根式所在的范围即可.[详解]100120121,∴120,12010,120,故答案为:10120.[点睛]本题主要考查的是二次根式的估算,掌握二次根式的估算方法是解题的关键.10.,34,,0 有理数集合:_______________;无理数集合: _______________;正数集合:__________________;负数集合:_________________.[答案] (1).34,0 (2). , (3). ,34 , [解析][分析]根据有理数、无理数、正负数的定义判断即可.[详解]解:有理数:340;,34负数:故答案为:有理数集合:340 ,34[点睛]本题考查实数的分类,其中0是有理数,但不是正数也不是负数.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数[答案]D[解析][分析]根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.[详解]解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:D .[点睛]此题考查实数与数轴,解题关键在于掌握其定义.12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④[答案]B[解析][分析] 根据同位角的定义判断即可.[详解]由图可知①③中的∠1与∠2有公共边,为同位角,故选B.[点睛]此题主要考察同位角的定义.13.下列运算中,正确的是( ) A. 55-=- B. 3.60.6-=- C. 2(13)13-= D. 366=± [答案]C[解析][分析]根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.[详解]因为-5<0,故A 项的表达式无意义,故A 项错误;-0.36=-0.6,故B 2(13)-169,故C 366=,故D 项错误.故答案为C.[点睛]本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为( )A. (-5,-4)B. (-4 ,5)C. (4,5)D. (5,-4) [答案]A[解析][分析]根据各象限内点的坐标特征,可得答案.[详解]解:由题意,得|y|=4,|x|=5,又∵在第三象限内有一点P,∴x=−5,y=−4,∴点P的坐标为(−5,−4),故选:A.[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.若点P(m+3,m+1) 在y轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (0,4)D. (0,-2)[答案]D[解析][分析]根据点P在y轴上,即x=0,可得出m的值,从而得出点P的坐标.[详解]解:∵点P(m+3,m+1)在y轴上,∴x=0,∴m+3=0,解得m=−3,∴m+1=−3+1=-2,∴点P的坐标为(0,-2).故选:D.[点睛]本题考查平面直角坐标系中,坐标轴上的点的坐标的有关性质,解题关键在于得出m的值.16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位[答案]D[解析]分析]根据向下平移,纵坐标相减,横坐标不变解答.[详解]∵将三角形各点的纵坐标都减去3,横坐标保持不变,∴所得图形与原图形相比向下平移了3个单位.故选D.[点睛]本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.下列命题中,是假命题的是( )A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等[答案]B[解析][分析]根据线段、对顶角、补角、平行线的性质判断即可.[详解]A. 两点之间,线段最短是真命题;B. 如果两直线不平行,同旁内角不互补,所以同旁内角互补是假命题;C. 直角的补角仍然是直角是真命题;D. 对顶角相等是真命题;故选B[点睛]掌握线段、对顶角、补角、平行线的性质是解题的关键.18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个[答案]C[解析] ①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,[点睛]本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.19.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( ) (1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.[详解]解:(1)∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.[点睛]本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.一个数的立方根是4,这个数的平方根是 ( )A. 8B. -8C. 8 或-8D. 4 或-4[答案]C因一个数的立方根是 4,可得这个数为64,64的平方根是±8,故选C. 21.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A. -3B. -1C. 1D. -3或1 [答案]D[解析][分析]根据平方根的性质列方程求解即可;[详解]当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.[点睛]本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.22.16的平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或6 [答案]B[解析][分析]先求16的平方根,再求−8的立方根,然后求和.[详解]4,∴它们的和是−6或2,故选:B .[点睛]本题主要考查了平方根和立方根的定义,掌握知识点是解题关键.23.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ [答案]D[解析][分析]将四个选项中的x 与y 的值代入已知方程检验,即可得到正确的选项.[详解]解:A、将x=2,y=0代入方程左边得:x+2y=2+2×0=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;B、将x=-2,y=2代入方程左边得:x+2y=-2+2×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;C、将x=0,y=1代入方程左边得:x+2y=0+1×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;D、将x=-1,y=0代入方程左边得:x+2y=-1+2×0=-1,右边为2,故本选项不是方程的解,符合题意,本选项正确;故选:D.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.24.已知a<b<0 ,则点A(a-b,b )在第( )象限A. 一B. 二C. 三D. 四[答案]C[解析][分析]根据a<b<0,判断出a−b和b的取值范围,再根据点的坐标特点判断其所在象限.[详解]解:∵a<b<0,∴a−b<0,b<0,∴点A(a−b,b)第三象限,故选:C.[点睛]本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,−);第二象限(−,+);第三象限(−,−);第四象限(+,−).三.解答题25.求下列各式中的值(1)252x=36(2)-3=3 8[答案](1)x=65;(2)x=32[解析][分析](1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.[详解]解:(1)25x 2=36x 2=3625∴x=56±; (2)x 3−3=38x 3=278∴x=32. [点睛]本题考查了平方根与立方根的定义,理解相关定义是解决本题的关键,注意一个正数的平方根有两个,它们互为相反数,不要漏解.26.解方程组25{437x y x y +=+=. [答案]4{3x y ==-,;[解析] 解:①×3﹣②得,28x =,解得4x =.把4x =代入①得,85y +=,解得3y =-所以原方程组的解为4{ 3.x y ==-, 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?[答案]甲的速度是4千米/时,乙的速度是2千米/时.[解析][分析]设甲的速度是x 千米/时,乙的速度是y 千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.[详解]设甲的速度是x 千米/小时,乙的速度是y 千米/小时,由题意,得6336x y x y +=⎧⎨-=⎩,解得:42 xy=⎧⎨=⎩.故甲的速度是4千米/时,乙的速度是2千米/时.[点睛]本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.[答案]55︒[解析][分析]根据题意求出∠DOB,OG平分∠BOF,得∠BOG=∠FOG,等量代换即可求解.[详解]由题意知:CD⊥EF,∠AOE=70︒∵∠AOE+∠EOD+∠DOB= 180︒,∴∠DOB=20︒.又∵∠BOF和∠AOE是对顶角∴∠BOF=∠AOE=70︒.∵OG平分∠BOF,∠BOF=70︒∴∠BOG=∠FOG=35︒.∠DOG=∠DOB+∠BOG=55︒.[点睛]本题主要考查了角平分线的性质和对顶角相等,正确掌握角平分线的性质和对顶角相等是解题的关键.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )[答案]答案见解析[解析][详解]解:∵BD⊥AC,EF⊥AC(已知),∴∠2=∠3=90°,∴BD∥EF(同位角相等,两直线平行),∴∠4=∠5(两直线平行,同位角相等);∵∠1=∠4(已知),∴∠1=∠5(等量代换),∴DG∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,同位角相等).[点睛]本题考查平行线的性质与判定,解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用.。
七年级数学期中考一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有种位置关系,它们是;2.若直线a//b,b//c,则,其理由是;3.如图1直线AB,CD,EF相交与点O,图中AOE∠的对顶角是,∠的邻补角是。
COF4.如图2,要把池中的水引到D处,可过C点引CD⊥AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:;5.点P(-2,3)关于X轴对称点的坐标是。
关于原点对称点的坐标是。
6.把“对顶角相等”写成“如果……那么……”的形式为。
7.一个等腰三角形的两边长分别是3cm和6cm,则它的周长是 cm.8.若点M(a+5,a-3)在y轴上,则点M的坐标为。
9.若P(X,Y)的坐标满足XY>0,且X+Y<0,则点P在第___象限。
10.一个多边形的每一个外角等于30 ,则这个多边形是边形,其内角和是。
11.直角三角形两个锐角的平分线所构成的钝角等于度。
12.如图3,四边形ABCD中,12∠∠与满足关系时AB//CD,当时AD//BC(只要写出一个你认为成立的条件)。
图3二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题2分,共12分)1.下列各图中,∠1与∠2是对顶角的是:( )2.以下列各组线段为边,能组成三角形的是( )A 、2cm, 3cm, 5cmB 、5cm, 6cm, 10cmC 、1cm, 1cm, 3cmD 、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( )A .正三角形B .长方形C .正八边形D .正六边形 4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( )ABCD 图2 ABDC1 2 A FC EBD 图1OA .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图4,下列条件中,不能判断直线a//b 的是( )A 、∠1=∠3B 、∠2=∠3C 、∠4=∠5D 、∠2+∠4=180°6.下列图形中有稳定性的是( )A .正方形 B.长方形 C.直角三角形 D.平行四边形 三.作图题。
(每小题4分,共12分1.作出钝角ABC 的三条高线。
2.在下面所示的方格纸中,画出将图中△ABC 向右平移4格后 的△ABC.,然后再画出△ABC 、向下平移3格后的△A"B"C"AB Cc b a543 2 1 图4CB A3、写出图中A、B、C、D、E、F各点的坐标:四、学着说点理。
(每小题3分,共6分)1、如图四(1):∠1=∠2=∠3,完成说理过程并注明理由:(1)因为∠1=∠2所以____∥____ ( )(2)因为∠1=∠3所以____∥____ ( )2、已知:如图,∠1=∠2.求证:∠3+∠4=180°证明:∵∠1=∠2∴ a∥b ( )∴∠3+∠5=180°( )又∵∠4=∠5 ( )∴∠3+∠4=180°五.用心解一解:(每小题5分,共20分)1、如图五(1):∠1=∠2,∠3=108°.求∠4的度数2、如图五(2),直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F ,若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数3.一个多边形的内角和是它外角和的2倍,求这个多边形的边图四(2)图五(1)图五(2)F数。
4.如图B 点在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 北偏东80°方向,求∠ACB 。
六.简单推理。
(1.2.每小题5分,第3题6分,共16分)1.如图,一个零件ABCD 需要AB 边与CD 边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?为什么?2.如图,如果AB//CD ,∠B=37°,∠D=37°,那么BC 与DE 平行吗? 为什么?ABC北 D3.已知如图BC 交DE 于O ,给出下面三个论断:①∠B=∠E ;②AB//DE ;③BC//EF 。
请以其中的两个论断为条件,填入“题设”栏中,以一个论断为结论,填入“结论”栏中,使之成为一个正确的命题,并加以证明。
题设:已知如图,BC 交DE 于O , 。
(填题号) 结论:那么 (填题号)七、细观察,找规律(本题10分) 1、下列各图中的MA 1与NA n 平行。
NNA 32A MNA 3A 5A 43A 2NM ④③②①……(1)图①中的∠A 1+∠A 2=____度, 图②中的∠A 1+∠A 2+∠A 3=____度, 图③中的∠A 1+∠A 2+∠A 3+∠A 4=____度,图④中的∠A 1+∠A 2+∠A 3+∠A 4+∠A 5=____度,……,ABDOCEF第⑩个图中的∠A1+∠A2+∠A3+…+∠A10=____度(2)第n个图中的∠A1+∠A2+∠A3+…+∠A n=___________。
参考答案一、细心填一填1.两;相交和平行。
2.a//c;平行于同一条直线的两条直线互相平行。
3.∠BOF;∠COE和∠DOF。
4.垂线段最短。
5.(-2,-3);(2,-3)6.如果两个角是对顶角,那么这两个角相等。
7.15。
8.(0,-8)9.三;10°十二;1800°11.135;12.相等;∠DAC=∠BCA(或∠DAB+∠B=180°;∠D+∠DCB=180°)二、精心选一选三.作图题。
1.略2.略;3.A(2,3);B(3,2);C(-3,1);D(-2,-2);E(1,0);F(0,-3)四、学着说点理。
1.EF//BD;同位角相等,两直线平行。
AB//CD;内错角相等,两直线平行。
2.同位角相等,两直线平行;两直线平行,同旁内角互补。
对顶角相等五.用心解一解:1.解:12//CD3+4=1803108418010872AB ∠=∠∴∴∠∠∠=∴∠=-=2.解:在△ABC 中18067,74180677439394887A B ACB B ACB A BDF ADE BDF A AED ∠+∠+∠=∠=∠=∴∠=--=∠∆∴∠=∠+∠=+=是的一个外角3. 解设这个多边形的边数为n ,依题意得: ()21802360n -=⨯ 解得:n=6答这个多边形的边数是6边。
4.,15.801560//AEDBA=8035180603585CAE DBC BAC DB ABC ACB ∠∠=∠=∴∠=+=∴∠∠∴∠=-=∴∠=--=解由题意得:BAE=4545BAE=4545六.简单推理。
1.答:这个零件合格。
理由是:120,60180//CDABC BCD ABC BCD AB ∠=∠=∴∠+∠=∴2. 答:BC// DE理由是://CD C=B=373737//DEAB D C D BC ∴∠∠∠=∴∠=∠=∴3. 题设:①,②;结论:③。
(或题设:①,③;结论:②。
或题设:,②③;结论:①。
)以题设:①,②;结论:③。
进行证明如下://DE//EFAB B DOC B E E DOC BC ∴∠=∠∠=∠∴∠=∠∴七、细观察,找规律(1)图①中的∠A 1+∠A 2=180度, 图②中的∠A 1+∠A 2+∠A 3=360度, 图③中的∠A 1+∠A 2+∠A 3+∠A 4=540度,图④中的∠A 1+∠A 2+∠A 3+∠A 4+∠A 5=720度,……, 第⑩个图中的∠A 1+∠A 2+∠A 3+…+∠A 10=1620度(2)第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n =(n-1)180 设计意图: 一、 细心填一填侧重于考察学生对同一平面内两条直线的位置关系的理解,平行公理的推论,对于对顶角及邻补角的辩认,垂线的性质的应用,对称点坐标的求法,命题的构成,平面直角坐标系中坐标轴上点的特征及各象限的符号,三角形边的不等关系的应用,多边形的外角和及内角和的求法,对平行线判定的应用等。
二、精心选一选侧重于考察学生利用三角形边的不等关系来判断三条线段能否组成一个三角形,平面镶嵌的条件,平移的方法,三角形的稳定性等。
三.作图题。
侧重于考察学生对三角形的三种重要线段的理解,坐标平移,平面上点的坐标的确定。
四、学着说点理。
侧重于让学生认识到对于证明的每一步都要是有根据的。
五.用心解一解:1.侧重于考察学生对平行线判定及性质的综合应用。
2.侧重于考察学生对三角形内角和定理及外角的性质的应用。
3.侧重于考察学生对于多边形的内角和及外角和的掌握。
4.侧重于考察学生对方向坐标的看法。
六.简单推理。
让学生进行简单的推理。
培养学生的开放性和探索性能力。
七、细观察,找规律培养学生细心观察能力和总结规律的能力。
11。