七年级春季提高班第6讲 三角形的三边关系与内角和
- 格式:doc
- 大小:291.08 KB
- 文档页数:9
三角形三边关系、三角形内角和定理定理:三角形两边的和大于第三边。
表达式:△ABC 中,设a >b >c 则b-c <a <b+ca-c <b <a+ca-b <c <a+b 给出三条线段的长度,判断它们能否构成三角形。
方法(设a 、b 、c 为三边的长)①若a+b >c ,a+c >b ,b+c >a 都成立,则以a 、b 、c 为三边的长可构成三角形; ②若c 为最长边且a+b >c ,则以a 、b 、c 为三边的长可构成三角形; ③若c 为最短边且c >|a-b|,则以a 、b 、c 为三边的长可构成三角形。
④已知三角形两边长为a 、b ,求第三边x 的范围:|a-b|<x <a+b 。
1、已知:如图△ABC 中AG 是BC 中线,AB=5cm AC=3cm ,则△ABG 和△ACG 的周长的差为多少?△ABG 和△ACG 的面积有何关系?2、三角形的角平分线、中线、高线都是( )A 、直线B 、线段C 、射线D 、以上都不对3、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、顶点上D 、以上三种情况都有可能4、直角三角形中高线的条数是( )A 、3B 、2C 、1D 、05、现有10cm 的线段三条,15cm 的线段一条,20cm 的线段一条,将它们任意组合可以得到几种不同形状的三角形?6、下列各组里的三条线段组成什么形状的三角形?(1)3cm 4cm 6cm (2)4cm 4cm 6cm(3)7cm 7cm 7cm (4)3cm 3cm 7cm7、已知△ABC 中,a=6,b=14,则c 边的范围是专题检测1.指出下列每组线段能否组成三角形图形(1)a=5,b=4,c=3 (2)a=7,b=2,c=4(3)a=6,b=6,c=12 (4)a=5,b=5,c=62.已知等腰三角形的两边长分别为11cm 和5cm ,求它的周长。
3.已知等腰三角形的底边长为8cm ,一腰的中线把三角形的周长分为两部分,其中一部分比另一部分长2cm ,求这个三角形的腰长。
初中数学知识归纳三角形的三边关系与角平分线初中数学知识归纳:三角形的三边关系与角平分线三角形是初中数学中的重要概念之一,而了解三角形的几何特性对于解决与之相关的问题至关重要。
本文将对三角形的三边关系以及角平分线的性质进行归纳总结,以帮助读者更好地理解和运用这些数学知识。
一、三角形的三边关系在任意一个三角形ABC中,三条边分别为a, b和c,三个内角分别为A, B和C。
根据三边关系的性质,我们可以得到以下几个重要的结论:1. 三角形两边之和大于第三边:a + b > c,b + c > a,c + a > b。
这一结论可以通过数学推导进行证明,也可以从几何直观上理解。
当任意两条边之和小于或等于第三条边时,无法构成一个封闭的三角形,因此两边之和必须大于第三边。
2. 三角形两角之和小于180度:A + B < 180度,B + C < 180度,C + A < 180度。
同样地,这个结论可以通过几何推理或者解三角形的内角和定理进行证明。
由于一个完整的平面角为360度,这意味着三角形的内角和必然小于180度。
3. 三角形两边之差小于第三边:|a - b| < c,|b - c| < a,|c - a| < b。
这个结论可以通过几何推理和绝对值的性质进行证明。
当两条边之差大于或等于第三条边时,无法形成一个封闭的三角形,因此两边之差必须小于第三边。
二、三角形的角平分线在三角形ABC中,角的平分线是指从角的顶点出发,将角分为两个相等的角的线段。
根据角平分线的性质,我们可以得到以下几个重要的结论:1. 角平分线将对边分成相等的线段。
当一条角的平分线将一个三角形的内角分为两个相等的角时,它同时也将对边分为两个相等的线段。
这是因为角平分线将角分成两个相等的部分,从而将对边也分成相等的部分。
2. 三角形的三个角的平分线交于一点。
对于一个三角形ABC来说,三个角的平分线AA'、BB'和CC'交于一点O,称为三角形的内心。
第6讲 三角形知识点1三角形初步1.三角形的定义:由3条不在同一直线上的线段,首尾顺次连接组成的封闭图形称为三角形. 如下的图形就是一个三角形.2.三角形的各组成部分:(1)边:组成三角形的三条线段就是三角形的三条边;(2)顶点:三角形任意两边的交点均为三角形的顶点;(3)通常情况下,我们用三角形的三个顶点加以一个“△”来表示一个三角形,在表示三角形时,三个字母之间并无顺序关系.如上图中,此三角形可以表示为,△ABC 或△BAC或△CCBA.(4)内角:三角形两边所夹的角,称为三角形的内角,简称角.例如上图△ABC中,∠A,∠B,∠C都是三角形的内角.3、其他概念与定理三角形内角和定理:三角形的内角之和为180°.三角形外角定理:三角形的一个外角等于与它不相邻的两个内角之和.三角形三边关系:任意两边之和大于第三边,两边之差小于第三边.三角形中边角关系:大边对大角,等边对等角.高:顶点到对边的距离叫做三角形的一条高.三角形角平分线的性质:角平分线上的点到角两边的距离相等.中线:三角形顶点到对边中点的连线叫三角形的中线.中线把原来整个三角形分成两个面积相等的小三角形.4、三角形分类:(1)按角分:三角形锐角三角形直角三角形钝角三角形⎧⎪⎨⎪⎩(2按边分:三角形普通三角形等腰三角形等边三角形⎧⎪⎨⎪⎩5、三角形的特性:稳定性【典例】例1(2020秋•涪城区校级期末)一个三角形的两边长为12和7,第三边长为整数,则第三边长的最大值是()A.16B.17C.18D.19例2(2020秋•齐河县期末)如图,共有个三角形.例3(2020秋•涪城区校级期末)如图,在△ABC中,AM是△ABC的高线,AN是△ABC的角平分线,已知∠B=50°,∠BAC=100°,分别求出∠C和∠MAN的度数.【随堂练习】1.(2020秋•濉溪县期中)在△ABC中,AB=8,BC=2,并且AC为偶数,求△ABC的周长.2.(2020秋•顺平县期中)如图,已知D是△ABC边BC延长线上一点,DF交AC于点E,∠A=35°,∠ACD=83°.(1)求∠B的度数;(2)若∠D=42°,求∠AFE的度数.3.(2020秋•庐阳区校级期中)如图所示,AE为△ABC的角平分线,CD为△ABC的高,若∠B=30°,∠ACB为70°.(1)求∠CAF的度数;(2)求∠AFC的度数.4.(2020秋•全椒县期中)如图,已知CE是△ABC的外角∠ACD的平分线,且CE交BA 的延长线于点E.(1)如果∠B=35°,∠E=20°,求∠BAC的度数;(2)求证:∠BAC=∠B+2∠E.知识点2等腰三角形等腰三角形的概念与性质1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三边叫做三角形的底.2、等腰三角形的性质①等腰三角形的腰相等②等腰三角形的两个底角相等(简记为”等边对等角“)③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,称为”三线合一“【典例】例1(2020秋•乐亭县期末)如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm例2 (2020秋•肇州县期末)如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC=130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°例3 (2020秋•南关区期末)图①、图②均是三个角分别为20°,40°,120°的三角形.在图①、图②中,过三角形的一个顶点作直线把此三角形分成两个等腰三角形(图①、图②中的分割线不同).要求画出分割线,并标出等腰三角形底角的度数.【随堂练习】1.(2020秋•长春期末)如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB 上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.2.(2020秋•丛台区期末)如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.(2020秋•朝阳区期末)如图,△ABC中,AB=AC,DE垂直平分AC,若∠A=30°,求∠BCD的度数.知识点3等边三角形等边三角形:三条边都相等的三角形叫做等边三角形,也叫正三角形.等边三角形的性质:①三边相等②三个内角相等,都是60°③它是轴对称图形,对称轴分别是三边上的高.【典例】例1(2020秋•覃塘区期中)如图,△ABC是等边三角形,D是AC边的中点,延长BC到点E,使CE=CD,连接DE,则下列结论错误是()A.CE=12AB B.BD=ED C.∠BDE=∠DCE D.∠ADE=120°例2(2020秋•沧州期中)三个等边三角形的摆放位置如图所示,若∠1+∠2=110°,则∠3的度数为()A.90°B.70°C.45°D.30°例3(2020春•松江区期末)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【随堂练习】1.(2020秋•五常市期末)如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论不正确的是()A.AD⊥BC B.EF=FD C.BE=BD D.AE=AC2.(2020秋•南关区校级期末)如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q.延长MN至G,取NG=NQ,若△MNP的周长为12,则△MGQ周长是()A.8+2√3B.6+4√3C.8+4√3D.6+2√33.(2020秋•福州期中)如图,已知等边△ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=α,∠BDE=180°﹣2α,则∠DBE的度数是()A.120°﹣αB.180°﹣2αC.2α﹣90°D.α﹣60°知识点4直角三角形直角三角形定义:有一个角为90°的三角形,叫做直角三角形.1、直角三角形的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.2.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.3.勾股定理的逆定理:勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【典例】例1(2020秋•萧山区期中)在下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=5:3:2,③∠A=90°﹣∠B,④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个例2(2020秋•惠来县期末)如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是()A.16B.25C.144D.169例3(2020秋•新华区校级月考)如图所示,在△ABC中,∠ACB=90°,D是AB的中点,DE⊥BC,E为垂足,AC=12AB,图中为60°的角有()A.2个B.3个C.4个D.5个【随堂练习】1.(2020秋•松江区期末)如图,在四边形ABCD中,AD=2√2,AB=2√7,BC=10,CD =8,∠BAD=90°,那么四边形ABCD的面积是.2.(2019秋•南岸区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)点F是AE延长线上一点,过点F作∠AFD=27°,交AB的延长线于点D.求证:BE∥DF.知识点5全等三角形1、全等三角形及相关的概念(1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角.(3)全等三角形的表示方法:两个三角形全等用符号“≌”来表示,如图所示△ABC≌△DEF.符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB≌FDE,则AB与DE、AC与DF、BC与EF是对应边,∠A和∠D、∠B 和∠E、∠C和∠F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的位置关系.对边是与对角相对的边,对角是与边相对的角.易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写.2、全等三角形的性质性质:全等三角形的对应边相等,对应角相等.还具备:全等三角形的对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的周长相等,面积也相等.易错提示:周长相等的两个三角形不一定全等,面积相等的两个三角形也不一定全等.3、一般三角形全等的判定方法①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS)4、直角三角形全等的判定方法①一般三角形全等的判定方法都可应用于判定两个直角三角形全等.②斜边、直角边定理(HL)文字描述:斜边和一条直角边分别相等的两个直角三角形全等.【典例】例1 (2020秋•二道区期末)如图,在△ABC中,∠B=80°,∠C=30°.若△ABC≌△ADE,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°例2(2020秋•梁子湖区期中)如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DF A的度数.例3(2020秋•洮北区期末)如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.例4 (2020秋•铁西区期末)在Rt△ABC中,∠ACB=90°,CB=CA=2√2,点D是射线AB上一点,连接CD,在CD右侧作∠DCE=90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.【随堂练习】1.(2020秋•乐亭县期末)已知图中的两个三角形全等,则∠1等于()A.47°B.57°C.60°D.73°2.(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.3.(2020秋•崆峒区期末)如图,在等边△ABC中,点D、E分别是边AC,AB上的点,且AE=CD,BD交CE于点P.(1)如图①,求证:∠BPC=120°;(2)点M是边BC的中点,连接P A,PM,如图②,若点A,P,M三点共线,求证:AP=2PM.知识点6相似三角形1、相似三角形的概念与性质:相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形.两个全等的三角形是特殊的相似三角形,它们的相似比为1:1.2、相似三角形的性质:①相似三角形对应高的比、对应角平分线的比、对应中线的比都等于相似比.②相似三角形的周长比等于相似比,面积比等于相似比的平方.3、相似三角形的判定①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.②如果两个三角形的三组对应边的比相等,那么这两个三角形相似.③如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似.④如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.4、黄金分割一般地,点C 把线段AB 分成两条线段 AC 和 BC (如图), 如果AC BC AB AC=,那么称线段 AB 被点 C 黄金分割, 点C 叫做线段 AB 的黄金分割点,AC 与AB 的比叫做黄金比.黄金比0.618AC AB =≈.【典例】例1 (2021•长宁区一模)如图,己知在△ABC 中,点D 、点E 是边BC 上的两点,联结AD 、AE ,且AD =AE ,如果△ABE ∽△CBA ,那么下列等式错误的是( )A .AB 2=BE •BCB .CD •AB =AD •AC C .AE 2=CD •BED .AB •AC =BE •CD例2 (2020秋•金川区期末)如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD :AB =1:4,BC =8cm ,那么△ADE 的周长等于( )A .2cmB .3cmC .6cmD .12cm例3(2020秋•蜀山区校级月考)如图,在△ABC ,D ,E 分别是AB ,AC 上的点,△ADE ∽△ACB ,相似比为AD :AC =2:3,△ABC 的角平分线AF 交DE 于点G ,交BC 于点F ,求AG 与GF 的比.例4(2020秋•双流区校级月考)如图,在△ABC 中,∠B =90°,点P 从点A 开始沿边AB 向点B 以1cm /s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm 每秒的速度移动.如果P 、Q 分别从A 、B 同时出发,经过几秒,△PBQ 与△ABC 相似?(AB =6cm ,BC =8cm )【随堂练习】1.(2020秋•二道区期末)在一张缩印出来的纸上,一个三角形的一条边由原图中的6cm 变成了2cm ,则缩印出的三角形的面积是原图中三角形面积的( )A .13B .16C .19D .1122.(2020秋•市中区期中)已知△ABC 的三边长分别为6,8,10,和△ABC 相似的△A ′B ′C ′的最长边长30,求△A ′B ′C ′的另两条边的长、周长及最大角的大小.3.(2020秋•荥阳市期中)已知Rt△ABC的两直角边AB,AC的长分别为6cm和8cm,动点D从点A开始沿AB边向点B运动,速度为1cm/s;动点E从点C开始沿CA边向点A运动,速度为2cm/s.若两点同时运动,其中一点到达终点时,另一点也随之停止运动,那么何时△ADE与△ABC相似?综合运用1.(2020秋•浦北县期中)如图,在等边△ABC中,点O是BC上任意一点,OE,OF分别于两边垂直,且等边三角形的高为2,则OE+OF的值为()A.5B.4C.3D.22.(2020春•荔湾区月考)如图,在△ABC中,∠ACB=90°,AC=8,BC=6,点D为斜边AB上的中点,则CD为()A.10B.3C.5D.43.(2020秋•兰州期末)如图,正方形网格中的△ABC,若小方格边长为1,请证明△ABC 为直角三角形,并求出其面积.4.(2020春•宽城区期末)如图,△ACF≌△DBE,其中点A、B、C、D在一条直线上(1)若BE⊥AD,∠F=62°,求∠A的大小;(2)若AD=9cm,BC=5cm,求AB的长.5.(2020秋•文山市期末)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求这块地的面积.6.(2020秋•陕西期中)已知:如图在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.求证:△BEC∽△BCH.7.(2020秋•利通区期末)如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,∠BDC=90°,∠DBC=45°.(1)求证:∠BAD=∠CAD;(2)求∠ADB的度数.8.(2020春•内江期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.9.(2020秋•香坊区期末)已知:等边△ABC,点D为AC上一点,DF⊥BC,垂足为点F,点E为BC延长线上一点,分别连接DB、DE,AD=CE.(1)如图1,AD≠CD,求证:BF=EF;(2)如图2,点G为BC中点,连接DG,若AD=CD,在不添加任何辅助线的情况下,请直接写出图中所有是△DFG面积二倍的三角形.10.(2020秋•东城区校级期中)如图,正方形ABCD的边长为4,E是CD中点,点P在射线AB上,过点P作线段AE的垂线段,垂足为F.(1)求证:△P AF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出P A的长.。
三角形的内角和与外角和关系(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和1.三角形内角和定理:三角形的内角和为180°.2.结论:直角三角形的两个锐角互余.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理、证明经常使用的理论依据.另外,在证明角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .∵ AB ∥CD (已作),∴ ∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∵∠ACB+∠1+∠2=180°(平角定义),∴∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .∵DF ∥AC (已作),∴∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).∵DE ∥AB (已作).∴∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).∴∠A=∠2(等量代换).又∵∠1+∠2+∠3=180°(平角定义),∴∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l ,∵1l ∥3l (已作).∴∠l=∠2(两直线平行,内错角相等).同理∠3=∠4.又∵1l ∥2l (已作),∴∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).∴∠5+∠2+∠6+∠3=180°(等量代换).又∵∠2+∠3=∠ACB ,∴∠BAC+∠ABC+∠ACB=180°(等量代换).【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC 中,已知∠A+∠B =80°,∠C =2∠B ,试求∠A ,∠B 和∠C 的度数.【思路点拨】题中给出两个条件:∠A+∠B =80°,∠C =2∠B ,再根据三角形的内角和等于180°,即∠A+∠B+∠C =180°就可以求出∠A ,∠B 和∠C 的度数.【答案与解析】解:由∠A+∠B =80°及∠A+∠B+∠C =180°,知∠C =100°.又∵ ∠C =2∠B ,∴ ∠B =50°.∴ ∠A =80°-∠B =80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C =180°.本题可以设∠B =x ,则∠A =80°-x ,∠C =2x 建立方程求解.【高清课堂:与三角形有关的角 例1、】举一反三:【变式】已知,如图 ,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,求∠DBC 的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于()A、40°B、65°C、75°D、115°【答案】B【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°类型三、三角形的内角、外角综合4.如图所示,已知DE分别交△ABC的边AB、AC于D、E,交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【思路点拨】要求∠BDF的度数,应从三角形内角和与三角形的外角出发,若将∠BDF看成△BDF的内角,只需求∠F的度数即可.【答案与解析】解:∵∠CEF=∠AED=48°,∠BCA=∠CEF+∠F,∴∠F=∠BCA-∠CEF=74°-48°=26°,∴∠BDF=180°-∠B-∠F=180°-67°-26°=87°.【总结升华】三角形内角和与外角是进行与角有关的计算或证明的重要工具,本题也可将∠BDF看成△ADE的外角来求解.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC 于G,试说明∠BPD与∠CPG的大小关系并说明理由.【答案】解:∠BPD=∠CPG;理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB,∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°,又∵∠4=∠1+∠2,∴∠4+∠3=90°,又∵ PG⊥BC,∴∠3+∠5=90°,∴∠4=∠5,即∠BPD=∠CPG.。
三角形的内角和知识点总结一、三角形内角和定理。
1. 内容。
- 三角形的内角和等于180°。
2. 证明方法。
- 剪拼法。
- 把三角形的三个角剪下来,然后将它们的顶点拼在一起,可以发现这三个角正好组成一个平角,从而直观地得出三角形内角和为180°。
例如,对于一个锐角三角形,可以分别沿着三角形的三条边剪下三个角,然后将角A、角B、角C的顶点重合拼在一起,就会看到它们拼成了一个180°的角。
- 推理证明法(以平行线的性质为基础)- 已知△ABC,过点A作直线EF∥BC。
- 因为EF∥BC,根据两直线平行,内错角相等,所以∠B = ∠FAB,∠C=∠EAC。
- 又因为∠FAB+∠BAC +∠EAC = 180°(平角的定义),所以∠B+∠BAC+∠C = 180°,从而证明了三角形内角和为180°。
二、三角形内角和定理的应用。
1. 求三角形中未知角的度数。
- 在一个三角形中,如果已知其中两个角的度数,就可以根据三角形内角和为180°求出第三个角的度数。
例如,在△ABC中,∠A = 50°,∠B = 60°,那么∠C=180° - ∠A - ∠B = 180°-50° - 60° = 70°。
2. 判断三角形的类型(按角分类)- 锐角三角形。
- 三个角都是锐角(即每个角都小于90°)的三角形。
如果一个三角形的最大角小于90°,根据三角形内角和为180°,可知另外两个角也必然是锐角,这个三角形就是锐角三角形。
例如,在△ABC中,∠A = 60°,∠B = 70°,∠C = 50°,因为最大角∠B = 70°<90°,所以△ABC是锐角三角形。
- 直角三角形。
- 有一个角是直角(等于90°)的三角形。
初一几何图形内角和知识点几何学是数学的一个重要分支,它研究的是空间和形状。
初中阶段,我们开始学习一些基本的几何图形和它们的特性。
其中一个重要的概念是内角。
本文将介绍初一几何图形内角的概念和相关知识点。
一、什么是内角?内角是指一个几何图形内部的两条线之间的角度。
在初中阶段,我们通常学习的几何图形有三角形、四边形和多边形。
对于三角形来说,它的内角有三个;对于四边形来说,它的内角有四个;对于多边形来说,它的内角数量与边数有关。
二、三角形的内角和三角形是初中阶段最基本的几何图形之一。
一个三角形有三个内角,我们可以通过两条边之间的夹角来计算内角和。
对于任意一个三角形,它的内角和一直都是180度。
三、四边形的内角和四边形是由四条线段组成的几何图形。
它有四个内角,我们可以通过计算这四个内角的和来了解它的特性。
对于矩形来说,它的内角和是360度;对于平行四边形来说,它的内角和也是360度;而对于一般的四边形来说,它的内角和是小于360度的。
四、多边形的内角和对于具有n条边的多边形来说,它的内角和可以通过公式(n-2) × 180度来计算。
例如,一个五边形的内角和就是(5-2) × 180度,即540度。
通过这个公式,我们可以快速计算出不同多边形的内角和。
五、内角和的应用内角和的概念在几何学中是非常重要的,它可以帮助我们解决一些与几何图形相关的问题。
例如,当我们知道一个三角形的两个内角,我们可以通过内角和的性质来计算第三个内角;当我们知道一个多边形的内角和时,我们可以根据内角和的公式来计算出它的边数。
结论初一几何图形内角和是我们学习几何学的基础知识点之一。
它帮助我们理解不同几何图形的特性,并且可以应用于解决与几何图形相关的问题。
通过学习内角和的概念和计算方法,我们可以更好地掌握几何学的知识,为以后学习更复杂的几何学概念打下坚实的基础。
三角形一.由三条线段首尾顺次相接组成的图形叫做三角形。
三角形有3个角、3条边、3个顶点。
三角形具有我稳定性。
二.三角形三边关系:三角形任意两边之和大于第三边,任意两边之和小于第三边。
1.已知三条线段的比是:①1,3,4;②1,2,3;③1,4,3;④3,3,6;⑤6,6,10;⑥3,4,5.其中可构成三角形的有( ) .2. 长为10、7、5、3的四跟木条,选其中三根组成三角形有___种选法。
3.如果三角形的两边长分别为3和5,则周长L的取值范围是( )4.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.已知等腰三角形的两边长分别为11cm和5cm,求它的周长。
6.小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是偶数,小颖有几种选法?第三根的长度可以是多少?三.三角形分类锐角三角形 3个锐角1.三角形按角分类:直角三角形 1个直角 2个锐角钝角三角形 1个钝角 2个锐角不等边三角形普通等腰三角形:两腰长相等,两底角相等2.三角形按边分类:等腰三角形特殊的等腰三角形——等边三角形:三条边都相等,三个角都是60度。
注意:1.一个三角形最多有一个钝角,最多有一个直角,至少有两个锐角。
钝角三角形两个锐角之和小于90度,直角三角形两个锐角之和等于90度,锐角三角形两个锐角之和大于90度。
2.等腰三角形是轴对称图形,有一条对称轴;等边三角形也是轴对称图形,有3条对称轴。
四.三角形的三个内角等于180度。
1.已知∠1和∠2是直角三角形中的两个锐角,已知其中一个角的度数,求另一个角的度数。
(1)∠1=15°,∠2=( )。
(2)∠1=38°,∠2=( )。
(3)∠1=56°,∠2=( )。
(4)∠1=45°,∠2=( )。
2.一块等腰三角形广告牌,一个底角是40°,它的顶角是多少度?3.一条等腰三角形的围巾,顶角是110度,求底角是多少度?4.一个直角三角形的一个锐角是30度,求另一个锐角是多少度?。
三角形的三边关系和内角和
【知识要点】
1.定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图叫做三角形 三角形的元素及其表示方法: 2.三角形的三条重要线段及其性质
角平分线的性质:由图(1)可知,AD 为ABC ∆的角平分线,可有
B A
C
D A C D A B ∠=
∠=∠21
,或DAC DAB BAC ∠=∠=∠22
中线的性质:由图(2)可知,AD 为ABC ∆的BC 边的中线,可有
BC DC BD 21
=
=,或
DC BD BC 22==
高线的性质:由图(3)可知,AD 、BE 、CF 是ABC ∆的高,则有
90=∠=∠=∠=∠BFC BEC ADC ADB
3.三角形的稳定性
三角形的三边确定,那么它的形状、大小都确定了,三角形的这个性质叫做三角形的稳定性.
4.三角形的三边关系
(1)三角形任意两边之和大于第三边 (2)三角形任意两边之差小于第三边 5.①三角形三个内角之和等于180º;
②三角形的一个外角等于和它不相邻的两个内角的和; ③三角形的一个外角大于一个和它不相邻的内角。
6.三角形按角分类:①锐角三角形 ②直角三角形 ③钝角三角形 【典型例题】
例1 (1)如图1-1(1),F 、E 分别为BD 、BC 上的点,DAF BAF ∠=∠,D 为AC 边的中点.AF
是哪个三角形的角平分线?线段AE 是哪个三角形的角平分线?AC 边上的中线是哪条线段? (2)如图1-1(2),填空.
①若AD 是ABC ∆的角平分线,则∠ =∠ =21
∠ ; ②若AE 是ABC ∆的中线,则 = =21
. C
D A F
E B A
B
C
D
E F
(1)
A
③若AF 是ABC ∆的高,则∠ =∠ =
90.
例2 (1)在ABC ∆中,已知:12,18a cm b cm ==,求第三边c
的取值范围.
(2)一个三角形的两边分别为1319cm cm 和,求其最短边x 的取值范围.
例3 下列各组分别表示三条线段的长度,判断以这些线段为边是否能组成三角形.
①3,5,2 ②()
3,4,50k k k k >
例4 (1)已知△ABC 的周长为18cm ,且a+b=2c,b=2a ,求a 、b 、c 。
(2)已知:ABC ∆中,7,:4:3AB BC AC ==,求这个三角形的周长的取值范围.
例5 (1)如图所示1,D 是△ABC 内任一点,求证:AB+AC>BD+CD 。
A
C E
D F
B
(2) 图1-1
(2)如图所示2,D 、E 是△ABC 内两点,求证:BD+DE+CE<AB+AC 。
例6如图1-10(1),已知ABC ∆中,B C ∠>∠,AD 为BAC ∠的平分线,AE BC ⊥,垂足为E .求:
()1
2DAE B C ∠=
∠-∠.
例7 (1)如图1-11(1),已知:CE 为ABC ∆外角ACD ∠的平分线,CE 交BA 的延长线于点E .求证:BAC B ∠>∠.
(2)如图1-11(2),已知:P 是ABC ∆内任意一点,求证:BPC A ∠>∠.
C B
A
P Q
E D 图 2 A
B
E D
C
(1)
B
C
D
E
2
1
A
(1)
A
D
P
例8 (1)如图1-12(1),已知:在ABC ∆中,60ABC ∠=,80ACB ∠=,点O 是两角平分线的交点,求BOC ∠的度数.
(2)如图1-12(2),已知:在ABC ∆中,44BAC ABC C ∠=∠=∠,BD AC ⊥于D ,求ABD
∠的度数.
例9 在ABC ∆中,B C ∠=∠8,B A ∠=∠7,判定这个三角形的形状.
【巩固练习】
1.(1)等腰三角形一边为3cm ,另一边为7cm ,求其周长L .
A
O
B
C
(1)
A
C
D
B
(2)
(2)如果等腰三角形的一边长为8cm,另一边长为6cm,求第三边的长.2.下列各组分别表示三条线段的长度,判断以这些线段为边是否能组成三角形.
(1)
()
1,2,10
m m m m
++>
(2)
()
,,10,0
a b a b a b
++>>
3.(1)已知等腰三角形一边长为12cm,腰长是底边长的3
4,求这个三角形的周长。
(2)如果三角形的周长为偶数,其中两边长分别为2和7,求第三边的长。
4.若a、b、c为△ABC的三边之长,化简:
.
a b c b c a c a b --+--+--
5.如图,在△ABC中,D是AB上一点,求证:(1)AB+BC+AC>2CD (2)AB+2CD>AC+BC
A D B
C
6.如图所示,已知在△ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 是AD 上一点,求证:∠BED>∠C 。
7.∠ABC 的平分线与∠ACB 外角平分线交于点D ,∠D=30
°,求:∠A 的度数.
8.已知,如图所示,ABC ∆中,AD C B ,45,65︒=∠︒=∠是BC 边上的高,AE 是BAC ∠的平分线,求DAE ∠的度数.
9.已知在ABC ∆中,C B A B C B A ∠∠∠∠=∠︒=∠-∠,,,4,30求的度数.
10.在ABC ∆中,若3:2:1::=∠∠∠C B A ,判定这个三角形的形状.
A B
C
E
D
A
C
E
D B B D
C
E
A
11.如图,在△ABC 中,︒=∠︒=∠70,60B A ,ACB ∠的平分线交AB 于D ,DE//BC 交AC 于E ,求BDC ∠和EDC ∠的度数.
【课后作业】 姓名 成绩 家长签字
一、选择题
1.各边长均为整数的不等边三角形的周长小于13,这样的三角形有( ) A 、1个 B 、2个 C 、3个 D 、4个
2.一个三角形的两边长分别为2cm 和9cm ,第三边长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm
3.若一个三角形的两边长是9和4,且周长是偶数,那么第三边的长是( ) A 、5 B 、7 C 、8 D 、13 4.一个三角形的周长为36cm ,三边之比为4:3:2::=c b a ,求c b a ,,.
5.已知ABC ∆的周长是48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求ABC ∆各边的长.
B
A
D
E C
6.已知:ABC ∆的三边,a 、b 、c 满足1,1+=+=c b b a ,(1)求证:2>b ;(2)若这个三角形的周长为12,求三边的长.
7.在ABC Rt ∆中,两个锐角的平分线AO 、BO 相交于点O ,求AOB ∠的度数.
8.在△ABC 中,∠A=12∠B=1
3∠C ,求△ABC 各内角的度数。
9.如图所示,ABC ∆中,D 是BC 延长线上一点,BC DF ⊥交AC 于E ,交AB 于F ,若︒=∠50BFD ,︒=∠35AEF ,求ACB ∠的度数.
A
D
E
F C
B。