专题8
- 格式:ppt
- 大小:1.18 MB
- 文档页数:51
专题8.欧美资产阶级代议制的确立与发展讲义一、英国君主立宪制的确立1.《权利法案》的制定:①背景:1688年“光荣革命”的胜利。
②时间:1689年颁布③内容:它以明确的条文限制国王的权力,保证议会的立法权、财政权、司法权和军权等。
④作用:限制了君主的权力,为君主立宪制的建立奠定了基础。
2.责任制内阁的形成:①时间:18世纪中期,内阁制形成,英国成为资产阶级君主立宪的典型国家。
②内阁的组成:下院议员由选民普遍直接选举产生,由国王任命在下院大选中获胜的多数党领袖为首相,由首相提出内阁成员和政府成员名单,递交国王批准,组成责任制内阁。
③内阁的职能:对议会或首相负责。
内阁的权力主要表现在控制下院立法程序,通过控制下院本党议员控制下院、宣布提前大选等。
④首相的职能:首相的权力主要表现为拥有各部大臣和主教的提名权、高级文官的任免权、内阁会议主持权、各项重大政策的决策权等。
3.英国君主立宪制的特点:①国王是国家元首,但处于“统而不治”的地位,只是最高权力的象征;②议会是国家权力的中心,是国家最高立法机关;③内阁行使行政权,对议会负责。
内阁首相事实上成为国家政治生活的最高决策者和领导者。
二、美国共和制的确立1. 1787年宪法:内容:①联邦政府分为行政、立法、司法三个部门。
②权力之间彼此制约和平衡。
评价:①美国联邦宪法是世界上第一部成文宪法②这部宪法体现了制约与平衡原则,三权分立原则,民主原则,从而避免绝对权力的出现③这部宪法也使中央和地方之间,大州与小州之间,南方和北方之间的矛盾得到了一定程度的缓和,为美国的长期稳定和发展打下了坚实的基础。
④局限性:打上了种族歧视的烙印2.联邦制的权力结构:国会:是最高立法机构,由参议院和众议院组成,参议员由各州直接选举产生,每州两名;众议员由选民直接选出,人数与州人口数成正比;法律需经国会通过,总统批准才生效。
国会有权向国民征税,调整国外贸易、征兵等。
只有国会拥有宣战权。
总统任命的官员,缔约必须得到参议院的批准方可生效。
专题:数轴穿根法“数轴穿根法”又称“数轴标根法”第一步:经由过程不等式的诸多性质对不等式进行移项,使得右侧为0.(留意:必定要包管x前的系数为正数)例如:(x-2)(x-1)(x+1)>0第二步:将不等号换成等号解出所有根.例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1第三步:在数轴上从左到右依次标出各根.例如:-1 1 2第三步:画穿根线:以数轴为尺度,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根.第四步:不雅察不等号,假如不等号为“>”,则取数轴上方,穿根线以内的规模;假如不等号为“<”则取数轴下方,穿根线以内的规模.例如:若求(x-2)(x-1)(x+1)>0的解.因为不等号威“>”则取数轴上方,穿根线以内的规模.即:-1<x<1或x>2.穿根法的奇过偶不过定律:“奇穿过,偶弹回”.还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是留意,解不克不及让本来分式下面的式子等于0专项练习:1.解不等式0)3)(1)(12(>--+x x x解析:1)一边是因式乘积.另一边是零的情势,个中各因式未知数的系数为正.2)因式)12(+x .)1(-x .)3(-x 的根分离是1-.1.3.在数3)从最大根3的右上方开端,向左依次穿线(数轴上方有线暗示数轴上方有函数图象,数轴下方有线暗示数轴下方有函数图象,此线其实不暗示函数的真实图象).4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集.∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,21(+∞- . 在上述解题进程中,学生计在的疑问往往有:为什么各因式中未知数的系数为正;为什么从最大根的右上方开端穿线;为什么数轴上方曲线对应的x 的聚集是大于零不等式的解集,数轴下方曲线对应x 的聚集是小于零不等式的解集.2.解不等式0)3()121)(2(32<--+x x x解析:1)一边是因式乘积.另一边是零的情势,个中各因式未知数的系数为正.2)因式)2(+x .2)121(-x .3)3(-x 的根分离为2-.2.3,在数轴上把它们标出(如图2).3)从最大根3的右上方开端向左依次穿线,次数为奇数的因式的根一次性穿过,次数为偶数的因式的根穿而不过.4)数轴上方曲线对应的x 的取值区间,为0)3()121)(2(32>--+x x x 的解集,模,为0)3()121)(2(32<--+x x x 的解集. ∴0)3()121)(2(32<--+x x x 的解集为2()2,2( - 数轴标根法.分式不等式.绝对值不等式一.数轴标根法解不等式1.(x-1)(x-2)(x+3)>02. (x-1)(x-2)(x+3)<03. (1- x )(x-2)(x+1)0≤4.(x- 1)2(x-2)3 (x+1)0≥二. 分式不等式思虑 (1)()()303202x x x x ->-->-与解集是否雷同,为什么?(2)()()303202x x x x -≥--≥-与解集是否雷同,为什么? 解:办法1:应用符号轨则转化为一元一次不等式组,进而进行比较.图2办法2:在分母不为0的前提下,双方同乘以分母的平方. 经由过程例1,得出解分式不等式的根本思绪:等价转化为整式不等式(组):(1)()()()()00f x f x g x g x >⇔⋅>(2)()()()()()000f xg x f x g x g x ⋅≥⎧⎪≥⇔⎨≠⎪⎩ 1.302x x -≥- 2.11≤x 3.2113x x ->+ 4.2232023x x x x -+≤-- 5.()2309x x x -≤- 6.101x x<-< 三.含绝对值的不等式的解法|x|>a(a>0)⇔________________ |x|<a(a>0)⇔________________例3:解下列不等式 1. 312≤-x 2. 0)1(1≥+-x x3.|x 2-2x|>x 2.4.0)1(1>+-x x 巩固演习1. 解不等式222310372xx x x ++>-+ 2. 解不等式3113x x+>-- x x x x 1212->-的解集是4 .(2012 山东理)若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________.5. 解不等式(2x- 1)2(x-2)3(x+1)0≥6. 解不等式(3- x )2(x-2)(x+1) 70≤不等式解法15种典范例题典范例题一例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x . 剖析:假如多项式)(x f 可分化为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要留意处理好有重根的情形. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 按序标上数轴.然后从右上开端画线按序经由三个根,其解集如下图的暗影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔2450)2)(4(05x x x x x x 或∴原不等式解集为{}2455>-<<--<x x x x 或或解释:用“穿根法”解不等式时应留意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但留意“奇穿偶不穿”,其法如图.典范例题二例 2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x剖析:当分式不等式化为)0(0)()(≤<或x g x f 时,要留意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ; ②⎩⎨⎧≠≤⋅⇔≤0)(0)()(0)()(x g x g x f x g x f (1)解:原不等式等价于用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(.(2)解法一:原不等式等价于 027313222>+-+-x x x x 212131><<<⇔x x x 或或,∴原不等式解集为),2()1,21()31,(+∞⋃⋃-∞. 解法二:原不等式等价于用“穿根法”∴原不等式解集为),2()1,21()31,(+∞⋂⋃-∞典范例题三例3 解不等式242+<-x x剖析:解此题的症结是去绝对值符号,而去绝对值符号有两种办法:一是根据绝对值的意义⎩⎨⎧<-≥=)0()0(a a a a a ;二是根据绝对值的性质:a x a x a x a a x >⇔<<-⇔<.,或a x -<,是以本题有如下两种解法.解法一:原不等式⎪⎩⎪⎨⎧+<-<-⎪⎩⎪⎨⎧+<-≥-⇔240424042222x x x x x x 或,即⎩⎨⎧>-<<<-⎩⎨⎧<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<<x ,故原不等式的解集为{}31<<x x .解法二:原不等式等价于 24)2(2+<-<+-x x x即⎪⎩⎪⎨⎧+->-+<-)2(42422x x x x ∴312132<<⎩⎨⎧-<><<-x x x x 故或. 典范例题四例4 解不等式04125622<-++-x x x x . 剖析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号轨则,它等价于下列两个不等式组:⎪⎩⎪⎨⎧>-+<+-041205622x x x x 或⎪⎩⎪⎨⎧<-+>+-041205622x x x x ,所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.解法一:原不等式等价下面两个不等式级的并集:⎪⎩⎪⎨⎧>-+<+-0412,05622x x x x 或⎪⎩⎪⎨⎧<-+>+-0412,05622x x x x ⎩⎨⎧<-+<--⇔;0)6)(2(,0)5)(1(x x x x 或⎩⎨⎧>-+>--;0)6)(2(,0)5)(1(x x x x ;⎩⎨⎧<<-<<⇔62,51x x 或⎩⎨⎧>-<><6,2,5,1x x x x 或或 ,51<<⇔x 或2-<x 或6>x .∴原不等式解集是}6512{><<-<x x x x ,或,或.解法二:原不等式化为0)6)(2()5)(1(>-+--x x x x .画数轴,找因式根,分区间,定符号.)6)(2()5)(1(-+--x x x x 符号 ∴原不等式解集是}6512{><<-<x x x x ,或,或.解释:解法一要留意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,不然会产生误会.解法二中,“定符号”是症结.当每个因式x 的系数为正值时,最右边区间必定是正值,其他各区间正负相间;也可以先决议含0的区间符号,其他各区间正负相间.在解题时要准确应用.典范例题五例5 解不等式x xx x x <-+-+222322. 剖析:不等式阁下双方都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.解:移项整顿,将原不等式化为0)1)(3()1)(2(2>+-++-x x x x x . 由012>++x x 恒成立,知原不等式等价于0)1)(3()2(>+--x x x . 解之,得原不等式的解集为}321{><<-x x x 或.解释:此题易消失去分母得)23(2222x x x x x -+<-+的错误会法.防止误会的办法是移项使一边为0再解.别的,在解题进程中,对消失的二项式要留意其是否有实根,以便剖析不等式是否有解,从而使求解进程科学合理.典范例题六例6 设R m ∈,解关于x 的不等式03222<-+mx x m .剖析:进行分类评论辩论求解.解:当0=m 时,因03<-必定成立,故原不等式的解集为R .当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;若0>m 时,解得m x m 13<<-;若0<m 时,解得mx m 31-<<. 综上:当0>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<<-m x m x 13; 当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧-<<m x m x31. 解释:解不等式时,因为R m ∈,是以不克不及完整按一元二次不等式的解法求解.因为当0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情形来评论辩论. 在解出03222=-+mx x m 的两根为m x 31-=,m x 12=后,以为m m 13<-,这也是易消失的错误之处.这时也应分情形来评论辩论:当0>m 时,mm 13<-;当0<m 时,m m 13>-. 典范例题七例7 解关于x 的不等式)0(122>->-a x a ax .剖析:先按无理不等式的解法化为两个不等式组,然后分类评论辩论求解.解:原不等式⎪⎩⎪⎨⎧->-≥->-⇔;)1(2,01,02)1(222x a ax x a ax 或⎩⎨⎧<-≥-.01,02)2(2x a x由0>a ,得:⎪⎪⎩⎪⎪⎨⎧<+++-≤>⇔;01)1(2,1,2)1(22a x a x x a x ⎪⎩⎪⎨⎧>≥⇔.1,2)2(x a x由判别式08)1(4)1(422>=+-+=∆a a a ,故不等式01)1(222<+++-a x a x 的解是a a x a a 2121++<<-+.当20≤<a 时,1212≤-+≤a a a ,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .当2>a 时,不等式组(1)无解,(2)的解是2a x ≥. 综上可知,当20≤<a 时,原不等式的解集是[)+∞-+,21a a ;当2>a 时,原不等式的解集是⎪⎭⎫⎢⎣⎡+∞,2a . 解释:本题分类评论辩论尺度“20≤<a ,2>a ”是根据“已知0>a 及(1)中‘2a x >,1≤x ’,(2)中‘2a x ≥,1>x ’”肯定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热门.一般地,分类评论辩论尺度(解不等式)大多半情形下依“不等式组中的各不等式的解所对应的区间的端点”去肯定.本题易误把原不等式等价于不等式)1(22x a ax ->-.改正错误的办法是闇练控制无理不等式根本类型的解法.典范例题八例8 解不等式331042<--x x .剖析:先去失落绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.解答:去失落绝对值号得3310432<--<-x x ,∴原不等式等价于不等式组 ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<<<-325021x x x 或. 解释:解含绝对值的不等式,症结是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.典范例题九例9 解关于x 的不等式0)(322>++-a x a a x .剖析:不等式中含有字母a ,故需分类评论辩论.但解题思绪与一般的一元二次不等式的解法完整一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但因为方程的根含有字母a ,故需比较两根的大小,从而引出评论辩论. 解:原不等式可化为0))((2>--a x a x .(1)当2a a <(即1>a 或<a )时,不等式的解集为:{}2a x a x x><或;(2)当2a a >(即10<<a )时,不等式的解集为:{}ax a x x ><或2;(3)当2a a =(即=a 或1)时,不等式的解集为:{}a x R x x ≠∈且.解释:对参数进行的评论辩论,是根据解题的须要而天然引出的,并不是一开端就对参数加以分类.评论辩论.比方本题,为求不等式的解,需先求出方程的根a x =1,22a x =,是以不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不克不及肯定,是以须要评论辩论2a a <,2a a >,2a a =三种情形.典范例题十例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.剖析:按照一元二次不等式的一般解法,先肯定系数c 的正负,然后求出方程02=++a bx cx 的两根即可解之.解:(解法1)由题可断定出α,β是方程02=++c bx ax 的两根,∴ab -=β+α,ac =β⋅α.又02>++c bx ax 的解集是{}β<<αx x,解释0<a .而0>α,0>β000<⇒>⇒>αβ⇒c ac ,∴0022<++⇔>++ca x cb x a bx cx .∴2<++ca x cb x ,即0)1)(1()11(2<β-α-+β-α-+x x , 即0)1)(1(<β-α-x x .又β<α<0,∴β>α11,∴0)1)(1(<β-α-x x 的解集为⎭⎬⎫⎩⎨⎧α<<β11x x. (解法2)由题意可断定出α,β是方程02=++c bx ax 的两根,∴ac =β⋅α.又02>++c bx ax 的解集是{}β<<αx x,解释0<a .而0>α,0>β000<⇒>⇒>αβ⇒c ac .对方程02=++a bx cx 双方同除以2x 得0)1()1(2=+⋅+⋅c xb xa .令xt 1=,该方程即为02=++c t b t a ,它的两根为α=1t ,β=2t ,∴α=11x ,β=21x .∴α=11x ,β=12x ,∴方程02=++a bx cx 的两根为α1,β1.∵β<α<0,∴β>α11.∴不等式2>++a bx cx 的解集是⎭⎬⎫⎩⎨⎧α<<β11x x . 解释:(1)万变不离其宗,解不等式的焦点等于肯定首项系数的正负,求出响应的方程的根;(2)联合应用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β暗示,不等式系数a ,b ,c 的关系也用α,β暗示出来;(3)留意解法2顶用“变换”的办法求方程的根.典范例题十二例12 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a .b 的值.剖析:不等式本身比较庞杂,要先对不等式进行同解变形,再根据解集列出关于a .b 式子.解:∵043)21(122>++=++x x x ,043)21(122>+-=+-x x x ,∴原不等式化为0)()2(2>-++--+b a x b a x b a .依题意⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=-+->-+34231202b a b a b a b a b a ,∴⎪⎪⎩⎪⎪⎨⎧==2325b a . 解释:解有关一元二次方程的不等式,要留意断定二次项系数的符号,联合韦达定理来解.典范例题十三例13 不等式的解集为{}21<<-x x,求a 与b 的值.剖析:此题为一元二次不等式逆向思维题,要使解集为{}21<<-x x,不等式022<-+bx ax 需知足前提0>a ,0>∆,022=-+bx ax 的两根为11-=x ,22=x .解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=⋅-=+a x x a b x x 22121由题意:⎪⎪⎩⎪⎪⎨⎧⨯-=-+-=-21221aab∴1=a ,1-=b ,此时知足0>a ,0)2(42>-⨯-=∆a b . 解法二:结构解集为{}21<<-x x的一元二次不等式:0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等式,故需知足:2211--=-=b a ∴1=a ,1-=b . 解释:本题考核一元二次方程.一元二次不等式解集的关系,同时还考核逆向思维的才能.对有关字母抽象问题,同窗往往控制得不好.典范例题十四例14 解关于x 的不等式01)1(2<++-x a ax .剖析:本题考核一元一次不等式与一元二次不等式解法,因为含有字母系数,所以还考核分类思惟. 解:分以下情形评论辩论(1)当0=a 时,原不等式变成:01<+-x ,∴1>x (2)当0≠a 时,原不等式变成:0)1)(1(<--x ax ①①当0<a 时,①式变成0)1)(1(>--x ax ,∴不等式的解为1>x 或ax 1<. ②当0>a 时,①式变成0)1)(1(<--x ax . ②∵aa a-=-111,∴当10<<a 时,11>a,此时②的解为ax 11<<.当1=a 时,11=a,此时②的解为11<<x a.解释:解本题要留意分类评论辩论思惟的应用,症结是要找到分类的尺度,就本题来说有三级分类:分类应做到使所给参数a 的聚集的并集为全集,交集为空集,要做到不重不漏.别的,解本题还要留意在评论辩论0<a 时,解一元二次不等式01)1(2<++-x a ax 应首选做到将二次项系数变成正数再求解.典范例题十五例15 解不等式x x x ->--81032.剖析:无理不等式转化为有理不等式,要留意平方的前提和根式有意义的前提,一般情形下,)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:⎩⎨⎧<≥0)(0)(x g x f 或⎪⎩⎪⎨⎧>≥≥2)]([)(0)(0)(x g x f x g x f . 解:原不等式等价于下面两个不等式组:①⎩⎨⎧≥--<-0103082x x x ②⎪⎩⎪⎨⎧->--≥--≥-222)8(103010308x x x x x x 由①得⎩⎨⎧-≤≥>258x x x 或,∴8>x 由②得∴⎪⎪⎩⎪⎪⎨⎧>-≤≥≤.1374258x x x x 或81374≤<x ,所以原不等式的解集为⎭⎬⎫⎩⎨⎧>≤<881374x x x或,即为⎭⎬⎫⎩⎨⎧>1374x x .解释:本题也可以转化为)()(x g x f ≤型的不等式求解,留意:⎪⎩⎪⎨⎧≤≥≥⇔≤2)]([)(0)(0)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,⎭⎬⎫⎩⎨⎧-≤--=x x x xA 81032,则所求不等式的解集为A的补集A,由2)8(10301030881032222-≤⇒⎪⎩⎪⎨⎧-≤--≥--≥-⇔-≤--x x x x x x x x x x 或13745≤≤x .即⎭⎬⎫⎩⎨⎧≤≤≤=137452x x x A 或,∴原不等式的解集是⎭⎬⎫⎩⎨⎧>=1374x x A .。
专题8 文旅出圈,烟火升空【话题解读】继淄博烧烤、“尔滨”冻梨,美食界又迎来了一个有点“辣”的新晋顶流——天水麻辣烫。
一碗麻辣烫,带火一座城。
代表性美食的意外走红直带甘肃东南部的小城天水火爆出圈,各地游客被吸引前来打卡,人流量之多,令网友不禁笑侃:“上次天水来这么多人,还是诸葛亮北伐收服姜维的时候。
”面对互联网带来的“意外流量”,天水文旅厅立即出台“凭住宿发票即可半价游览景区”的优惠政策。
天水市人民亦团结一致。
当然,除了美食以外,天水本身也颇具文旅魅力,其素有“羲皇故里”之称,作为中华文明的重要发源地之一,不仅见证了三国纷争,而且成就了丝路辉煌,是一座有着八千年的悠远历史的古城。
特色美食的走红极大地激活了天水的生命力,带来了无数的人流和财富,但单一的特色并不能为一座城市带来持久的关注,只有不断挖掘城市亮点,释放城市魅力,才能让天水的“辣”味留香悠长,热度持续滚烫。
预测理由:社会热议人间烟火气,最抚凡人心。
网上曾经流行一句话:“唯美食与爱不可辜负。
”无论是什么身份、什么地位,谁能没有一点对美食的向往?这大概是人们最普遍的爱好了。
想象一下,忙碌了一天以后,在寒冷的夜里,吃上一口鲜香味美的麻辣烫,你会顿时觉得疲惫的身心得到了抚慰。
这是人间烟火气的温暖,也是人类最质朴的渴望。
其实,很多简简单单的快乐,就藏在热气腾腾的街边小吃里。
一份合胃口的食物,一个亲切的笑容,既温暖了胃,又温暖了心。
烟火经济,城市温情既无连锁店、又缺乏高科技、更缺营销法的小生意甚至是摊贩,从业者用自己朴素的双手和稀缺的可靠,给了排队等待的人最温暖的慰藉,更把这份温暖和善意传递给了世间的每一个人。
当渴望被“温柔相待”的你遇到了货真价实、本分诚信的商家,不仅会得到美食的滋养,也会得到心灵上的抚慰,这或许才是“淄博烧烤”“天水麻辣烫”受到追捧的根源。
街头巷尾的小摊小贩一头连着民生生计,一头连着民众的生活便利,如何守护好这份城市烟火气,需要管理者、从业者等全社会力量的参与和建设,更需要各方多些理解和包容,共同守护好这份城市温情。
非谓语动词主要包括不定式、动名词和现在分词。
为了区分这三种不同的非谓语动词的用法和含义,我们将分别从三种非谓语动词在句子中做主语、宾语、宾语补足语、定语、状语、表语以及一些特殊结构句型等角度来区分其用法和细微含义。
1.不定式和动名词作主语的区别(1)动名词作主语通常表示抽象动作;而不定式作主语表示具体动作。
Smoz.x.x.kld一词,其后宾语只跟不定式,不能跟动名词。
例如:I should liz.x.x.kch, a lot 等习惯上用不定式做定语。
John will do anything but worz.x.x.kt shutting the door beh ind him.他出去后将门随手关上。
Not z.x.x.kt a word more spoken, he picked up the paper.没再多说一个字,他拾起那张纸。
(借此结构;表伴随)6、The last guest to arrive, our party was started.最后一位客人到了,我们的晚会开始了。
(名词+不定式;表时间)五、独立主格结构与分词短语作状语的异同:1、独立主格结构与分词短语都可以转化成状语从句。
但是,独立主格结构转换成状语从句后,有自己的逻辑主语,与主句的主语不一致;而分词短语转化为状语从句后,从句的主语与主句的主语相同。
例:⑴ If time permit, we’d better have a rest at this weekend.-→Time permitting,we’d better have a rest at this week end.如果时间允许,本周末我们最好休息一下。
⑵ When we see from the top floor, we can find the garden m ore beautiful. -→Seeing from the top floor, we can find t he garden more beautiful. 从顶楼上看,花园更漂亮。
专题坐标图像(讲解)一、有关体积变化的图像——电解水水通电生成氢气和氧气的体积比为2:1。
注意是体积比不是质量比。
二、有关质量变化的图像1.化学反应中反应物的质量变化图像:图1图2分析:随着反应的进行,反应物质量不断减小,若反应物有剩余,则图像如图1所示;若反应物没有剩余,则图像如图2所示。
2.化学反应中生成物的质量变化(1)一种物质和另一种物质的反应图像:图3图4分析:图3,随着反应的进行,生成物的质量不断增加,当反应结束时,生成物的质量达到最大;之后,生成物质量将不再随加入物质质量(或时间)发生变化。
举例:红磷燃烧生成物的变化。
图4,反应时加入催化剂,反应的速率或反应的总时间会发生变化,但生成物的质量不发生变化。
举例:分解过氧化氢制氧气有无催化剂的变化图像。
(2)化学反应中物质总质量(含元素种类)的变化化学反应中物质总质量(或元素种类)不变(如图7、图8所示)图像:图7图8三、溶质质量分数的变化曲线物质溶解时,溶质质量分数的变化。
图像:图9图10分析:图1,在一定温度下,向某不饱和溶液中继续加入某溶质,该溶质的质量分数随着溶质的增加而增大,当溶液达到饱和时,溶质质量分数不变。
图2,溶液稀释时,溶质的质量不变,而溶液的总质量不断增加,所以溶质质量分数不断减小。
四、pH变化曲线1.酸碱中和反应中的pH曲线图像:图11图12分析:图1,碱入酸,滴定前,溶液的pH<7,此时溶液呈酸性;当酸碱恰好完全反应时,溶液的pH=7;随着碱的继续加入,溶液的pH>7,溶液呈碱性。
图2,酸入碱,滴定前,溶液的pH>7,此时溶液呈碱性;当酸碱恰好完全反应时,溶液的pH=7;随着酸的继续加入,溶液的pH<7,溶液呈酸性。
2.溶液稀释的pH曲线图像:图13图14分析:图3,碱性溶液稀释时,由于碱性溶液的pH>7,而水的pH=7,随着加入水的质量增加,pH不断减小,但不会小于等于7。
图4,酸性溶液稀释时,由于酸性溶液的pH<7,而水的pH=7,随着加入水的质量增加,pH不断增大,但不会大于等于7。