2018-2019学年最新苏科版八年级数学上册《轴对称图形》复习练习题及答案-精品试题
- 格式:docx
- 大小:206.55 KB
- 文档页数:8
苏科版八上数学轴对称图形单元测试题(含答案)
苏科版八上数学轴对称图形单元测试题(含答案)
一、选择题(每题3分,共18分)
⒈下列图形中,不是轴对称图形的是()
2.到三角形的三个顶点距离相等的点是()
A三条角平分线的交点 B三条中线的交点
c三条高的交点 D三条边的垂直平分线的交点
3.如图,△ABc是等腰三角形, AD是底边Bc上的高,DE⊥AB 于E,DF⊥Ac于F,图中除AB=Ac外,相等的线段共有 ( ) A.1对 B.2对 c.3对. D.4对.
4.如图,在△ABc中,AB=Ac,AD平分∠BAc,DE⊥AB,DF⊥Ac,
E、F为垂足,则下列四个结论,其中正确的个数是 ( )
①∠DEF=∠DFE ②AE=AF ③AD垂直平分EF ④EF垂直平分AD
A.1个B.2个 c.3个 D.4个
5.如图,在等边三角形△ABc中,BD=cE,AD与BE相交与点P,则∠APE的度数为()
A.45° B.55° c.60° D.75°
二、填空题(每空2分,共20分)
7.等腰△ABc中,若∠A=30°,则∠B=________.
8.等腰三角形中有一个角是50°,它的一条腰上的高与底边的夹角为________.
9.等腰三角形的两边长分别为7c和3c,则它的周长为________.10.等腰三角形的周长是22 c,一边长是8 c,则其他两边的长分别是_______.
11.等腰三角形的底边为8,一腰上的中线分此三角形的周长成两部分,其差为2,则腰长为_______
12.在等腰直角△ABc中,斜边上的中线长为5c,则斜边长为 , 面积为.。
苏科版八年级数学上册《2.3 设计轴对称图案》同步练习题(带答案)一、选择题(在每小题列出的选项中,选出符合题目的一项)1. 下列四个图案中,可以看作是轴对称图形的是( )A. B. C. D.2. 如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有( )A. 1个B. 2个C. 3个D. 4个3. 如图,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形的办法有种.( )A. 3B. 4C. 5D. 64. 把一张长方形纸片按如图 ① ②所示的方式从右向左连续对折两次后得到图 ③,再在图 ③中挖去一个三角形小孔,则重新展开后得到的图形是( )A. B.C. D.5. 如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的ΔABC为格点三角形,在图中最多能画出个格点三角形与ΔABC成轴对称.( )A. 6个B. 5个C. 4个D. 3个6. 在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到给出的有字母标号的四个空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,其中不正确的是( )A. AB. BC. CD. D7. 如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则应把阴影凃在图中标有哪个数字的格子内( )A. 1B. 2C. 3D. 48. 如图是嘉嘉把纸折叠后剪出的图案,将剪纸展开后得到的图案是( )A. B.C. D.二、填空题9. 如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.10. 如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有______ 个.11. 如图,为某种药品的商业标志图案,可以视为利用图形的______ 设计,也可视为利用图形的______ 设计.12. 如图,在3×3的正方形网格中,其中有三格带阴影,若在剩下的6个空白小方格中任选其中1个加上阴影,使所得的图形是轴对称图形,则可选的那个小方格的位置有种.13. 如图所示,形状和大小都相同的四条小鱼正在一起吃食,则小鱼 ①与小鱼成轴对称,整个图案有条对称轴.14. 如图是3×3的正方形网格,要在图中再涂黑一个小正方形,使得图中黑色的部分成为轴对称图形,这样的小正方形有个.15. 在如图所示的由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,有种不同的方法.16. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余的小正三角形涂黑一个,使整个图案构成一个轴对称图形的方法有种.17. 在如图所示的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有________种.三、解答题(解答应写出文字说明,证明过程或演算步骤)18. 如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,并在下面所给的格纸中一一画出所有符合条件的三角形.(所给的六个格纸未必全用)19. 请在下面三个2×2的方格中,各作出一个与图中三角形成轴对称的图形,且所画图形的顶点与方格中小正方形的顶点重合,并给所画图形涂上阴影(所画的三个图形不能重复).20. 如图,以虚线为对称轴画出图形的另一半.21. 认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1:______;特征2:______.(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征.(注意:新图案与以上四幅图中的图案不能相同)22. 生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的三个商标(图1、2、3)(1)以上三个图中轴对称图形有______ ,中心对称图形有______ ;(写序号)(2)请在图4中画出是轴对称图形但不是中心对称图形的新图案;在图5中画出是轴对称图形又是中心对称图形的新图案.答案1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】C8.【答案】A9. 【答案】310.【答案】311.【答案】平移轴对称12.【答案】213.【答案】 ② ③ ④ 414.【答案】515.【答案】416.【答案】317. 【答案】418. 【答案】解:如图,与△ABC成轴对称且以格点为顶点的三角形有5个,分别为△BCD,△BCE,△AFG,△HIJ,△ACK.19. 【答案】如图,任选三个即可.20. 【答案】如图所示.21. 【答案】(1)都是轴对称图形;阴影部分面积都为4;(2)如图(答案不唯一,满足(1)中的两个特征即可).22. 【答案】解:(1)图1、2、3是轴对称图形,图1、3是中心对称图形;(2)如图:。
八上期末复习---轴对称图形解答题(难题)训练一、解答题1.如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在,特别地线段AC在直线l2上的正直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2)投影就是线段A1C.请依据上述定义解决如下问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=______;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).2.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE.(2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F.若BF=BC,①求证:EH=EC;②请你找出线段AH、AD、DF之间的数量关系,并说明理由.3.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1−x2|≥|y1−y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的动点,①若点A与点B的“识别距离”为2,写出满足条件的点B的坐标__________________;②点A与点B的“识别距离”的最小值为______.m+3),D(0,1),求点C与点D的“识别距离”的最小值(2)已知点C坐标为(m,34及相应的点C的坐标.4.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=______°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.5.如图1,已知A(a,0)、B(0,b)分别为两坐标轴上的点,且a、b满足a2+b2−12a−12b+72=0,OC∶OA=1∶3(1)求A、B、C三点的坐标(2)若点D(1,0),过点D的直线分别交AB、BC于E、F两点.设E、F两点的横坐标分别为x E、x F,当BD平分△BEF的面积时,求x E+x F的值(3)如图2,若M(2,4),点P是x轴上A点右侧一动点,AH⊥PM于点H,在BM上取点G,使HG=HA,连接CG.当点P在点A右侧运动时,∠CGM的度数是否发生改变?若不变,请求其值,若改变,请说明理由6.已知△ABC为等腰直角三角形,∠ACB=90°,点A在直线DE上,过C点作CF⊥DE于F,过B点作BG⊥DE于G.(1)发现问题:如图1,当B、C两点均在直线DE上方时,线段AG、BG和CF存在的数量关系是______.(2)类比探究:当△ABC绕点A顺时针旋转至图2的位置时,线段AG、BG和CF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;(3)拓展延伸:当△ABC绕点A顺时针旋转至图3的位置时,若CF=1,AG=2,请直接写出△ABC的面积.7.如图,已知B(−1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AB=AC.(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?8.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)9.在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数,DE与CP的数量关系是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=_______°,用等式表示线段DE与CP之间的数量关系:______________;②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:______________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,4,通过观察、测量,发现:(1)中①的结论在一般情况下______________;(填成立或不成立(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.10.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.11.如图,在每个小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且△ABC的面积为6.(2)在方格纸中画出△ABC的中线BD,并将△BCD向右平移1个单位长度得到△EFG(点B、C、D的对应点分别为E、F、G),画出△EFG,并直接写出△BCD和△EFG重叠部分图形的面积.12.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).13.已知:∠MON=α,点P是∠MON角平分线上一点,点A在射线OM上,作∠APB=180°−α,交直线ON于点B,PC⊥ON于C.(1)如图1,若∠MON=90°时,求证:PA=PB;(2)如图2,若∠MON=60°时,写出线段OB,OA及BC之间的数量关系,并说明理由;(3)如图3,若∠MON=60°时,点B在射线ON的反向延长线上时,(2)中结论还成立吗?若不成立,直接写出线段OB,OA及BC之间的数量关系(不需要证明).14.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为______,线段MN和线段NF的数量关系为______;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN 和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为______.15.定义:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B,则称满足这样条件的点为△ABC的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=2√2,AB=4,试判断点D是不是△ABC的“理想点”,并说明理由;(2)如图②,在Rt△ABC中,∠C=90°,AB=5,AC=4,若点D是△ABC的“理想点”,求CD的长;(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,−3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A,B,C,D中的某一点是其余三点围成的三角形的“理想点”.若存在,请求出点D的坐标;若不存在,请说明理由.16.已知△ABC是等腰直角三角形,∠ACB=90°,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=6,PA=2√2,则:①线段PB=______,PC=______;②直接写出PA2,PB2,PC2三者之间的数量关系;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足PAAB =14,直接写出PCBC的值:______.。
苏科版八年级上册第二章《轴对称图形》(难题)单元测试一、选择题1.如图,A,B,C三幢居民楼的位置成三角形,现决定在三幢楼之间修建一个禁毒宣传栏,使宣传栏到三个小区的距离相等,则宣传栏应建在()A.AC,BC两边中线的交点处B. AC,BC两边高线的交点处C. AC,BC两边垂直平分线的交点处D. ∠A,∠B两内角平分线的交点处2.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个3.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>bB. b>a>cC. c>b>aD. b>c>a4.如图,等腰△ABC的底边长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A. 6B. 18C. 7D. 95.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°6.如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处.若∠1+∠2=130°,则∠B+∠C=()A. 115°B. 130°C. 135°D. 150°7.如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为()A. 138∘B. 114∘C. 102∘D. 100∘8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG//AD交BC于F,交AB于G,下列结论:①GA=GP②S△PAC:S△PAB=AC:AB③BP垂直平分CE④FP=FC其中正确的判断有()A.只有①②B. 只有③④C. 只有①③④D. ①②③④二、填空题9.把一张长方形纸条按图的方式折叠后,量得∠AOB′=110°,则∠B′OC=__________°.10.如图,已知在等腰三角形ABC中,AB=AC,P,Q分别是边AC,AB上的点,且AP=PQ=QC=BC.则∠A=__________.11.△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_____.12.已知等腰三角形的周长为10,从底边上的一个顶点引腰的中线,分三角形的周长为两部分,其中一部分比另一部分长2,则腰长_________.13.如图,把△ABC分别沿AB边和AC边翻折得到△ABE和△ADC,BE的延长线与DC的延长线交于点F,若∠BCA:∠ABC:∠BAC=28:5:3,则∠EFC的度数为_____.14.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是_________________.15.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接ED,则图中等腰三角形共有____个16.如图,在ΔABC中,AB=6,∠CAB=15°,M、N分别是直线AC、AB上的动点,则BM+MN的最小值是______________.三、解答题17.如图,和均为等腰直角三角形,AB=AC,AD=AE,,连结BD、EC交于点P.(1)求证:≌;(2)试判断线段BD、EC的关系,并且加以证明;(3)连结PA,求的度数.18.如图,点M、N分别是∠AOB两点OA、OB上的点.(1)尺规作图:在∠AOB内作一点P,使得点P到∠AOB两边OA、OB的距离相等,且满足PM=PN(保留作图痕迹).(2)在(1)的条件下,若∠AOB=40°,求∠MPN的度数.19.已知:如图,▵ABC中,∠ABC=45∘,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;BF;(2)求证:CE=12(3)CE与BG的大小关系如何?试证明你的结论.20.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=______(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是______(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.21.如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)直接写出∠AFC的度数:______;(2)请你判断并写出FE与FD之间的数量关系;(3)如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD与AC之间的数量关系并说明理由.22.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC的数量关系式,试证明.答案和解析1.C解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则宣传栏应建在AC,BC两边垂直平分线的交点处.2.B解:在网格中作出与△ABC成轴对称的格点三角形如下图所示:∴在此网格中与△ABC成对称的格点三角形一共有3个.3.D解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=12AC=12×4=2,DE⊥AC,∵∠ACB=90°,∴DE//BC,∴a=DE=12BC=12×3=32;第二次折叠如图2,折痕为MN,由折叠得:BN=NC=12BC=12×3=32,MN⊥BC,∵∠ACB=90°,∴MN//AC,∴b=MN=12AC=12×4=2;第三次折叠如图3,折痕为GH,由勾股定理得:AB =√32+42=5, 由折叠得:AG =BG =12AB =12×5=52,GH ⊥AB ,∴∠AGH =90°,∵∠A =∠A ,∠AGH =∠ACB ,∴△ACB∽△AGH , ∴AC AG =BC GH, ∴452=3GH , ∴GH =158,即c =158.∵2>158>32, ∴b >c >a .4. D解:连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC ,∴S △ABC =12BC ⋅AD =12×6×AD =18,解得AD =6,∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值, ∴△CDM 的周长最短=(CM +MD)+CD =AD +12BC =6+12×6=6+3=9.5. B解:∵点A ,C 分别在线段BE ,BD 的中垂线上,∴AE =AB ,BC =DC .∵∠A =58°,∠C =100°, ∴∠ABE =180°−58°2=61°,∠CBD =180°−100°2=40°.∵∠EBD =36°,∴∠ABC =∠ABE +∠EBD +∠CBD =61°+36°+40°=137°,∴∠ADC =360°−∠A −∠C −∠ABC =360°−58°−100°−137°=65°. 故答案为:65°.6.A解:∵∠1+∠2=130°,∴∠AMN+∠DNM=360°−130°2=115°.∵∠A+∠D+(∠AMN+∠DNM)=360°,∠A+∠D+(∠B+∠C)=360°,∴∠B+∠C=∠AMN+∠DNM=115°.7.C解:∵∠ABC的角平分线与∠ACD的角平分线交于点M,∴∠DCM=12∠ACD,∠DBM=12∠ABC,∴∠M=∠DCM−∠DBM =12(∠ACD−∠ABC)=12∠A=24°,由折叠可得,∠N=∠M=24°,又∵∠NBC的角平分线与∠NCB的角平分线交于点Q,∴∠CBQ=12∠CBN,∠BCQ=12∠BCN,∴△BCQ中,∠Q=180°−(∠CBQ+∠BCQ) =180°−12(∠CBN+∠BCN)=180°−12×(180°−∠N)=90°+12∠N=102°.8.D解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG//AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP;②∵AP平分∠BAC,∴P到AC,AB的距离相等,∴S△PAC:S△PAB=AC:AB;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一);④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,∴∠DCP =∠BCP ,又PG//AD ,∴∠FPC =∠DCP ,∴FP =FC .故①②③④都正确.9. 35解:∵沿OC 折叠,B 和B′重合,∴△BOC≌△B′OC ,∴∠BOC =∠B′OC ,∵∠AOB′=110°,∴∠BOB′=180°−110°=70°, ∴∠B′OC =12×70°=35°,10. (1807)°解:∵AB =AC ,AP =PQ =QC =BC , ∴ABC =∠ACB ,∠A =∠AQP ,∠QPC =∠QCP ,∠BQC =∠B , 设∠A =x°,则∠AQP =x°,∴∠BQC =∠ACQ +∠A ,∴∠BQC =3x°,∴∠B =3x°,∵∠A +∠ABC +∠ACB =180°,∴x°+3x°+3x°=180°, 解得:x =1807.∴∠A =(1807)°.11. 6解:∵AD 平分∠BAC ,CD ⊥AC ,∴D 点到AB 的距离等于CD 长度2. 所以△ABD 面积=12×6×2=6.12. 4或83解:设腰长为x ,底长为y ,当腰比底长时有 {x −y =22x +y =10 解得{x =4y =2; 当底比腰长时有{y −x =22x +y =10解得{x=83y=143.∵0<2<4+4=8,0<143<83+83=163∴这两种情况都能构成三角形.13.30°解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°−∠DAE−∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA−∠EOF=140°−110°=30°.14.4解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴AP+BP的值最小值为4.15.5解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形;∠ABC=∠ACB=1800−3602=72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∠ABD=∠A=36º,∴△ABD是等腰三角形;∴∠BDC=180º−36º−72º=72º=∠C,∴△BDC是等腰三角形,∴BD=BC,∵BE=BC,∴BE=BD,∴△BDE是等腰三角形,∴∠ADE=∠BED−∠A=72º−36º=36º=∠A,∴△AED是等腰三角形;16.3解:作B关于AC的对称点E,过E作EN⊥AB于N,交AC于M,连接AE,BM,则此时BM+MN的值最小,∵B关于AC的对称点为E,∴AE=AB=6,BM=EM,∠EAC=∠CAB=15°,∴∠EAB=30°,BM+MN=EM+MN=EN,在Rt△ENA中,∠ENA=90°,∠EAB=30°,AE=6,∴EN=12AE=3,BM+MN=EN=3,17.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS);(2)解:BD=EC,BD⊥EC,理由如下:∵△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠ABD+∠4=90°,∠4=∠5,∴∠ACE+∠5=90°,∴∠BPC=90°,∴BD⊥EC;(3)解:作AM⊥BD于M,AN⊥EC于N,∵△ABD≌△ACE,∴S△ABD=S△ACE,又∵BD=EC,∴AM=AN,∵AM⊥BD,AN⊥EC,∴PA平分∠BPE,又∵BD⊥EC,∴∠BPE=90°,∴∠APB=45°.18.解:(1)如图所示;(2)过P作PC⊥OA,PD⊥OB,垂足分别为C,D,则∠PCO=∠PDB=90°,由(1)知,OP是∠AOB的平分线,∴PC=PD,由题可知PM=PN,∴△PCM≌△PDN(HL),∴∠CPM=∠DPN,∴∠MPN=∠MPD+∠CPN=∠MPD+∠DPN=∠CPD,∵∠CPD=360°−∠AOB−∠PCO−∠PDO=140°∴∠MPN=140°.19.(1)证明:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.∵∠DBF=90°−∠BFD,∠DCA=90°−∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.在Rt△DFB和Rt△DAC中,∵{∠DBF=∠DCA BD=CD∠BDF=∠ADC,∴Rt△DFB≌Rt△DAC(ASA).∴BF=AC;(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE.在Rt△BEA和Rt△BEC中{∠ABE=∠CBE BE=BE∠BEA=∠BEC,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=12AC.又由(1),知BF=AC,∴CE=12AC=12BF;(3)证明:∠ABC=45°,CD垂直AB于D,则CD=BD.H为BC中点,则DH⊥BC(等腰三角形“三线合一”)连接CG,则BG=CG,∠GCB=∠GBC=12∠ABC=12×45°=22.5°,∠EGC=45°.又∵BE垂直AC,故∠EGC=∠ECG=45°,CE=GE.∵△GEC是直角三角形,∴CE2+GE2=CG2,∵DH垂直平分BC,∴BG=CG,∴CE2+GE2=CG2=BG2;即2CE2=BG2,BG=√2CE,∴BG>CE.20.解:(1)C;(2)220°;(3)∠1+∠2=180°+∠A;(4)∵△EFP是由△EFA折叠得到的,∴∠AFE=∠PFE,∠AEF=∠PEF,∴∠1=180°−2∠AFE,∠2=180°−2∠AEF,∴∠1+∠2=360°−2(∠AFE+∠AEF),又∵∠AFE+∠AEF=180°−∠A,∴∠1+∠2=360°−2(180°−∠A)=2∠A.解:(1):∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°−(∠A+∠B)=360°−90°=270°.∴∠1+∠2等于270°.故选C;(2)∠1+∠2=180°+40°=220°,故答案是220°;(3)∠1+∠2与∠A 的关系是:∠1+∠2=180°+∠A ;21. (1)120°;(2)解:FE 与FD 之间的数量关系为:DF =EF . 理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中, {CG =CD ∠DCF =∠GCF CF =CF ,∴△CFG≌△CFD(SAS),∴DF =GF .∵∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线, ∴∠FAC =12∠BAC ,∠FCA =12∠ACB ,且∠EAF =∠GAF , ∴∠FAC +∠FCA =(∠BAC +∠ACB)=12(180°−∠B)=60°, ∴∠AFC =120°,∴∠CFD =60°=∠CFG ,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中, {∠AFE =∠AFG AF =AF ∠EAF =∠GAF ,∴△AFG≌△AFE(ASA),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE +CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA =∠GFA . 又由题可知,∠FAC =12∠BAC ,∠FCA =12∠ACB ,∴∠FAC+∠FCA=12(∠BAC+∠ACB)=12(180°−∠B)=60°,∴∠AFC=180°−(∠FAC+∠FCA)=120°,∴∠EFA=∠GFA=180°−120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.(1)解:∵∠ACB=90°,∠B=60°,∴∠BAC=90°−60°=30°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠FAC=15°,∠FCA=45°,∴∠AFC=180°−(∠FAC+∠ACF)=120°故答案为120°;22.解:(1)∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=67.5°,∵CE=CA,∴∠CAE=∠E=12∠ACB=22.5°,在△ABE中,∠BAE=180°−∠B−∠E=112.5°,∴∠DAE=∠BAE−∠BAD=112.5°−67.5°=45度;(2)不改变.设∠CAE=x,∵CA=CE,∴∠E=∠CAE=x,∴∠ACB=∠CAE+∠E=2x,在△ABC中,∠BAC=90°,∴∠B=90°−∠ACB=90°−2x,∵BD=BA,∴∠BAD=∠BDA=12(180°−∠B)=x+45°,在△ABE中,∠BAE=180°−∠B−∠E,=180°−(90°−2x)−x=90°+x,∴∠DAE=∠BAE−∠BAD,=(90°+x)−(x+45°)=45°;(3)∠DAE=12∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°−2y,∠E=∠CAE=x,∴∠BAE=180°−∠B−∠E=2y−x,∴∠DAE=∠BAE−∠BAD=2y−x−y=y−x,∠BAC=∠BAE−∠CAE=2y−x−x=2y−2x,∴∠DAE=12∠BAC.。
苏科版数学八年级上第二单元《轴对称图形》单元考试一.选择题(共8小题)1.下列图形中,不是轴对称图形的是()A .B .C .D .2.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=106°,则∠C的度数()A.40°B.37°C.36D.32°3.如图,已知四边形ABCD中,∠B=98°,∠D=62°,点E、F分别在边BC、CD上.将△CEF沿EF翻折得到△GEF,若GE∥AB,GF∥AD,则∠C的度数为()A.80°B.90°C.100°D.110°4.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.25.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm6.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.157.如图,在△ABC中,AB=AC,∠A=38°,AB的垂直平分线MN交AC于点D,则∠DBC的度数为()A.33°B.38°C.43°D.48°8.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC=28,DE=4,AB=8,则AC长是()A.8B.7C.6D.5二.填空题(共9小题)9.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.10.如图,将△ABC折叠,使点A与BC边中点D重合,折痕为MN,若AB=9,BC=6,则△DNB的周长为.题号一二三四五总分第分11.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF =AB;②∠BAF=∠CAF;③S四边形ADFE=AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是(填序号)12.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.13.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.14.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S△ABC=21,则DE=.15.如图,点E在∠BOA的平分线上,EC⊥OB,垂足为C,点F在OA上,若∠AFE=30°,EC=3,则EF=.16.若等腰三角形的一边是6,另一边是3,则此等腰三角形的周长是.17.如图,△ABC中,AB=AC,∠A=40°,DE垂直平分AC交AB于E,则∠BCE=三.解答题(共10小题)18.已知如下图,求作△ABC关于对称轴l的轴对称图形△A′B′C′.19.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.20.如图,在△ABC 中,AB =AC ,作AB 边的垂直平分线交直线BC 于M ,交AB 于点N.(1)如图(1),若∠A =40°,则∠NMB =度;(2)如图(2),若∠A =70°,则∠NMB =度;(3)如图(3),若∠A =120,则∠NMB =度;(4)由(1)(2)(3)问,你能发现∠NMB 与∠A 有什么关系?写出猜想,并证明.21.如图所示,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、AC 延长线于点F 、E .求证:DF ∥AC .证明:∵AD 平分∠BAC ∴∠=∠(角平分线的定义)∵EF 垂直平分AD ∴=(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD =∠ADF ()∴∠DAC =∠ADF (等量代换)∴DF ∥AC ()22.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠DCB 交AB 于点E .(1)求证:∠AEC =∠ACE ;(2)若∠AEC =2∠B ,AD =2,求AB的长.23.在△ABC 中,AD 是BC 边上的高,CE 是AB 边上的中线,且∠B =2∠BCE ,求证:DC =BE.24.等腰△ABC 中,AB =AC ,CE 为△ABC 的外角∠ACD 的平分线,∠ACB =2∠D ,BF ⊥AD .(1)求证:BF ∥CE ;(2)若∠BAC =40°,求∠ABF的度数.25.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)当∠OAB=40°时,∠ACB=度;(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.26.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),请直接写出∠EAN的度数.(用含α的代数式表示)27.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A 、是轴对称图形,不合题意;B 、不是轴对称图形,符合题意;C 、是轴对称图形,不合题意;D 、是轴对称图形,不合题意;故选:B .【点评】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.2.【分析】连接AO 、BO .由题意EA =EB =EO ,推出∠AOB =90°,∠OAB +∠OBA =90°,由DO =DA ,FO =FB ,推出∠DAO =∠DOA ,∠FOB =∠FBO ,推出∠CDO =2∠DAO ,∠CFO =2∠FBO ,由∠CDO +∠CFO =106°,推出2∠DAO +2∠FBO =106°,推出∠DAO +∠FBO =53°,由此即可解决问题.【解答】解:如图,连接AO 、BO .由题意EA =EB =EO ,∴∠AOB =90°,∠OAB +∠OBA =90°,∵DO =DA ,FO =FB ,∴∠DAO =∠DOA ,∠FOB =∠FBO ,∴∠CDO =2∠DAO ,∠CFO =2∠FBO ,∵∠CDO +∠CFO =106°,∴2∠DAO +2∠FBO =106°,∴∠DAO +∠FBO =53°,∴∠CAB +∠CBA =∠DAO +∠OAB +∠OBA +∠FBO =143°,∴∠C =180°﹣(∠CAB +∠CBA )=180°﹣143°=37°,故选:B.【点评】本题考查三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识,学会把条件转化的思想.3.【分析】依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE ∥AB ,GF ∥AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =(360°﹣98°﹣62°)=100°,故选:C .【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n 的最小值为3,故选:C .【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.5.【分析】先求出CD 的长,过点D 作DE ⊥AB 于点E ,根据角平分线上的点到角的两边的距离相等的性质可得DE =CD ,从而得解.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BC =12cm ,BD =8cm ,∴CD =BC ﹣BD =12﹣8=4cm ,∵∠C =90°,AD 平分∠CAB ,∴DE =CD =4cm ,即点D 到直线AB 的距离是4cm .故选:B .【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6.【分析】直接利用线段垂直平分线的性质得出AE =BE ,进而得出答案.【解答】解:∵DE 是△ABC 的边AB 的垂直平分线,∴AE =BE ,∵AC =8,BC =5,∴△BEC 的周长是:BE +EC +BC =AE +EC +BC =AC +BC =13.故选:B .【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.7.【分析】根据等腰三角形两底角相等,求出∠ABC 的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD =BD ,根据等边对等角的性质,可得∠ABD =∠A ,然后求∠DBC 的度数即可.【解答】解:∵AB =AC ,∠A =38°,∴∠ABC =(180°﹣∠A )=(180°﹣38°)=71°,∵MN 垂直平分线AB ,∴AD =BD ,∴∠ABD =∠A =38°,∴∠DBC =∠ABC ﹣∠ABD =71°﹣38°=33°.故选:A .【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.8.【分析】首先由角平分线的性质可知DF =DE =4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【解答】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,∴28=×8×4+×AC ×4,∴AC =6.故选:C .【点评】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法,要注意掌握应用.二.填空题(共9小题)9.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.10.【分析】由D 为BC 中点知BD =3,再由折叠性质得ND =NA ,从而根据△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD 可得答案.【解答】解:∵D 为BC 的中点,且BC =6,∴BD =BC =3,由折叠性质知NA =ND ,则△DNB 的周长=ND +NB +BD =NA +NB +BD =AB +BD =3+9=12,故答案为:12.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.【分析】根据翻折变换的性质可得AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,根据平行线的性质和等腰三角形三线合一的性质判断只有AB =AC 时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S 四边形ADFE =AF •DE ,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE 和∠AED ,然后利用三角形的内角和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.【解答】解:∵△ABC 沿DE 折叠点A 与BC 边的中点F 重合,∴AE =EF ,AF ⊥DE ,∠ADE =∠EDF ,∠AED =∠DEF ,只有AB =AC 时,∠BAF =∠CAF =∠AFE ,EF ∥AB ,故①②错误;∵AF ⊥DE ,∴S 四边形ADFE =AF •DE ,故③正确;由翻折的性质得,∠ADE =(180°﹣∠BDF),∠AED =(180°﹣∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴(180°﹣∠BDF)+(180°﹣∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.【点评】本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.12.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.【点评】本题主要考查的是利用轴对称的性质设计图案,掌握轴对称图形的性质是解题的关键.13.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【解答】解:过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为:4.【点评】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.14.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DE=DF,∵AB=6,BC=8,∴S△ABC=AB•DE +BC•DF =×6DE +×8DE=21,即3DE+4DE=21,解得DE=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.15.【分析】作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.【解答】解:如图,作EG⊥AO于点G,∵点E在∠BOA的平分线上,EC⊥OB,EC=3,∴EG=EC=3,∵∠AFE=30°,∴EF=2EG=2×3=6,故答案为:6.【点评】本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.16.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故答案为:15.【点评】本题考查了等腰三角形的性质,注意要分情况讨论并利用三角形的三边关系判断是否能够组成三角形,然后再求解.17.【分析】根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=40°,再由∠A=40°,AB=AC,根据三角形内角和定理可求∠ACB的度数,即可解答.【解答】解:∵DE垂直平分AC,∠A=40°,∴AE=CE,∴∠ACE=∠A=40°,∵∠A=40°,AB=AC,∴∠ACB=70°,∴∠BCE=∠ACB﹣∠ACE=70°﹣40°=30°.故∠BCE的度数是30°.故答案为:30°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,熟记性质是解题的关键.三.解答题(共10小题)18.【分析】分别作出点B与点C关于直线l的对称点,然后连接AB′,AC′,B′C′.即可得到△ABC关于对称轴l的轴对称图形△A′B′C′.【解答】解:【点评】作一个图形的对称图形就是作各个顶点关于对称轴的对称点,把作对称图形的问题可以转化为作点的对称点的问题.19.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.20.【分析】(1)利用等腰三角形的性质求出∠B,再利用三角形内角和定理解决问题即可.(2)(3)(4)方法类似.【解答】解:(1)如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣40°)=70°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=20°,故答案为20.(2)如图2中,∵AB=AC,∴∠B=∠ACB =(180°﹣70°)=55°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=35°,故答案为35.(3)如图3中,如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣120°)=30°,∵MN⊥AB,∴∠MNB=90°,∴∠NMB=60°,故答案为60.(3)结论:∠NMB=∠A.理由:如图1中,∵AB=AC,∴∠B=∠ACB =(180°﹣∠A)∵MN⊥AB,∴∠MNB=90°,∴∠NMB=90°﹣(90°﹣∠A)=∠A.【点评】本题考查线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【分析】根据角平分线的定义,线段垂直平分线的性质,等边对等角解决问题即可.【解答】证明:∵AD平分∠BAC∴∠BAD=∠DAC(角平分线的定义)∵EF垂直平分AD∴FD=FA(线段垂直平分线上的点到线段两个端点距离相等)∴∠BAD=∠ADF(等边对等角)∴∠DAC=∠ADF(等量代换)∴DF∥AC(内错角相等两直线平行).故答案为:BAD,DAC,FD,FA,等边对等角,内错角相等两直线平行.【点评】本题考查线段的垂直平分线的性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD =4,Rt△ABC中,AB=2AC=8.【解答】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=4,∴Rt△ABC中,AB=2AC=8.【点评】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.23.【分析】连接DE.想办法证明∠BCE=∠DEC即可解决问题.【解答】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,AE=BE,∴BE=AE=DE,∴∠EBD=∠BDE,∵∠B=2∠BCE,∴∠BDE=2∠BCE,∵∠BDE=∠BCE+∠DEC,∴∠BCE=∠DEC,∴BE=DC.【点评】本题考查等腰三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.25.【分析】(1)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论;(2)先利用角平分线得出∠CAB =∠OAB,∠EBA =∠YBA,再利用三角形的外角的性质即可得出结论.【解答】解:(1)∵∠XOY=90°,∠OAB=40°,∴∠ABY=130°,∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB=20°,∠EBA =∠YBA=65°,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB=45°,故答案为:45;(2)∠ACB的大小不变化.理由:∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=∠OAB,∠EBA =∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=∠EBA﹣∠CAB =∠YBA ﹣∠OAB=(∠YBA﹣∠OAB),∵∠YBA﹣∠OAB=90°,∴∠C =×90°=45°,即:∠ACB的大小不发生变化.【点评】此题主要考查了角平分线定理,三角形的外角的性质,解本题的关键是得出∠YBA﹣∠OAB=90°.26.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE =∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.27.【分析】(1)先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;(2)利用等腰三角形的性质和三角形的内角和即可得出结论;(3)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.【点评】此题主要考查了等腰三角形的性质,三角形的内角和定理,解本题的关键是利用三角形的内角和定理得出等式.第13页(共13页)。
《2.3 设计轴对称图案》一、选择题1.(3分)羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.42.(3分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.3.(3分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)7.以直线l为对称轴,画出图形的另一半.8.利用如图设计出一个轴对称图案.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.(每小格面积为1)13.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个是轴对称图形;(3)图1、图2中分成的轴对称图形不全等.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.《2.3 设计轴对称图案》参考答案与试题解析一、选择题1.羊年话“羊”,“羊”字象征着美好和吉祥,下面图案都与“羊”字有关,其中是轴对称图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:美、善都是轴对称图形;而洋、祥都不是轴对称图形.故选B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【考点】剪纸问题.【专题】计算题.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.3.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A.12 B.18 C.2+D.2+2【考点】剪纸问题.【分析】严格按照图的示意对折,裁剪后得到的是直角三角形,虚线①为矩形的对称轴,依据对称轴的性质虚线①平分矩形的长,即可得到沿虚线②裁下的直角三角形的短直角边为10÷2﹣4=1,虚线②为斜边,据勾股定理可得虚线②为,据等腰三角形底边的高平分底边的性质可以得到,展开后的等腰三角形的底边为2,故得到等腰三角形的周长.【解答】解:根据题意,三角形的底边为2(10÷2﹣4)=2,腰的平方为32+12=10,因此等腰三角形的腰为,因此等腰三角形的周长为:2+2.答:展开后等腰三角形的周长为2+2.故选D.【点评】本题主要考查了剪纸问题以及考查学生的动手能力和对相关性质的运用能力,只要亲自动手操作,答案就会很容易得出来.二、解答题4.如图所示图形曾被哈佛大学选为人学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图形空白处填上恰当的图形.【考点】规律型:图形的变化类.【分析】仔细观察会发现它们都是轴对称图形,所以在空白处再画一个轴对称图形即可.【解答】解:从图中可以发现所有的图形都是轴对称图形,而且图形从左到右分别是1﹣7的数字,所以画一个轴对称图形且数字为6即可.故答案为:.【点评】本题是一道规律型的题,首先要从图中找出规律,然后再根据规律画图.但还是考查了轴对称图形的性质.5.请你应用轴对称的知识画出图中的三个图形,并涂上彩色,与同学比一比,看谁画得正确、漂亮.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.用如图(1)所示的瓷砖拼成一个正方形,使拼成的图案成轴对称图形,请你在图(2)、图(3)、图(4)中各画出一种拼法.(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示)【考点】图形的剪拼;利用轴对称设计图案.【分析】根据轴对称图形的法则去画即可,有多种图形.【解答】解:(1)所作图形如下所示:【点评】此题是图形的剪拼,主要考查学生对轴对称图形的理解以及操作能力.7.以直线l为对称轴,画出图形的另一半.【考点】作图-轴对称变换.【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案.【解答】解:如图所示:【点评】此题主要考查了作轴对称变换,正确得出对应点位置是解题关键.8.利用如图设计出一个轴对称图案.【考点】利用轴对称设计图案.【分析】根据轴对称图形的定义:沿一条直线折叠,直线两旁的部分能够互相重合的图形涂色即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.9.某居民小区搞绿化,要在一块矩形空地(如图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在如图矩形中画出你的设计方案.【考点】利用轴对称设计图案.【专题】方案型;开放型.【分析】根据轴对称图形的定义设计.即图形沿某一直线对折,图形能完全重合.【解答】解:【点评】本题主要考查了轴对称图形的性质.10.如图的四个图案,都是轴对称图形,它们分别有着自己的含义,比如图(1)可以代表针织品、联通;图(2)可以代表法律、公正;图(3)可以代表航海、坚固;图(4)可以代表邮政、友谊等,请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义.【考点】轴对称图形.【分析】结合轴对称图形的概念进行解答即可.【解答】解:.(答案不唯一).【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.【考点】利用轴对称设计图案.【分析】只要满足12个场馆排成6排,且形成的图形是轴对称图形即可.【解答】解:如图所示:.【点评】本题考查了利用轴对称设计图案的知识,属于开放型题目,答案不唯一.12.仔细观察图(1)、图(2)、图(3)中阴影部分图案的共同特征,在图(4)、图(5)中再设计两幅具备上述特征的图案.](答案不唯一)【点评】本题考查轴对称图形的特点:沿某条直线折叠,直线两旁的部分能够互相重合.14.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念作图.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴,以16个相同的小正方形构成的大正方形的对称轴作出图形即可.【解答】解:作图如下:【点评】此题考查了轴对称图形和轴对称的作图方法.轴对称图形要找对称轴,轴对称要找关于对称轴对应的点.15.利用一条线段、一个圆、一个正三角形设计几个轴对称图案,并说明你要表达的意思.【考点】利用轴对称设计图案;等边三角形的性质.【分析】根据轴对称轴图形的定义,画出图形即可.【解答】解:如图所示,①表示劳动工具,②电灯泡,③路标.【点评】本题考查对称轴图形的定义、等边三角形的性质等知识,解题的关键是理解题意,属于创新题目.。
苏科版八年级上第二章《轴对称图形》提优练习(含答案)第2 章轴对称图形第1 课时轴对称与轴对称图形1.下列图形中,对称轴的数量小于 3 的是 ()2.已知各边相等,各角也相等的多边形叫做正多边形,也称为正数 ).如图,请你探究下列正多边形的对称轴的条数,并填在表格中正多边形的边教345678n 边形(这里.n 3 且n为整对称轴的条数(1) 猜想 :正n边形有条对称轴;(2) 当n越来越大时,正多边形接近于,该图形有条对称轴.3.小明学习了轴对称知识后,忽然想起了参加数学兴趣小组时老师布置的一道题,当时小明没做出来,题目是这样的:有一组数据排列成方阵,如图.试用简便方法计算这组数据的和.小明想 :不考虑每个数据的大小,只考虑每个数据的位置,这个图形是个轴对称图形,能不能用轴对称思想来解决这个问题呢 ?小明顺着这个思路很快解决了这个题目,请你写出他的解题过程 .第 2 课时轴对称的性质(1)1.如图,把一张长方形纸片点 B 处,若 2 40ABCD 沿 EF,则 1 的度数为折叠后,点()A 落在 CD边上的点A处,点B 落在A. 115 °B. 120 °C. 130°D. 140 °2.如图,点P 关于 OA, OB 的对称点分别是P1, P2, PP12分别交OA,OB于点D, C, PP12=16cm,则PCD 的周长为cm.如图, O 为 ABC 内部一点13., OB 3 .2(1)分别画出点 O 关于直线 AB, BC 的对称点 P, Q ;(2) 请指出当ABC 的度数为多少时,PQ =7,并说明理由;(3) 请判断当ABC 的度数不是(2)中的度数时,PQ 的长度是小于7 还是大于7,并说明你的判断的理由.第 3 课时轴对称的性质(2)1.如图,点A, B 在方格纸的格点位置上,若要再找一个格点 C ,使它们所构成的三角形为轴对称图形,则这样的格点 C 在图中共有()A. 4 个B. 6 个C. 8 个D. 10 个2.如图,在 2× 2 的正方形网格纸中,有一个以格点为顶点的ABC .请你找出网格纸中所有与ABC 成轴对称且也以格点为顶点的三角形,这样的不角形共有个.3.如图,在由边长为 1 的正方形组成的6× 5 方格中,点A, B 都在格点上.(1) 在给定的方格中将线段AB 平移到 CD ,使得四边形ABDC 是长方形,且点 C , D 都落在格点上 .画出四边形ABDC ,并叙述线段AB 的平移过程.(2) 在方格中画出ACD 关于直线 AD 对称的AED .(3)求五边形 AEBDC 的面积.第 4 课时轴对称的性质—习题课7.如图,线段AB在直线l的一侧,请在直线l上找一点P,使PAB 的周长最短.画出图形,保留画图痕迹,不写画法.2.如图,在直线l 上找一点 Q ,使得 QA,QB 与直线 l 的夹角相等.画出图形,保留画图痕迹,不写画法 .3. (1) 如图① ,P 是 AOB 内一点,在 OA, OB 上分别找点 C , D ,使得PCD 的周长最短.画出图形,保留画图痕迹,不写画法.(2) 如图② ,P, Q 是AOB 内的两点,在 OA, OB 上分别找点 C , D ,使得以 P,Q, C , D 为顶点的四边形的周长最短.画出图形,保留画图痕迹,不写画法.第 5 课时设计轴对称图案1.在一次数学活动课上,小颖将一个四边形纸片依次按如图①②所示的方式对折,然后按图③中的虚线裁剪成图④样式,将纸片展开铺平,所得到的图形是()2.在 4× 4 的方格中,有五个同样大小的正方形按如图所示的方式摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.3.在 3× 3 的正方形网格图中,有格点三角形ABC 和格点三角形DEF关于某条直线成轴对称,请在如图①~⑥所示的网格中画出六个这样的均不相同 ),且ABCDEF和DEF.( 每种方案第 6 课时线段、角的轴对称性(1)1.ABC 中, AC 的垂直平分线分别交AC , BC于点E, D , EC = 4 ,ABC 的周长如图,在为 23,则ABD 的周长为()A. 13B. 15C. 17D. 192.如图,在ABC 中, AB 的垂直平分线分别交AB, BC 于点 D , E, AC 的垂直平分线分别交 AC , BC 于点 F ,G .若 AEG 的周长为2018,则线段 BC 的长为.如图,在ABC 中, AB 的垂直平分线EF 交 BC 于点 E ,交 AB 于点F , D 为线段 CE的3.中点,且CAD 18 , ACB 72.求证 :BE AC .第 7 课时线段、角的轴对称性(2)1.设P是ABC 内一点,满足PA PB PC ,则 P 是ABC()A.三条内角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点2.如图,在EDC ABC 的周长为中, BC24,边上的垂直平分线ABC 与四边形DEAEDC交边 BC 于点的周长之差为D,交边 AB12 ,则线段于点DEE .若的长为.3.在ABC 中, AB AC, O 为平面上一点,且OB OC .点 A 到 BC 的距离为8,点O到BC 的距离为 3.求 AO 的长.第 8 课时线段、角的轴对称性(3)1.如图,上的点ABC 的面积为6, ACC 处, P 为直线 AD=3,现将ABC上的一点,则线段沿AB 所在直线翻折,使点BP 的长不可能是()C 落在直线ADA. 3B. 4C. 5. 5D. 102.AB // CD , BP, CP分别平分ABC , DCB , AD.=8,如图,过点 P ,且与 AB 垂直若 AD 则点 P 到 BC 的距离为.3.ABC 的边 AC 的垂直平分线,过点 M 作ABC 另外两边AB, BC所在直如图, MN 为线的垂线,垂足分别为 D , E ,且 AD CE ,作射线 BM.求证 : BM平分ABC .第 9 课时线段、角的轴对称性(4)1.ABC , EAC的平分线BP, AP交于点 P ,过点 P作PM BE , PN BF,垂如图,足分别为 M , N .下列结论:① CP 平分 A C F;②ABC APC180 ;③AM CN AC ;④BAC 2 BPC .其中正确的是()A. ①②③B.①③④C. ②③④D.①③如图, AD 是ABC 的角平分线,DE , DF 分别是ABD 和 ACD 的高,连接 EF 交 AD2.,于点 O .下列结论:① DE DF ;② OA OD ;③ AD EF ;④ AE DF AF DE ;⑤AD垂直平分EF.其中一定正确的是.(填序号 )3.如图 .在 ABC 中,ABAC,边BC 的垂直平分线DE交ABC 的外角BAM的平分线于点D ,垂足为 E, DFAB ,垂足为F.求证 :BFACAF .第 10 课时 等腰三角形的轴对称性 (1)如图,在ABC 中,B55 , C 30,分别以点 A 和点 C 为圆心,大于 1的长1.AC2为半径画弧,两弧相交于点 M , N ,作直线 MN ,交 BC 于点 D ,连接 AD ,则 BAD的度数为 ()A. 65 °B. 60°C. 55°D. 45 °2. 如 图 , 在ABC 中 , D 为AB 上 一 点 , E 为 BC 上 一 点 , 且A C C D,则CDE 的度数为.B D, B E5 0 A3.如图,在 ACB 中,ACB90 , D , E 为斜边 AB 上的两点, 且 BD BC, AE AC ,求DCE 的度数 .第 11 课时 等腰三角形的轴对称性(1)—习题课1.已知等腰三角形一腰上的高与另一腰的夹角为 60°,则这个等腰三角形的底角的度数为()A. 30 °B. 75 °C. 15°或 30°D. 75 °或15°2.如图,在ABC 中, ACBABP 是等腰三角形,此时90 , ABCAPB 的度数为60,在边AC .所在的直线上找一点P ,使3.在ABC 中, ABAC, AB 的垂直平分线DE 与 AC 所在的直线相交所成的锐角为40°,求B 的度数 .第12 课时 等腰三角形的轴对称性(2)1.如图,在ABC 中, ABAC ,A 36 , BD , CE分别是ABC , ACB的平分线,且相交于点A. 5 个F ,则图中的等腰三角形有B. 6 个()C. 7个D. 8 个2.在 ABC 中, A 50 ,当 B 的度数为 时, ABC 为等腰三角形 .如图①,在 ABC 中, AB AC, ABC , ACB 的平分线交于点 O ,过点 O 作 EF // BC3.交 AB , AC 于点 E, F .(1)图中有几个等腰三角形 ?EF 与 BE, CF 之间有怎样的数量关系,并说明理由 .猜想(2) 如图②,若 AB AC ,其他条件不变,则图中还有等腰三角形吗?如果有,分别写出来 ;另外在 (1)中 EF 与 BE, CF 之间的数量关系还存在吗 ?(3) 如图③, 若在 ABC 中 ,ABC 的平分线 BO 与 ABC 的外角平分线交于点O ,过点 O 作 OE // BC 交 AB 于点 E 、交 AC 于点 F .这时图中还有等腰三角形吗 ? EF 与BE, CF 之间的数量关系又如何?并说明你的理由 .第 13 课时等腰三角形的轴对称性(2)—习题课1.如图,AOB120 , OP平分AOB ,且OP=2.若点M , N分别在OA,OB上,且PMN A. 1 个为等边三角形,则满足上述条件的B. 2 个PMNC. 3有 (个)D. 3个以上2.ABC 中,AE CD , AD, BE相交于点P, BQ AD于点Q ,如图,在等边三角形则线段BP, PQ 的数量关系为.3. 如图,C为线段AB上一点, ACM , CBN 是等边三角形. AN , BM 相交于点O, AN ,CM 交于点 P ,BM ,CN 交于点 Q ,连接 PQ .(1)求证 : AN MB ;(2)求 AOB 的度数;(3)求证 : PQ // AB .第 14 课时等腰三角形的轴对称性(3)1.如图,在ABC 中,BE AC ,CF AB ,垂足分别为E, F .若 M 是 BC 的中点,则图中等腰三角形有 ()A. 1 个B. 3 个C. 4 个D. 5 个2.如图,在四边形ABCD 中,BCD BAD 90 , AC , BD 相交于点 E,G , H 分别是AC, BD 的中点如果 BEC80,那么GHE 的度数为..如图,在 Rt ABC 中, ACB 90 ,点 D 在边 AC 上不与点A,C 重合),DE AB 于3.(点 E ,连接BD, F 为 BD 的中点.试猜想 A 与CEF 的关系并证明.第 2 章 轴对称图形第 1 课时 轴对称与轴对称图形1.D2. 3 4 5 6 7 8(1)n(2) 圆无数3. 从方阵的数据看出, 正方形的一条对角线上的数据都是10.若把这条对角线所在的直线作 为对称轴,把这个方阵对折,对称轴两侧重合的小正方形内的数据之和都是 10,相加后如图所示,这样方阵中的所有数据之和为10 10 100第 2 课时 轴对称的性质 (1)1.A2. 163. (1) 如图,过点 O 画 OH AB ,垂足为 H ,在垂线段 OH 的延长线上取一点P ,使得PHOH P ,此时点 P 就是点 O 关于直线 AB 的对称点,同理画出点Q .(2) 当 ABC90 时, PQ 7理由:如图,连接 BP 、 BQ ∵点 O 、 P 关于直线 AB 对称 ∴直线 AB 垂直平分 OP∴ BHO BHP 90 , PH OH∵ BH BH∴ BHO BHP∴ OBPB 3 1, OBHPBH2同理 OBQB 3 1, OBCQBC2 ∴ PBQB 313172 2若 PQ 7 ,则 PB QB PQ ,此时 P 、 B 、 Q 三点共线∴ PBQ 180∴ABCOBH OBC1PBQ 902(3) 当 ABC90 时, PQ 7理由:∵ABC90∴ P 、 B 、 Q 三点不在同一直线上,此时构成PBQ ∴ PB BQ PQ .由 (2) ,得 PB BQ 7∴ PQ7第 3 课时 轴对称的性质 (2)1.D2. 53.(1) 如图,将线段AB 先向右平移 1 个单位长,再向上平移2 个单位长度,得线段CD (平移过程不唯一 ).(2) 如图,画点 C 关于直线 AD 的对称点 E ,连接 AE 、 DE ,则 AED 即为所求 .( 3) S 五边形 AEBDC S ACD S 梯形 AEBD1 52 1(3 5)2 1322第 4 课时 轴对称的性质—习题课1. 由干线段 AB 的长度是固定的,要使PAB 的周长最短,只要 PA PB 最短即可 .如图,过点 A 作它关于直线 l 的对称点 A ' ,连接 A' B 交直线 l 于点 P ,连接 PA 、 PB ,此时PAB 就是周长最短的三角形,∴点P 即为所求 .2.如图,过点A 作它关干直线 l 的对称点 A' ,连接 A 'B 交直线 l 于点 Q .连接 QA 、 QB ,此时AQHBQD ,∴点 Q 即为所求 .3. (1) 如图①,过点P分别作关于射线OA 、 OB的对称点 P1、 P2,连接 PP12,分别交OA、OB 于点 C 、D ,连接 PC 、 PD 、CD ,此时PCD 的周长最短,∴点 C 、 D 和 PCD即为所求 .(2) 如图② .过点P、Q分别作射线OA、OB的对称点P、Q,连接PQ,分别交OA、11 1 1OB 于点 C 、D ,连接 PC 、PQ 、QD 、CD ,此时四边形PCDQ 的周长最短,∴点 C 、D 和四边形 PCDQ 即为所求.第 5 课时设计轴对称图案1.A2. 133.要使DEF 和ABC 于某条直线成轴对称,关键是确定适当的对称轴.再根据轴对称的性质画出符合条件的图案,可以以 3 3 的正方形网格图的对称轴为对称轴画出所求的DEF,有四个不同位置的三角形;也可以以ABC的边AC、 BC的中点连线所在的直线为对称轴画出所求的DEF 的直线作为对称轴画出所求的,有一个三角形 ; 还可以把过ABC 的顶点DEF ,也有一个三角形.如图① ~⑥中的C 与边DEFAB 平行即为所求第 6 课时线段、角的轴对称性(1)1.B2. 20183.连接 AE ,∵EF 是 AB 的垂直平分线∴ AE BE∵在ADC 中.,CAD ∴ADC 180CAD 18 ,ACBACB9072即AD EC∵D 为线段 CE 的中点∴ ED CD∴AD 垂直平分 EC∴AE AC∴BE AC第 7 课时线段、角的轴对称性(2)1.D2. 63.∵AB AC∴点 A 在线段 BC 的垂直平分线上∵OB OC∴点 O 也在线段 BC 的垂直平分线上∴ AO 所在的直线即为线段BC 的垂直平分线.设直线 AO 与 BC 交于点 M .由题意,得 AM8, OM3如图① .当点A、O在BC的同侧时,AO AM OM83 5 ;如图②,当点 A 、 O 在 BC 的异侧时, AO AM OM8311第 8 课时线段、角的轴对称性(3)1.A2. 43.连接MA、MC∵点 M 在 AC 的垂直平分线上∴MA MC∵MD AB , ME BC∴ADM CEM 90在Rt MAD 和 Rt MCE 中MA MCAD CE∴Rt MAD Rt MCE∴点 M 在ABC的平分线上,即第 9 课时BM 平分ABC .线段、角的轴对称性(4)1.B2. ①③④⑤3.如图 .在ABC 中,AB AC,边的垂直平分线DE交ABC 的外角BAM的平分线于点 D ,垂足为 E, DF AB ,垂足为F.求证 :BF AC AF.3.过点D 作 DN MC ,垂足为N,连接DB 、 DC.∵ DN MC , DF AB∴AND AFD 90∵AD 平分 BAM∴NAD FAD在DNA 和 DNA 中,AND AFDNAD FADAD AD∴DNA DFA∴AN AF , DN DF∵ DE 是边 BC 的垂直平分线∴ DB DC∵ DN MC , DF AB∴DNC DFB90在 Rt DFB和 Rt DNC 中DB DCDF DN∴Rt DFB Rt DNC∴BF CN∵ CN ∴ BF ACACANAFAC AF第 10 课时等腰三角形的轴对称性(1)1.A2. 52.5°3.设BDC x,AEC y∵BD BC∴BDC BCD x∵BDC 的内角和为180°∴ B 180 2x同理可求 A180 2 y∵在ACB 中,ACB90∴A B90即1802x180 2 y90整理,得 x y135∵DEC 的内角和为180°第 11 课时等腰三角形的轴对称性(1) —习题课1.D 2. 15°或 30°或 75°或 120°3.分三种情况讨论:①当顶角BAC 为锐角时,如图①.∵DE 垂直平分 AB∴ADE 90∵AED 40∴在 Rt ADE 中, A 90 4050∵AB AC ∴ B C 1(180 50 )65 2②当顶角BAC 为直角时, BA AC ,此时 DE // AC ,不合题意,舍去.③当顶角BAC 为钝角时,如图②.∵DE 垂直平分 AB∴ ADE 90∵AED 40∴在 Rt ADE 中,BAE50∵BAE B C∴B C50∵ AB AC∴B C 150 25 2综上所述, B 的度数为 65或 25第 12 课时等腰三角形的轴对称性(2)1.D2. 50 °或 80°或 65°2.在ABC 中, A 50 ,当 B 的度数为时,ABC 为等腰三角形.3. (1) 图中有 5 个等腰三角形:ABC 、AEF 、OBC 、EBO 、 FOCEF 与 BE 、 CF 之间的数量关系是EF BE CF理由:∵ BO 平分 ABC∴ EBO OBC∵EF // BC∴EOB ∴EBO OBC EOB∴BE OE同理可证 CF OF∴EF OE OF BE CF(2) 若AB AC ,则图中仍旧存在 2 个等腰三角形:EBO 和FOC , EF 与 BE 、CF之间的数量关系是EF BE (3) 图中存在等腰三角形CFEBO仍旧存在 .和FOC, EF与 BE、 CF之间的数量关系是E F B E C F理由:∵ BO 平分ABC ∴EBO OBC∵EF // BC∴EOB ∴EBO OBC EOB∴BE OE同理可证 CF ∴ EF OEOFOF BE CF第 13 课时等腰三角形的轴对称性(2)—习题课1.D2. BP2PQ3.(1) 如图,∵ACM , CBN都是等边三角形∴6 1 60 , AC CM ,CN BC∵ACB 180∴ 3 60 , ACN MCB 120在ACN 和 MCB 中AC MCACN MCBCN CB∴ACN MCB∴AN MB(2) 如图,由 (1) ,知ACN MCB∴54∵OQN与CQB 的内角和均为180°,且 OQNCQB ∴NOQ 1 60∵AOB NOQ180∴AOB 120(3) 如图,∵ 1 60 , 3 60∴31在PCN 和 QCB 中3 1CN CB5 4∴ PCNQCB∴ PC QC又 3 60∴ PCQ 为等边三角形∴ 2 60 ∴21∴ PQ // AB第 14 课时等腰三角形的轴对称性 (3)1.D2. 10°3. ACEF证明:EBF x, CBF y∵在 Rt ABC 中, ACB 90∴ A 180 90 x y 90 x y∵ACB 90 , F 为 BD 的中点∴ CF1BDBF2∴FCB FBC y∴DFCFCBFBC2 y∵ DE AB , F 为 BD 的中点∴ EF1BD BF2∴ FEB FBE x∴ DFE FEB FBE 2x ∴EFCDFEDFC2x 2 y又∵ CF1BD , EF1BD22∴ CF EF∴ CEFECF∵ CEF 的内角和为 180° ∴CEF 1(180EFC )1(180 2x 2y) 90 x y2 2∴ACEF。
《2.1 轴对称与轴对称图形》一、填空题1.把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形,这条直线就是.2.轴对称是指个图形的位置关系,轴对称图形是指个具有特殊形状的图形.3.计算器显示器上的十个数字中是轴对称图形的数字有.4.请写出3个是轴对称图形的汉字:.5.下列各图中,为轴对称图形的是()A.B.C.D.6.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是()A.B.C.D.7.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.8.已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合拼成一个轴对称图形,并把它画在答题卡的表格中.9.下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.思考:正三角形有条对称轴;正四边形有条对称轴;正五边形有条对称轴;正六边形有条对称轴;正n边形有条对称轴.当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?二、选择题10.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.五、解答题11.用两个圆:O、O,两个三角形:△、△,两条线段:、拼出至少两个对称图形.(画在以下方框内)12.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.13.下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形14.下面所给的交通标志图中是轴对称图形的是()A.B.C.D.15.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.16.下列四个图形中,不是轴对称图形的是()A.B.C.D.17.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形 D.正方形18.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.《2.1 轴对称与轴对称图形》参考答案与试题解析一、填空题1.把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是对称轴.【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质填空即可.【解答】解:把一个图形沿某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是对称轴.故答案为:关于这条直线对称;对称轴.【点评】本题考查了翻折变换的性质,是基础题,熟记概念与性质是解题的关键.2.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【考点】轴对称图形.【分析】关于某条直线对称的一个图形叫轴对称图形.直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.【解答】解:轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.【点评】需理解掌握轴对称和轴对称图形的概念.3.计算器显示器上的十个数字中是轴对称图形的数字有1,3,8,0 .【考点】轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此判断即可.【解答】解:根据轴对称图形的意义可知:数字1,3,8,0是轴对称图形;故答案为:1,3,8,0.【点评】本题考查了轴对称图形,轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.4.请写出3个是轴对称图形的汉字:中,大,目.【考点】轴对称图形.【专题】开放型.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:轴对称图形的汉字:中,大,目,故答案为:中,大,目.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.下列各图中,为轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.6.下列图形分别是等边三角形、直角三角形、等腰梯形和矩形,其中有且只有一条对称轴的对称图形是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念,分别分析四个图形的对称轴,再作答.【解答】解:A、等边三角形的对称轴是三边的垂直平分线,有3条;B、直角三角形不是轴对称图形;C、等腰梯形有1条对称轴,即底的垂直平分线;D、正方形有四条对称轴,即对角线所在的直线以及对边的垂直平分线.故选C.【点评】把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.这条直线,就是对称轴.7.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.【考点】作图-轴对称变换.【分析】直接利用轴对称图形的性质分别分析得出答案.【解答】解:如图(1)所示:一共有6条对称轴;如图(2)所示:一共有4条对称轴;如图(3)所示:一共有1条对称轴;如图(4)所示:一共有2条对称轴;如图(5)所示:一共有1条对称轴;如图(6)所示:一共有1条对称轴.【点评】此题主要考查了轴对称变换,正确掌握轴对称图形的性质是解题关键.8.(2009•清远)已知图形B是一个正方形,图形A由三个图形B构成,如图所示,请用图形A与B合拼成一个轴对称图形,并把它画在答题卡的表格中.【考点】利用轴对称设计图案.【专题】作图题.【分析】由于小正方形是轴对称图形,所以只要构成的大图对称即可.【解答】解:拼成正确图形之一的给5分.例如:【点评】解答此题要明确轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.9.(2015秋•常熟市校级月考)下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.思考:正三角形有 3 条对称轴;正四边形有 4 条对称轴;正五边形有 5 条对称轴;正六边形有 6 条对称轴;正n边形有n 条对称轴.当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?【考点】作图-轴对称变换.【分析】依据轴对称图形的定义,即一个图形沿某条直线对折,对折后的两部分能完全重合,则这条直线即为图形的对称轴,从而可以解答.【解答】解:正三角形有3条对称轴;正四边形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正n边形有n条对称轴.当n越来越大时,正多边形接近于圆形,它有无数条对称轴.故答案为:3,4,5,6,n.作图如下:【点评】此题考查轴对称图形的作图,掌握轴对称图形的性质与意义是解决问题的关键.二、选择题10.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】本题需先根据轴对称图形的有关概念沿某直线折叠后直线两旁的部分互相重合对每一个图形进行分析即可得出正确答案.【解答】解:A∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形B、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形C、∵沿某直线折叠,分成的两部分能互相重合∴它是轴对称图形D、根据轴对称定义它不是轴对称图形故选D.【点评】本题主要考查了轴对称图形的有关概念,在解题时要注意轴对称图形的概念与实际相结合是本题的关键.五、解答题11.(2015秋•睢宁县校级月考)用两个圆:O、O,两个三角形:△、△,两条线段:、拼出至少两个对称图形.(画在以下方框内)【考点】利用轴对称设计图案.【分析】利用给出图形的数量和形状,结合现实生活中的实物,画出图形即可.【解答】解:如图,【点评】本题主要考查了作图与应用作图以及轴对称设计图案的知识,属于开放型,掌握轴对称图形的性质是解决问题的关键.12.(2011秋•扬中市期中)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.【考点】利用轴对称设计图案.【分析】根据轴对称与对称轴的定义,即可求得答案,注意此题答案不唯一.【解答】解:参考图如下图:【点评】此题考查了利用轴对称设计图案的知识.此题难度适中,注意如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形;对称轴:折痕所在的这条直线叫做对称轴.13.下列图形中对称轴只有两条的是()A.圆B.等边三角形C.矩形D.等腰梯形【考点】轴对称图形.【分析】根据轴对称图形的概念,分别判断四个图形的对称轴的条数.【解答】解:A、有无数条对称轴;B、有3条对称轴;C、有2条对称轴;D、有1条对称轴.故选C.【点评】本题考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,能够正确找出各个图形的对称轴的条数是解题的关键.14.下面所给的交通标志图中是轴对称图形的是()A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.15.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.16.下列四个图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项判断即可.【解答】解:A、是轴对称图形,不符合题意,故A选项错误;B、不是轴对称图形,符合题意,故B选项正确;C、是轴对称图形,不符合题意,故C选项错误;D、是轴对称图形,不符合题意,故D选项错误;故选:B.【点评】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.17.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是()A.等边三角形B.矩形C.菱形 D.正方形【考点】轴对称图形.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分别判断出各图形的对称轴条数,继而可得出答案.【解答】解:A、等边三角形有3条对称轴;B、矩形有2条对称轴;C、菱形有2条对称轴;D、正方形有4条对称轴;故选D.【点评】本题考查了轴对称图形的知识,注意掌握轴对称及对称轴的定义.18.(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.【考点】作图-轴对称变换.【分析】(1)关于轴对称的两个图形,各对应点的连线被对称轴垂直平分.做BM⊥直线l 于点M,并延长到B1,使B1M=BM,同法得到A,C的对应点A1,C1,连接相邻两点即可得到所求的图形;(2)由图得四边形BB1 C1C是等腰梯形,BB1=4,CC1=2,高是4,根据梯形的面积公式进行计算即可.【解答】解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.【点评】此题主要考查了作轴对称变换,在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.。
八(上) 数学第一章轴对称图形(Ⅰ卷)时间:45分钟满分:100分一、选择题(每题3分,其30分)题号 1 2 3 4 5 6 7 8 9 10 答案1.“羊”字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的个数是( )A.1 B.2 C.3 D.42.平面上有A、B两个点,以线段AB为一边作等腰直角三角形能作( ) A.3个B.4个C.6个D.无数个3.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于( )A.50°B.40°C.30°D.20°4.已知等腰三角形的一个外角等于100°,则它的顶角是( ) A.80°B.20°C.80°或20°D.不能确定5.直角三角形三边垂直平分线的交点位于三角形的( ) A.形内B.形外C.斜边的中点D.不能确定6.已知等腰三角形的一边等于3,一边等于6,那么它的周长等于( ) A.12 B.12或15 C.15 D.15或187.如图,在△ABC中,AB=AC,∠A=36°,两条角平分线BD、CE相交于点F,则图中的等腰三角形共有( ) A.6个B.7个C.8个D.9个8.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )9.如图,DE是△ABC中边AC的垂直平分线,若BC=18 cm,AB=10 cm,则△ABD的周长为( )A.16 cm B.28 cmC.26 cm D.18 cm10.下列语句中,正确的有( )①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1个B.2个C.3个D.4个二、细心填一填(每题3分,共30分)11.若直角三角形斜边上的高和中线长分别是5 cm,6 cm,则它的面积是________.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC=BC,E是BA、CD延长线上的交点,∠E=40°,则∠ACD=___________.13.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有_________对.14.如图,在∠MON的两边上顺次取点.使DE=CD=BC=AB=OA,若∠MON=22°,则∠NDE=__________.15.如图,AB=AC=4 cm,DB=DC,若∠ABC为60度,则BE为__________.16.在△ABC中,AB=BC,其周长为20 cm,若AB=8 cm,则AC=__________.17.△ABC和△DEF关于直线l对称,若△ABC的周长为12 cm,△DEF的面积为8 cm2,则△DEF的周长为__________,△ABC的面积为__________.18.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE,则∠AEB=_______.19.数的计算中有一些有趣的对称,形式如:12×231=132×21.仿照上面的形式填空,并判断等式是否成立:(1)12×462=_________×_________( ),(2)18×891=________×__________( ).20.如图,点D、E分别为边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=_________.三、耐心解一解(第21题6分,第25题10分,其余每题8分,共40分)21.如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)22.如图,已知△ABC.(1)画出△A1B1C1,使△A1B1C1和△ABC关于直线MN成轴对称.(2)画出△A2B2C2,使△A2B2C2和△ABC关于直线PQ成轴对称.(3)△A1B1C1与△A2B2C2成轴对称吗?若成,请在图上画出对称轴;若不成,说明理由.23.如图,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边的中点.试说明:AE=DE.24.如图,在△ABC中,AB=AC,点D在BC边上,且BD=AD,DC=AC.将图中的等腰三角形全都写出来.并求∠B的度数.25.如图,已知Rt△ABC中,∠C=90°,沿过点B的直线BE折叠这个三角形,使点C落在AB边上的点D处.要使点D恰为AB的中点,则在图中还要添加什么条件?(直接填写答案)(1)写出两条边满足的条件:__________________.(2)写出两个角满足的条件:__________________.(3)写出一个除边、角以外的其他满足的条件:___________.参考答案1.B 2.C 3.D 4.C 5.C 6.C 7.C 8.C 9.B 10.B 11.30 cm 2 12.30° 13.4 14.110° 15.216.4 17.12 cm 8 cm 2 18.15° 19.264 21 √ 198 81 √ 20.80° 21.略 22.(1)略 (2)略 (3)不成,理由略 23.∵ 四边形ABCD 为梯形,∠B=∠C ,∴ 梯形ABCD 为等腰梯形.(同一底上底角相等的梯形为等腰梯形) ∴ AB=DC . ∵ 点E 为BC 中点, ∴ BE=CE .在△ABE 与△DCE 中,.AB DC B C BE CE =⎧⎪∠=∠⎨⎪=⎩,,∴ △ABE ≌△DCE(SAS).∴ AE=DE .(全等三角形对应边相等)24.△ABC 、△DAB 、△CAD 均为等腰三角形,∠B=36°. 设∠B=x °, ∵ AB=AC , ∴ ∠C=∠B=x .又DB=DA,∴∠DAB=∠B=x.∴∠CDA=2x.又CM=CD,∴∠CAD=∠CDA=2x.在△CAD中,∠C+∠CDA+∠CAD=180°,∴x+2x+2x=180°.∴x=36.25.(1)①AB=2BC或②BE=AE等;(2)①∠A=30°或②∠A=∠DBE等;(3)△BEC≌△AED等.。
轴对称与轴对称图形一.选择题(共10小题)1.(2022•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.2.(2022•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.3.(2022•东营)下列图形中,是轴对称图形的是()A.B.C.D.4.(2022•泰安)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④5.(2022•泰州)如图图形中的轴对称图形是()A.B.C.D.6.(2018•资阳)下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形C.矩形D.正方形7.(2018•苏州)下列四个图案中,不是轴对称图案的是()A.B.C.D.8.(2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l4 9.(2018•无锡)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个10.(2018•重庆)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形二.填空题(共6小题)11.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是.12.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有种.13.(2022•滨湖区一模)给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是(填写序号).14.(2022•海安县一模)在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.15.(2018•和平区二模)如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,点E、F、P、Q分别在边AB、BC、CD、AD上,点M、N在边HG上,且组成的图形为轴对称图形,则正方形ABCD的面积为.16.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD =3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.三.解答题(共4小题)17.(2018秋•徐州期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.18.仔细观察下列图案,并按规律在横线上画出合适的图案.19.(2018秋•张家港市校级期末)如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.20.(2018秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,3 4 5 6 7 …正多边形的边数对称轴…的条数根据上表,猜想正n边形有条对称轴.答案与解析一.选择题(共10小题)1.(2022•北京)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2022•徐州)下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解可得.【解答】解:不是轴对称图形,故选:D.【点评】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3.(2022•东营)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(2022•泰安)下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答】解:①是轴对称图形且有两条对称轴,故本选项正确;②是轴对称图形且有两条对称轴,故本选项正确;③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2022•泰州)如图图形中的轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2018•资阳)下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形C.矩形D.正方形【分析】根据轴对称及对称轴的定义,结合所给图形即可作出判断.【解答】解:A、等边三角形由3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误;故选:C.【点评】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.7.(2018•苏州)下列四个图案中,不是轴对称图案的是()A.B.C.D.【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l4【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:该图形的对称轴是直线l3,故选:C.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.9.(2018•无锡)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个【分析】直接利用轴对称图形的性质画出对称轴得出答案.【解答】解:如图所示:直线l即为各图形的对称轴.,故选:D.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.10.(2018•重庆)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二.填空题(共6小题)11.在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是21:05 .【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故答案为:21:05.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.12.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有 4 种.【分析】结合图象根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,一共有四种涂法,如下图所示:.故答案为:4.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.(2022•滨湖区一模)给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是③(填写序号).【分析】直接利用轴对称图形的概念分析得出答案.【解答】解:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是③.故答案为:③.【点评】此题主要考查了轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.14.(2022•海安县一模)在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有6 种.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有等腰三角形、矩形、菱形、正方形、正六边形、圆6种.故答案为:6.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.15.(2018•和平区二模)如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,点E、F、P、Q分别在边AB、BC、CD、AD上,点M、N在边HG上,且组成的图形为轴对称图形,则正方形ABCD的面积为+.【分析】连接BD,交PQ于R,交HG于S,交EF于K,依据轴对称图形的性质,即可得到BD的长,进而得到正方形ABCD的面积.【解答】解:如图,连接BD,交PQ于R,交HG于S,交EF于K,∵正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN,∴EH=EF=2,MQ=QP=,又∵组成的图形为轴对称图形,∴BD为对称轴,∴△BEF、△DPQ为等腰直角三角形,四边形EKSH、四边形MSRQ 为矩形,∴EK=BK=EF=1,DR=QR=PQ=,KN=EH=2,RS=MQ=,∴BD=1+2++=3+,∴正方形ABCD的面积=BD2=×(3+)2=+,故答案为:+.【点评】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.16.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD =3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入 D 洞,在落入洞之前,撞击BC边 4 次.【分析】根据当AB=4,AD=3时的例图及弹子的运行规律:每一条运行轨迹都是一个正方形的对角线,画出图形,即可得出结论.【解答】解:当AB=9,AD=8时,弹子的弹射路径如图所示:∴弹子最后落入D洞,在落入洞之前,撞击BC边4次.故答案为:D,4.【点评】此题考查了生活中的轴对称现象,读懂题意,根据题意总结出弹子的运行规律,画出图形是解题的关键.三.解答题(共4小题)17.(2018秋•徐州期末)在下列各图中分别补一个小正方形,使其成为不同的轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称图形的性质,正确把握轴对称图形的性质是解题关键.18.仔细观察下列图案,并按规律在横线上画出合适的图案.【分析】观察图形规律,可得空白处应该为字母E和它的轴对称图形,作出图形即可.【解答】解:如图所示:.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.19.(2018秋•张家港市校级期末)如图,DA、CB是平面镜前同一发光点S发出的经平面镜反射后的反射光线,请通过画图确定发光点S的位置,并将光路图补充完整.【分析】作出BC和AD的入射光线,相交处即为点S所在位置.【解答】解:【点评】用到的知识点为:入射角等于反射角;两条入射光线的交点处是点光源所在处.20.(2018秋•相城区期中)画图:试画出下列正多边形的所有对称轴,并完成表格,3 4 5 6 7 …正多边形的边数…对称轴的条数根据上表,猜想正n边形有n 条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:如图,故填3,4,5,6,7,n.【点评】正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.。
八年级数学《轴对称图形》复习练习(满分:120分时间:90分钟)一、选择题(每题3分,共24分)1.下列图案是轴对称图形的是( )2.在△ABC中,若∠B,∠C平分线的交点P恰好在BC边的高AD上,则△ABC 一定是( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形3.如图所示的是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥4.如图,已知点P到AE,AD,BC的距离相等,有下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A.①②③④B.①②③C.④D.②③5.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠PBC=∠PCA,则∠BPC的度数等于( )A.100°B.115°C.130°D.140°6.如图,在△ABC中,AB=AC,DE垂直平分AB,BE⊥AC。
AF⊥BC,则下列结论错误的是( )A.BF=EF B.DE=EF C.∠EFC=45°D.∠BEF=∠CBE 7.如图,D为△ABC内一点,CD平分∠ACB,AE⊥CD,垂足为点D,交BC于点E,∠B=∠BAE,若BC=5,AC=3,则AD的长为( )A 1 B.1.5 C.2 D.2.58.张萌和小平两人打算各用一张正方形纸片ABCD折出一个等边三角形.两人的作法如下,张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF 上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求.对于两人的作法,下列判断正确的是( )A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确二、填空题(每题2分,共20分)9.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.10.已知等腰三角形的周长为16,若一边长为6,则另外两边的长分别为.11.若等腰三角形有一个外角是100°,则这个等腰三角形的底角是.12.如图,△ABC是等边三角形,D,E,F分别是AB,BC,CA边上的一点.若AD=BE=CF,则△DEF的形状是.13.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC=.14.如图,在△ABC中,AB=AC,点E在CA的延长线上,EP⊥BC,垂足为点P,交AB于点F.若AF=2,BF=3,则CE的长度为.15.如图,在△ABC中,AB=AC,∠A=90°,∠1=∠2,DE⊥BC,垂足为点E.若BC=a,则△DEC的周长是.16.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上的一点.若BE=BP,CP=CF,则∠EPF= .17.如图,在△ABC 中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF (E在BC上,F在AC上) 折叠,若点C与点O恰好重合,则∠OEC= .18.如图,等边三角形ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作.EF∥BC,分别交AB,AC于点E,F,则EF的长度为.三、解答题(共76分)19.(本题6分) 以直线为对称轴,画出下列图形的另一部分,使它们成为轴对称图形.20.(本题8分) 如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA,垂足为点D,PE⊥OB.垂足为点E,点M,N分别在线段OD和射线EB上,PM=PN,∠AOB=68°,求∠MPN的度数.21.(本题8分) 如图,已知点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,FE=FD.求证:AD=CE.22.(本题10分) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为边BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F,连接DF.求证:AB垂直平分DF.23.(本题10分) 如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1) △AEF≌△CEB;(2) AF=2CD.24.(本题12分) 如图,已知△ABC为等边三角形,延长BC到点D,延长BA到点E,并且使AE=BD.连接CE,DE.求证:EC=ED.25.(本题10分) 如图,∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD,OB于点M,N,探究线段OD,ON,DM 之间的数量关系,并证明你的结论.26.(本题12分)(1) 如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边三角形ACM和等边三角形CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2) 若将(1) 中的“以AC,BC为边在AB的同侧作等边三角形ACM和等边三角形CBN”改为“以AC,BC为腰在AB的同侧作等腰三角形ACM和等腰三角形CBN,且∠ACM=∠BCN≠60°”,其他条件不变,如图2所示,那么(1) 中的结论还成立吗?若成立,请加以证明;若不成立,请说明坪南.参考答案一、选择题1.D 2.C 3.A 4.A 5.B 6.B 7.A 8.D二、填空题9.8 10.5,5或6,4 11.80°或50°12.等边三角形13.72°14.7 15.a 16.50°17.108°(提示:连接OB,OC,可求得∠OCE=∠COE=36°,进而求得∠OEC=108°) 18.4 (提示:根据BD和CD分别平分∠ABC 和∠ACB,EF∥BC,可求出BE=DE,DF=FC,进一步证明△AEF是等边三角形,则EF=2BE=AC,即EF△23AB=4)三、解答题19.如图所示的图形即为所求作的图形20.∵OC平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为点D,E,∴PD=PE.在Rt △MPD与Rt△NPE中,∵PM=PN,PD=PE.∴Rt△MPD≌Rt△NPE,∴∠MPD=∠NPE.∵∠MPN=∠MPE+∠EPN,∴∠MPN=∠MPE+∠DPM=∠DPE.在四边形OEPD中,∠AOB=68°,∠ODP=90°.∠OEP=90°,∴∠DPE=112°,即∠MPN=112°21.过点D作DG∥BC,∴∠ADG=∠B,又∵FE=FD,∴DG=CE.∵△ABC为等边三角形,∴∠A=∠B=60°,∴∠A=∠ADG=60°,即△ADG为等边三角形,∴AD=DG,∴AD=CE22.∵∠BCE+∠ACE=90°,∠ACE+∠CAD=90°,∴∠BCE=∠CAD.∵BF∥AC,∴BF⊥BC,∴∠ACD=∠CBF=90°.又∵AC=CB,∴△ACD≌△CBF,∴CD=BF.∵CD=BD=12BC,∴BF=BD,∴△BFD为等腰直角三角形.∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°,∴∠ABC=∠ABF,即BA是∠FBD的平分线.又∵BF=BD,∴BA⊥DF,∴AB垂直平分DF23.(1) ∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°,∴∠EAF=∠ECB.在△AEF和△CEB中,,,,AEF BECAE CEEAF BCE∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEF≌△CEB,(2)∵△AEF≌△CEB,∴AF=BC.∵AB=AC,AD⊥BC,∴CD=BD,BC= 2CD, ∴AF=2CD24.延长BD至点F,使DF=BC,连接EF.∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°.在△ECB和△EDF中,BE=EF,∠B=∠F=60°,BC=DF.∴△ECB≌△EDF,∴EC=ED25.画图如下.OD,ON,DM之间的数量关系为:OD=ON+DM或ON=OD+DM.分三种情况,①如图1,线段OD,ON,DM之间的数量关系为:OD=ON+DM,理由如下:∵OC是角平分线,∴∠AOC=∠BOC.∵CD∥OB,∴∠CME=∠ONE,∠C=∠BOC=∠AOC,∴OD=CD.在△CEM和△OEN中,∠C=∠BOC,∠CME=∠ONE,CE=OE,∴△CEM≌△OEN,∴ON=CM,∴OD=CD=CM+DM=ON+DM.②如图2,由①易得OD=ON+DM.③如图3,类似①可证得OD=CD,△CEM≌△OEN,得ON=CM=CD+DM=OD+DM26.(1) △CEF是等边三角形.理由:∵△ACM与△BCN是等边三角形,∴CA=CM,CN=CB,∠ACM=∠BCN=60°,∴∠ACN=∠BCM=120°,∴△CAN≌△CMB,∴AN=BM,∠CAN=∠CMB.∵E,F分别为BM,AN的中点,∴AF=ME,∴△ACF≌△MCE,∴CE=CF,∠ACF=∠MCE.∵∠ACF=∠ACM+∠MCF,∴∠MCE=∠MCF+∠FCE,即∠ECF=∠ACM=60°,∴△CEF是等边三角形(2) 不成立,理由如下:方法同(1)可得△CAN≌△CMB,△ACF≌△MCE,∴CE=CF,∠ACF=∠MCE.∵∠ACF=∠ACM+∠MCF,∴∠MCE=∠MCF+∠FCE,即∠ECF=∠ACM≠60°,∴△CEF是等腰三角形。