正弦定理、余弦定理知识点总结及最全证明
- 格式:doc
- 大小:78.00 KB
- 文档页数:8
正弦定理和余弦定理公式大全
一、正弦定理
正弦定理是一种重要的三角函数定理,它指出正三角形中两个角对应
的正弦值之乘积等于两个边的乘积与对边的长度之比。
正弦定理指出:就是三角形里有两个相邻的角,则两个相邻角的正弦值相乘等于另外
一个边跟另外一个角的余弦值相乘。
公式:
sin A * sin B = a²/2R (A,B是相邻的角,R是三角形的外接圆半径,a
是两边的长度之积)
二、余弦定理
余弦定理是一种也是非常重要的三角函数定理,它指出两个相邻角的
余弦值之乘积等于该三角形的面积除以其第三边的平方,还可以求解
三角形的第三边的长度。
公式:
cos A * cos B = b²/2R (A,B是相邻的角,R是三角形的外接圆半径,
b是三角形面积与其第三边的平方的比值)。
第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。
正弦定理和余弦定理考点与提醒归纳一、基础知识1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b2c -a =sin A sin B +sin C =a b +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C得c =a sin C sin A =3×(3+22)32×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A ,由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________. 解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos A cos B =ba =2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC 是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sinC sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A+B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b .(1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12, 又A ∈(0,π),∴A =2π3. (2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BD sin A, ∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3, ∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2, 由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.。
正弦定理和余弦定理笔记一、正弦定理。
(一)定理内容。
在一个三角形中,各边和它所对角的正弦值的比相等,即(a)/(sin A)=(b)/(sinB)=(c)/(sin C) = 2R(R为三角形外接圆半径)。
(二)证明方法。
1. 外接圆法。
- 设ABC的外接圆半径为R。
- 连接圆心O与三角形的三个顶点A、B、C。
- 对于∠ A,根据同弧所对的圆周角是圆心角的一半,可知∠ A=(1)/(2)∠BOC。
- 由正弦定义,在BOC中,a = 2Rsin A,同理可得b = 2Rsin B,c = 2Rsin C,所以(a)/(sin A)=(b)/(sin B)=(c)/(sin C)=2R。
2. 向量法(略提)- 利用向量的数量积公式→AB·→AC=|→AB||→AC|cos A,通过一系列向量运算也可证明正弦定理,但相对外接圆法较复杂。
(三)应用。
1. 已知两角和一边,求其他边和角。
- 例如,已知A = 30^∘,B = 45^∘,a = 10。
- 根据三角形内角和C=180^∘-A - B = 105^∘。
- 由正弦定理(a)/(sin A)=(b)/(sin B),可得b=(asin B)/(sin A)。
- 先求出sin 45^∘=(√(2))/(2),sin 30^∘=(1)/(2),则b=(10×frac{√(2))/(2)}{(1)/(2)} = 10√(2)。
- 再根据(a)/(sin A)=(c)/(sin C)求出c的值,sin105^∘=sin(60^∘+45^∘)=sin60^∘cos45^∘+cos60^∘sin45^∘=(√(6)+√(2))/(4),c=(asin C)/(sin A)=(10×frac{√(6)+√(2))/(4)}{(1)/(2)} = 5(√(6)+√(2))。
2. 已知两边和其中一边的对角,求其他边和角(可能有一解、两解或无解情况)- 例如,已知a = 10,b = 20,A = 30^∘。
正弦定理和余弦定理要点梳理1.正弦定理其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2Rsin A ,b =2Rsin B ,c =2Rsin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题. 2.三角形面积公式S △ABC =12absin C =12bcsin A =12acsin B =abc 4R =12(a +b +c)·r(r 是三角形内切圆的半径),并可由此计算R 、r.3.余弦定理:222222222a b c 2bccos A b a c 2accos B c a b 2abcos C =+-,=+-,=+-.余弦定理可以变形为:cos A =222b c a2bc+-,cos B =222a c b 2ac +-,cos C =222a b c 2ab+-.4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角. 情况(2)中结果可能有一解、二解、无解,应注意区分. 余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.基础自测1.在△ABC 中,若b =1,c =3,C =2π3,则a = 1 .2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =________.3.在△AB =5,AC =5,且cos C =910,则BC = 4或5 . 4.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( C )A .2 2B .8 2 C. 2 D.222sin sin sin a b cR A B C===题型分类 深度剖析题型一 利用正弦定理求解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断. 解: 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°. 当A =60°时,C =180°-45°-60°=75°,c =bsin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =bsin Csin B =6-22.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练1 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则A =6π解析 ∵A +C =2B ,∴B =π3. 由正弦定理知sin A =a sin B b =12.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =b2a c-+.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练2已知A 、B 、C 为△ABC 的三个内角,其所对的边分别为a 、b 、c ,且2A2cos+cos A=02. (1)求角A 的值; (2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2A 2cos+cos A=02,得1+cos A +cos A =0,即cos A =-12. ∵0<A <π,∴A =2π3.(2)由余弦定理得, a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4, 有12=42-bc ,则bc =4,故S △ABC =12bcsin A = 3.题型三 正、余弦定理的综合应用例3. 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边22sin )()sin ,A C a b B -=-已知△ABC 外接圆半径为(1)求角C 的大小; (2)求△ABC 面积的最大值.解: (1)∵△ABC 22sin )()sin ,A C a b B -=-且22))(,A C a b B -=-即∴由正弦定理得:22(),a c a b b -=-即222,a b c ab +-=由余弦定理得:222cos 2a b c C ab +-=2ab ab =12=,(0,)C π∈Q ,.3C π∴=(2)max 2S =+探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4. 联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A , 即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形. ∴△ABC 为等腰三角形或直角三角形.思想方法 感悟提高方法与技巧1.正、余弦定理和三角形面积公式是本节课的重点,利用三角形内角和、边、角之间的关系,三角函数的变形公式去判断三角形的形状,求解三角形,以及利用它们解决一些实际问题.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.4.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 失误与防范在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解或无解,所以要进行分类讨论.过关精练一、选择题1.在△ABC 中,A =60°,a =43,b =42,则B 等于( )A .45°或135°B .135°C .45°D .以上答案都不对 2.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( )A .60°B .45°或135°C .120°D .30°3.在ABC ∆中,ABC S bc ABC ∆∆,35,20==的外接圆半径为3,则=a ( )A .1B .2C .3D .234.在ABC ∆中,已知,45,1,2ο===B c b 则a 等于( )A .226- B .226+ C1 D .23-5.在ABC ∆中2,3,3,AB AC BA AC ==⋅=u u u r u u u r u u u r u u u r则A ∠等于( )A .120°B .60°C .30°D .150° 6.在ABC ∆中,7:5:3::=c b a , 则这个三角形的最大角为( )A .ο30 B .ο90 C .ο120 D .ο60 7.在△ABC 中,已知三边之比4:3:2::=cb a ,则=-CB A 2sin sin 2sin ( )A .1B .2C .2-D .21 8.ABC ∆中,边c b a ,,的对角分别为A 、B 、C ,且A=2B ,32a b =,cos B =( )A .21B .31C .32D .43二、填空题9.在△ABC 中,已知2sinAcosB=sinC,那么△ABC 的形状是 三角形10.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________. 11.在△ABC 中,边a ,b ,c 的对角分别为A 、B 、C ,且B C A C A 222sin sin sin sin sin =⋅-+。
初中数学知识归纳三角形的正弦定理与余弦定理三角形的正弦定理与余弦定理是初中数学中重要且常用的知识点。
它们是解决三角形相关问题的基本工具,能够帮助我们计算三角形的各个边长和角度。
本文将对三角形的正弦定理与余弦定理进行归纳和解释,以帮助同学们更好地理解和应用这两个定理。
1. 三角形的正弦定理三角形的正弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:a/sinA = b/sinB = c/sinC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
简单来说,正弦定理表明三角形的每条边的长度与其对应的角的正弦值成比例。
这个关系可以通过以下示例来理解:【示例1】已知一个三角形的两边长度分别为5cm和8cm,夹角为60°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有5/sin60° = c/sin(180°-60°-60°),化简得c = 5*sin120° / sin60° ≈ 8.66cm。
【示例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为45°,求第三边的长度。
解:根据正弦定理,设第三边长度为c,则有9/sin45° = c/sin(180°-45°-45°),化简得c = 9*sin135° / sin45° ≈ 14.14cm。
从这两个示例可以看出,正弦定理可以帮助我们在已知两边和夹角的情况下求解三角形中的第三边长度。
2. 三角形的余弦定理三角形的余弦定理是指在任意三角形ABC中,三边的长度a、b、c 与它们对应的角A、B、C之间有一个重要的关系:c^2 = a^2 + b^2 -2ab*cosC。
其中,a、b、c分别表示三边的长度,A、B、C表示对应的角的度数或弧度。
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。
正弦定理可以用于求解任意三角形的边长或角度。
正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。
正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。
正弦定理的证明:可以使用数学推导来证明正弦定理。
这里给出一种较为详细的证明方法。
证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。
3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。
4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。
5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。
所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。
6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。
余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。
正弦定理、余弦定理知识点总结及证明方法——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2= .若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A =,cos B=,cos C= .若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A =sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tan A2=+tan B +tan C =__________. (3)若三角形三边a ,b ,c 成等差数列,则2b =____________⇔2sin B =____________⇔2sin B 2=cos A -C 2⇔2cos A +C 2=cos A -C 2⇔tanA2tan C 2=13.【自查自纠】1.(1)a sin A =b sin B =csin C =2R(2)①2R sin B 2R sin C ②b 2Rc 2R③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab><(3)互化 sin 2C +sin 2A -2sin C sin A cosB sin 2A +sin 2B -2sin A sin B cosC 3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解(3)余弦 (4)余弦 4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R12(a +b +c )r (2)π-(B +C )π2-B +C 2sin(B +C ) -cos(B +C ) -tan(B +C ) cos B +C 2sinB +C 21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B 知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c=23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cosπ6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解:∵sin B +cos B =2,∴2sin ⎝ ⎛⎭⎪⎫B +π4=2,即sin ⎝ ⎛⎭⎪⎫B +π4=1.又∵B ∈(0,π),∴B +π4=π2,B =π4. 根据正弦定理a sin A=b sin B,可得sin A =a sin Bb =12. ∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ). ∴2sin(45°+C )=22sin(45°+C )cos(45°+C ),即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°.【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2; (2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a应用正弦定理得sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A , 即sin B⎝ ⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C-sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝ ⎛⎭⎪⎫0,3π4,∴B -C =π2.(2)∵B +C =π-A =3π4,又由(1)知B -C =π2, ∴B =5π8,C =π8. ∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8.∴S△ABC=12bc sin A=12×2sin5π8×2sinπ8×22=2sin5π8sinπ8=2cosπ8sinπ8=22sin π4=12.类型二余弦定理的应用在△ABC中,a,b,c分别是角A,B,C的对边,且cos Bcos C=-b2a+c.(1)求B的大小;(2)若b=13,a+c=4,求△ABC的面积.解:(1)由余弦定理知,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab,将上式代入cos Bcos C=-b2a+c得a2+c2-b22ac ·2aba2+b2-c2=-b2a+c,整理得a2+c2-b2=-ac.∴cos B=a2+c2-b22ac=-ac2ac=-12.∵B为三角形的内角,∴B=23π.(2)将b=13,a+c=4,B=23π代入b2=a2+c2-2ac cos B,得13=42-2ac-2ac cos 2 3π,解得ac=3.∴S△ABC=12ac sin B=334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab的值为( )B.8-4 3 C.1 解:由余弦定理得c2=a2+b2-2ab cos C=a2+b2-ab,代入(a+b)2-c2=4中得(a+b)2-(a2+b2-ab)=4,即3ab=4,∴ab=43.故选A.类型三正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC的内角A、B、C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B;(2)若b=2,求△ABC面积的最大值.解:(1)由已知及正弦定理得sin A=sin B cos C+sin C sin B.①又A=π-(B+C),故sin A=sin(B+C)=sin B cos C+cos B sin C.②由①,②和C∈(0,π)得sin B=cos B.又B∈(0,π),所以B=π4.(2)△ABC的面积S=12ac sin B=24ac.由已知及余弦定理得4=a2+c2-2ac cosπ4.又a2+c2≥2ac,故ac≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值;(2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin Bb =223. 因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227. 类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B,再由正、余弦定理,得a 2+c 2-b 22ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab<0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在Rt△OAC中,OC=20cos30°=103,AC=20sin30°=10.又AC=30t,OC=vt,此时,轮船航行时间t=1030=13,v=10313=30 3.即小艇以30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假设v=30时,小艇能以最短时间与轮船在D处相遇,此时AD=DO=30t.又∠OAD=60°,所以AD=DO=OA=20,解得t=2 3 .据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC=103,AC=10,故OC>AC,且对于线段AC上任意点P,有OP≥OC>AC.而小艇的最高航行速度只能达到30 n mile/h,故小艇与轮船不可能在A,C之间(包含C)的任意位置相遇.设∠COD=θ(0°<θ<90°),则在Rt△COD 中,CD=103tanθ,OD=103 cosθ.由于从出发到相遇,轮船与小艇所需要的时间分别为t=10+103tanθ30和t=103v cosθ,所以10+103tanθ30=103v cosθ.由此可得,v=153sin(θ+30°).又v≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°.由于θ=30°时,tanθ取得最小值,且最小值为3 3 .于是,当θ=30°时,t=10+103tanθ30取得最小值,且最小值为2 3 .【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sinα的值.解:(1)依题意,∠BAC=120°,AB=12,AC=10×2=20,在△ABC中,由余弦定理知BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos120°=784,BC=28.所以渔船甲的速度为v=282=14(海里/小时).(2)在△ABC中,AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理得ABsinα=BCsin∠BAC,即12sinα=28sin120°,从而sinα=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A+B+C=π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A=sin(B +C),cos A=-cos(B+C),sinA2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。