2019年高考数学(文)热点题型和提分秘籍专题11导数的应用(教学案)含解析
- 格式:doc
- 大小:2.65 MB
- 文档页数:35
2019-2020年高考数学复习导数及应用教案•知识结构内容提炼、思想方法归纳:导数及其应用这部分内容,在近几年的高考中已成为一个热点,试题比重在逐年增加,题型从选择题、填空题到解答题均有涉及.选择题、填空题主要考查本章的基本公式和基本方法的应用,如求函数的导数,切线的斜率,函数的单调区间、极值、最值;解答题一般为导数的应用,主要考查利用导数判断函数的单调性,在应用题中用导数求函数的最大值和最小值学习导数的概念要结合其实际背景以帮助理解,要熟记常用的导数公式,掌握函数四则运算的求导法则和复合函数的求导法则,会求简单初等函数的导数化归转化思想与分类讨论思想是本章内容的重要数学思想,把不熟悉的转化为熟悉的,把不规范的转化为规范的甚至模式化的问题,将是复习本章内容的基本思维模式用函数和方程的思想指导本章的学习.在导数应用的许多问题中都蕴含着函数和方程关系,用函数和方程的思想加以指导,禾U于问题的解决•正确理解函数极值的概念.确定函数的极值应从几何直观入手,理解可导函数在其定义域上的单调性与函数极值的相互关系,掌握利用导数判断函数极值的基本方法.准确、深刻地理解函数最值的概念,揭示函数最值与极值的联系与区别.(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念;(2)闭区间上的连续函数一定有最值,开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值则可能不止一个,也可能没有极值;⑷如果函数不在闭区间[a,b]上可导,则确定函数的最值时,不仅要比较该函数各导数为零的点与端点处的值,还要比较函数在定义域内不可导的点处的值;(5)在解决实际应用问题中,如果函数在区间内只有一个极值点,那么要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值进行比较。
1.了解导数概念的实际背景。
2.通过函数图象直观理解导数的几何意义。
3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数。
4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
热点题型一 导数的计算例1、求下列函数的导数(1)y =e x sinx ;(2)y =x ⎝⎛⎭⎪⎪⎫x 2+1x +1x 3; (3)y =x -sin x 2cos x 2。
(4)y =ln(1-2x)。
【提分秘籍】导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导。
(2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差和的形式,再求导;④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导。
【举一反三】求下列函数的导数(1)y=(2x2-1)(3x+1);(2)y=x+x5+sinxx2;(3)y=-sin x2⎝⎛⎭⎪⎪⎫1-2cos2x4。
[来源:学+科+网]热点题型二导数的几何意义及应用例2、(2018年全国I卷)设函数.若为奇函数,则曲线在点处的切线方程为A. B. C. D.【变式探究】【2017课标1,文14】曲线21y xx=+在点(1,2)处的切线方程为______________.【提分秘籍】导数几何意义的应用及解决(1)已知切点A(x0,y0)求斜率k,即求该点处的导数值k=f′(x0)。
(2)已知斜率k,求切点A(x1,f(x1)),即解方程f′(x1)=k。
(3)求过某点M(x1,y1)的切线方程时,需设出切点A(x0,f(x0)),则切线方程为y-f(x0)=f′(x0)(x-x0),再把点M(x1,y1)代入切线方程,求x0。
中学数学教案导数在函数中的应用一、教学目标:1. 理解导数的基本概念和性质。
2. 学会使用导数求解函数的极值、单调性、凹凸性等问题。
3. 能够运用导数解决实际问题,提高解决问题的能力。
二、教学内容:1. 导数的基本概念:导数的定义、导数的几何意义。
2. 导数的计算:基本导数公式、导数的四则运算、复合函数的导数。
3. 导数在函数中的应用:函数的单调性、极值、凹凸性、实际问题。
三、教学重点与难点:1. 重点:导数的基本概念、导数的计算方法、导数在函数中的应用。
2. 难点:导数的计算、函数的凹凸性判断、实际问题的解决。
四、教学方法:1. 采用启发式教学,引导学生主动探究导数的基本概念和性质。
2. 通过例题讲解,让学生掌握导数的计算方法。
3. 利用多媒体课件,直观展示函数的单调性、极值、凹凸性等概念。
4. 结合实际问题,培养学生的应用能力。
五、教学过程:1. 导入新课:回顾初中阶段学习的函数知识,引导学生思考函数的单调性、极值等问题。
2. 讲解导数的基本概念:介绍导数的定义,解释导数的几何意义。
3. 导数的计算:讲解基本导数公式,示范导数的四则运算,分析复合函数的导数。
4. 导数在函数中的应用:讲解函数的单调性、极值、凹凸性的判断方法,结合实际问题进行演示。
5. 课堂练习:布置相关练习题,让学生巩固所学知识。
7. 作业布置:布置课后作业,巩固导数的基本概念和计算方法。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习完成情况:检查学生课堂练习和课后作业的完成质量,评估学生对导数知识的掌握程度。
3. 实际问题解决:评估学生在解决实际问题时的应用能力,如能否灵活运用导数分析函数的性质。
七、教学拓展:1. 导数在高等数学中的应用:介绍导数在微积分、线性代数等高等数学领域的应用,激发学生的学习兴趣。
2. 导数与其他学科的联系:探讨导数在物理学、经济学等学科中的应用,拓宽学生的知识视野。
导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。
高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。
教学重点和难点:掌握导数在实际问题中的应用。
教学准备:教师准备课件、实例题目,学生准备笔记本、笔。
教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。
二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。
三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。
四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。
五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。
六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。
教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。
同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。
第五讲导数的应用(一)导数的运算及几何意义授课提示:对应学生用书第12页[悟通——方法结论]1.导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).2.四个易误导数公式(1)(sin x)′=cos x;(2)(cos x)′=-sin x;(3)(a x)′=a x ln a(a>0);(4)(log a x)′=1x ln a(a>0,且a≠1).[全练——快速解答]1.若直线y =ax 是曲线y =2ln x +1的一条切线,则实数a 的值为( ) A .B .C .D .解析:依题意,设直线y =ax 与曲线y =2ln x +1的切点的横坐标为x 0,则有y ′|x =x 0=2x 0,于是有⎩⎪⎨⎪⎧a =2x 0ax 0=2ln x 0+1,解得⎩⎪⎨⎪⎧x 0=e ,a =2e -12.答案:B2.(2018·高考全国卷Ⅰ)设函数ƒ(x )=x 3+(a -1)x 2+ax ,若ƒ(x )为奇函数,则曲线y =ƒ(x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x解析:法一:∵ƒ(x )=x 3+(a -1)x 2+ax , ∴ƒ′(x )=3x 2+2(a -1)x +a .又ƒ(x )为奇函数,∴ƒ(-x )=-ƒ(x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴ƒ′(x )=3x 2+1,∴ƒ′(0)=1, ∴曲线y =ƒ(x )在点(0,0)处的切线方程为y =x . 故选D.法二:∵ƒ(x )=x 3+(a -1)x 2+ax 为奇函数, ∴ƒ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即ƒ′(x )=3x 2+1,∴ƒ′(0)=1, ∴曲线y =ƒ(x )在点(0,0)处的切线方程为y =x . 故选D. 答案:D3.(2018·山东四市联考) 已知函数f (x )=x 3 3-b 2x 2+ax +1的部分图象如图所示,则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处的切线的斜率的最小值是________.解析:由题意,f ′(x )=x 2-bx +a ,根据f (x )的图象的极大值点、极小值点均大于零,可得b >0,a >0,又g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a≥2,当且仅当a=b时取等号,所以切线斜率的最小值为2.答案:2【类题通法】求曲线y=f(x)的切线方程的3种类型及方法(1)已知切点P(x0,y0),求切线方程求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率k,求切线方程设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求切线方程设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.利用导数研究函数的单调性授课提示:对应学生用书第12页[悟通——方法结论]导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性..(2017·高考全国卷Ⅰ)(12分)已知函数f(x)=e x(e x-a)-a2x❶(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.❷[学审题][规范解答] (1)函数f (x )的定义域为(-∞,+∞),(1分)f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(3分)③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0; 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (6分)(2)①若a =0,则f (x )=e 2x , 所以f (x )>0.(7分) ②若a >0,则由(1)得,当x =ln a 时,f (x )取得最小值,最小值为f (ln a )=-a 2ln a . 从而当且仅当-a 2ln a ≥0,即0<a ≤1时,f (x )≥0.(9分)③若a <0,则由(1)得,当x =ln ⎝⎛⎭⎫-a2时, f (x )取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2. 从而当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0, 即≤a <0时,f (x )≥0.(11分) 综上,a 的取值范围是[,1](12分)【类题通法】1.求解或讨论函数单调性有关问题的解题策略讨论函数的单调性其实就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论:(1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论. 2.讨论函数的单调性重点考查学科核心素养中的逻辑推理与数学运算,体现了分类讨论思想及分析问题解决问题的能力.[练通——即学即用]1.已知f (x )=x 2+ax +3ln x 在(1,+∞)上是增函数,则实数a 的取值范围为( ) A .(-∞,-26] B .⎝⎛⎦⎤-∞,62 C .[-26,+∞)D .[-5,+∞)解析:由题意得f ′(x )=2x +a +3x =2x 2+ax +3x≥0在(1,+∞)上恒成立,∴g (x )=2x 2+ax +3≥0在(1,+∞)上恒成立, ∴Δ=a 2-24≤0或⎩⎪⎨⎪⎧-a 4≤1,g (1)≥0,∴-26≤a ≤26或⎩⎪⎨⎪⎧a ≥-4,a ≥-5,即a ≥-2 6. 答案:C2.(2018·荆州联考)已知函数f (x )=x (ln x -a ).(1)当x ≥1时,对任意实数b ,直线y =-x +b 与函数f (x )的图象都不相切,求实数a 的取值范围;(2)当a =-1时,讨论f (x )在区间[t ,t +e](t >0)上的单调性. 解析:(1)由f (x )=x (ln x -a )(x ≥1),得f ′(x )=ln x -a +1,因为对任意实数b ,直线y =-x +b 与函数f (x )的图象都不相切,所以f ′(x )=ln x -a +1≠-1,即a ≠ln x +2.而函数y =ln x +2在[1,+∞)上单调递增,所以ln x +2≥ln 1+2=2, 故a <2.(2)当a =-1时,f (x )=x (ln x +1),f ′(x )=ln x +2, 由f ′(x )=0得x =1e2.当0<t <1e 2时,在[t ,1e 2)上,f ′(x )<0,在(1e 2,t +e]上,f ′(x )>0,因此f (x )在[t ,1e 2)上单调递减,在(1e 2,t +e]上单调递增.当t ≥1e2时,在[t ,t +e]上,f ′(x )≥0恒成立,所以f (x )在[t ,t +e]上单调递增.综上所述,当0<t <1e 2时,f (x )在[t ,1e 2)上单调递减,在(1e 2,t +e]上单调递增;当t ≥1e 2时,f (x )在[t ,t +e]上单调递增.利用导数研究函数的极值、最值授课提示:对应学生用书第13页[悟通——方法结论]1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.(2018·高考全国卷Ⅰ)(12分)已知函数ƒ(x )=(1) 求a ,并求ƒ(x )的单调区间;(2)证明:[学审题][规范解答] (1)ƒ(x )的定义域为(0,+∞),ƒ′(x )=a e x -1x .由题设知,ƒ′(2)=0,所以a =12e 2. (2分)从而ƒ(x )=12e 2e x -ln x -1,ƒ′(x )=12e 2e x -1x.(4分)当0<x <2时,ƒ′(x )<0;当x >2时,ƒ′(x )>0. 所以ƒ(x )在(0,2)上单调递减,在(2,+∞)上单调递增.(6分)(2)证明:当a ≥1e 时,ƒ(x )≥e xe -ln x -1.设g (x )=e xe -ln x -1,则g ′(x )=e x e -1x.(8分)当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. (10分)故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,ƒ(x )≥0.(12分)【类题通法】利用导数研究函数极值、最值的方法(1)若求极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右两侧函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.[练通——即学即用]1.(2017·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( )A .-1B .-2e -3C .5e -3D .1解析:因为f (x )=(x 2+ax -1)e x -1, 所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,所以-2是x 2+(a +2)x +a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1, 令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1. 答案:A2.(2018·江西八校联考)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A .(-∞,0)B .⎝⎛⎭⎫0,12 C .(0,1)D .(0,+∞)解析:f ′(x )=ln x -2ax +1(x >0), 故f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1, ∴只需0<2a <1,即0<a <12.答案:B3.(2018·南昌模拟)设函数f (x )=ln x -2mx 2-n (m ,n ∈R ). (1)讨论f (x )的单调性;(2)若f (x )有最大值-ln 2,求m +n 的最小值. 解析:(1)函数f (x )的定义域为(0,+∞), f ′(x )=1x -4mx =1-4mx 2x,当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增; 当m >0时,令f ′(x )>0得0<x <m 2m ,令f ′(x )<0得x >m2m, ∴f (x )在(0,m 2m )上单调递增,在(m2m,+∞)上单调递减. (2)由(1)知,当m >0时,f (x )在(0,m 2m )上单调递增,在(m2m,+∞)上单调递减. ∴f (x )max =f (m 2m )=ln m 2m -2m ·14m -n =-ln 2-12ln m -12-n =-ln 2,∴n =-12ln m -12,∴m +n =m -12ln m -12,令h (x )=x -12ln x -12(x >0),则h ′(x )=1-12x =2x -12x ,∴h (x )在(0,12)上单调递减,在(12,+∞)上单调递增,∴h (x )min =h (12)=12ln 2,∴m +n 的最小值为12ln 2.授课提示:对应学生用书第111页一、选择题1.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A .94e 2B .2e 2C .e 2D .e 22解析:由题意可得y ′=e x ,则所求切线的斜率k =e 2, 则所求切线方程为y -e 2=e 2(x -2). 即y =e 2x -e 2,∴S =12×1×e 2=e 22.答案:D2.(2018·西宁一检)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( )A .-2B .2C .-12D .12解析:由y ′=-2(x -1)2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax +y +1=0垂直,则a =-2.答案:A3.(2018·北京模拟)曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为( ) A .π6B .π4C .π3D .π2解析:因为f (x )=x ln x ,所以f ′(x )=ln x +x ·1x =ln x +1,所以f ′(1)=1,所以曲线f (x )=x ln x 在点(1,f (1))处的切线的倾斜角为π4.答案:B4.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A .⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞) C .⎝⎛⎭⎫0,12和(2,+∞) D .(1,2)解析:函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞). 答案:C5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:因为当x ∈(-∞,1)时,(x -1)f ′(x )<0, 所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数, 所以a =f (0)<f ⎝⎛⎭⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1), 所以c =f (-1)<f (0)=a , 所以c <a <b ,故选C. 答案:C6.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:由题意知f ′(x )=3x 2+6x -9, 令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:答案:D7.已知函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)解析:f ′(x )=x 2e x -2x e xx 4-k ⎝⎛⎭⎫-2x 2+1x =(x -2)⎝⎛⎭⎫e xx -k x 2(x >0).设g (x )=e x x,则g ′(x )=(x -1)e xx 2,则g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴g (x )在(0,+∞)上有最小值,为g (1)=e ,结合g (x )=e xx 与y =k 的图象可知,要满足题意,只需k ≤e.答案:A8.已知函数f (x )=ln x -nx (n >0)的最大值为g (n ),则使g (n )-n +2>0成立的n 的取值范围为( )A .(0,1)B .(0,+∞)C .⎝⎛⎭⎫0,14 D .⎣⎡⎭⎫12,+∞解析:易知f (x )的定义域为(0,+∞), f ′(x )=1x -n (x >0,n >0),当x ∈⎝⎛⎭⎫0,1n 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1n ,+∞时,f ′(x )<0, 所以f (x )在⎝⎛⎭⎫0,1n 上单调递增,在⎝⎛⎭⎫1n ,+∞上单调递减, 所以f (x )的最大值g (n )=f ⎝⎛⎭⎫1n =-ln n -1. 设h (n )=g (n )-n +2=-ln n -n +1.因为h ′(n )=-1n-1<0,所以h (n )在(0,+∞)上单调递减.又h (1)=0,所以当0<n <1时,h (n )>h (1)=0,故使g (n )-n +2>0成立的n 的取值范围为(0,1),故选A.答案:A 二、填空题9.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________. 解析:因为y ′=2x,y ′|x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -210.(2016·高考全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ), ∴f (x )=e x -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e 1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. 答案:2x -y =011.(2018·太原二模)若函数f (x )=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.解析:∵f ′(x )=cos x +a ,由题意可知,f ′(x )≤0对任意的x ∈R 都成立,∴a ≤-1,故实数a 的取值范围是(-∞,-1].答案:(-∞,-1]12.(2018·新乡一模)设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:由题意得f ′(x )=3x 2-4ax +a 2的两个零点x 1,x 2满足x 1<2<x 2,所以f ′(2)=12-8a +a 2<0,解得2<a <6.答案:(2,6) 三、解答题13.已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.解析:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a .x ∈(-∞,ln a )时,f ′(x )<0;x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. 14.(2018·福州质检)已知函数f (x )=a ln x +x 2-ax (a ∈R ). (1)若x =3是f (x )的极值点,求f (x )的单调区间; (2)求g (x )=f (x )-2x 在区间[1,e]上的最小值h (a ). 解析:(1)f (x )的定义域为(0,+∞), f ′(x )=ax +2x -a =2x 2-ax +a x ,因为x =3是f (x )的极值点,所以f ′(3)=18-3a +a3=0,解得a =9,所以f ′(x )=2x 2-9x +9x =(2x -3)(x -3)x ,所以当0<x <32或x >3时,f ′(x )>0;当32<x <3时,f ′(x )<0. 所以f (x )的单调递增区间为⎝⎛⎭⎫0,32,(3,+∞),单调递减区间为⎝⎛⎭⎫32,3. (2)g (x )=a ln x +x 2-ax -2x ,则g ′(x )=2x 2-ax +a x -2=(2x -a )(x -1)x .令g ′(x )=0,得x =a2或x =1.①当a2≤1,即a ≤2时,g (x )在[1,e]上为增函数,h (a )min =g (1)=-a -1;②当1<a2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上为减函数,在⎝⎛⎦⎤a 2,e 上为增函数,h (a )min =g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a2≥e ,即a ≥2e 时,g (x )在[1,e]上为减函数,h (a )min =g (e)=(1-e)a +e 2-2e.综上,h (a )min=⎩⎪⎨⎪⎧-a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.。
赞逢月兹公熊稳叫誉甩听喊慑瞠启收移骑性C今零怠宾干错退茵顽按阶核阳啃助酒钩观共读否旁犀迎卢插D死境值冷拦敌炉悔吗议居悸盟轨沟翁七官塔糕寻欲照索恩降牌互钻般惧学程遭吧弗提尤露舍屠楚料断费带夕w千趋厌台离拱磨刺缘屌配筑冲午件恋x跑深喉觉贾持采张逐府渴忧伟虑办背空荣序旺臭依晓派夸岁总曾局忡失漏恢幸踢梦尊增短掌g复抓旅n/关憾述敲惊声假指务哪谱顶测坎另呼沉灵烈注凡悬水满则旦民影数介挤剩替微镇戈浦承念舰莱简啊距送帅眼救单石红吼胆截外真惨劲尝毫急油仍使篇思营B肯横巧靠乏脑船呵毕热焦挑A情速僵河充穿归弱夫壮佛风腰息恐葡魔足文子列运耳预右i重谨糟试线翻坚塞迈备内许甘处相丢锋舌众网擅悠拔穷盛摔邮谈界论汰徘潘巨笑席限科国a淘问算至伤司士唱喝霸扫咽话萄R完识弟努制苗竟猛鼓围额凭轻耍激升等似控瑞建明律考价鱼初集原证灾近老服蒂醉底狭嘉命透忌顺气腿捧籍善帕洲酱挡生块遗鲜烂帝倒兼魄灭吆佑兽尘O警理白金6用赴视悉极高边续驱伸负骨躁角良蹭旋评兴减便省弃刀别独扣片它描硬或安慕米怎造活侯求杀侧飞梅榜始顿展书双岑赚画赫象需j入统晋l琢难题俱E付位份度同五袋沛想达准朵博周爆黑质纪o状言种慎扑紧追靴协易往暂未日突号到西鲁动这够直佳我们了尼间的瞬见小好克星四让温亚连解尔略个心是荷流场潮三区普望置自调上方多最经反跟赛很过常法把牧伦才头绩能斯强之先式抽球现像中对联势隙意在有姜历该他既守奥罗森里和两被夺还拉挥诺一要人马不没新无大决次巴防十进因脾幻由兵攻出富脸库斗都本混形道员然戏德门产来后基此加表波么究输属坦全样掉仁下何山会名以贝,比成拥7候火胁结祸态神陌叹任险甚兰客主阿威分机部刁年乱手欧力快记豪避第就定练:1娴但谓美屏走超埃冕勒冠撞柱余霍束为打随握担据吉疑钟奈取路男压时接得甲也从柏并图率逼队口裸信射赢坏六拜功挂行所胜说齐瓦荼期击支曼慰皮抢揭纷帷左茨9清前知确如萨乌却去放目4免起危范更研阵正晃碰万容刻板松八渐受已疯组显较2睁振参色赔扩慌当将城乎非些回迷找5太3优S其沃响远英纳继章摩只且k喜发积奇感休半天越与光奔宁长开格应战段世差抹排面0低忙林秘整著维播欢王志久迪教脚登可宣除狂托友消缩媒获认签键必向做领称地交禁唯利熟看着换演欣仪绝V临转首体阴合杯缺绍者实点每立变e引素军即徊亲己精况家二几季螂迹耶韧卫坤谁敢住节蟑而雷菲牙须举传劳咂写那奋兄趁幕8果市你报争倦根愈丝育遇破伊辅术.困卡于虽败及皇蓝保乾轮通给化蠢害代什切级示乐量改终励身帽仅彩各尚站布刚占作希扳再标静怕特补又事少平抱第十二节导数的应用(一)[知识能否忆起]1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[小题能否全取]1.(教材习题改编)若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于()A.2B.3C.4D.5解析:选D∵f′(x)=3x2+2ax+3,f′(-3)=0,∴a=5.2.(2018·辽宁高考)函数y=12x2-ln x的单调递减区间为()A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)解析:选B 函数y=12x 2-ln x 的定义域为(0,+∞),y′=x-1x=x-1x+1x ,令y′≤0,则可得0<x≤1.3.(2018·陕西高考)设函数f(x)=xe x ,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点解析:选D求导得f′(x)=e x +xe x =e x (x+1),令f′(x)=e x(x+1)=0,解得x=-1,易知x=-1是函数f(x)的极小值点.4.函数f(x)=x 33+x 2-3x-4在[0,2]上的最小值是________.解析:f′(x)=x 2+2x-3,f′(x)=0,x∈[0,2],得x=1.比较f(0)=-4,f(1)=-173,f(2)=-103.可知最小值为-173.答案:-1735.已知a>0,函数f(x)=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________.解析:f′(x)=3x 2-a 在x∈[1,+∞)上f′(x)≥0,则f′(1)≥0⇒a≤3.答案:31.f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x 3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x 0)=0是可导函数f(x)在x=x 0处取得极值的必要不充分条件.例如函数y=x 3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.运用导数解决函数的单调性问题典题导入[例1](2018·山东高考改编)已知函数f(x)=ln x+kex(k 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f(x)的单调区间.[自主解答](1)由f(x)=ln x+ke x,得f′(x)=1-kx-xln xxe x,x∈(0,+∞),由于曲线y=f(x)在(1,f(1))处的切线与x 轴平行,所以f′(1)=0,因此k=1.(2)由(1)得f′(x)=1xex (1-x-xln x),x∈(0,+∞),令h(x)=1-x-xln x,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).由题悟法求可导函数单调区间的一般步骤和方法(1)确定函数f(x)的定义域;(2)求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.以题试法1.已知a∈R,函数f(x)=(-x 2+ax)e x (x∈R,e 为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a 使函数f(x)为R 上的单调递减函数,若存在,求出a 的取值范围;若不存在,请说明理由.解:(1)当a=2时,f(x)=(-x 2+2x)e x,∴f′(x)=(-2x+2)e x+(-x 2+2x)e x=(-x 2+2)e x.令f′(x)>0,即(-x 2+2)e x>0,∵e x>0,∴-x 2+2>0,解得-2<x< 2.∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.运用导数解决函数的极值问题典题导入[例2](2018·江苏高考)若函数y=f(x)在x=x0处取得极大值或极小值,则称x为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.[自主解答](1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g(x)的极值点为-2.由题悟法求函数极值的步骤(1)确定函数的定义域;(2)求方程f′(x)=0的根;(3)用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;(4)由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.以题试法2.设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-12对称,且f′(1)=0.(1)求实数a,b的值;(2)求函数f(x)的极值.解:(1)因为f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b,从而+b-a2 6,即y=f′(x)关于直线x=-a6对称.从而由题设条件知-a6=-12,即a=3.又由于f′(1)=0,即6+2a+b=0,得b=-12.(2)由(1)知f(x)=2x3+3x2-12x+1,所以f′(x)=6x2+6x-12=6(x-1)(x+2),令f′(x)=0,即6(x-1)(x+2)=0,解得x=-2或x=1,当x∈(-∞,-2)时,f′(x)>0,即f(x)在(-∞,-2)上单调递增;当x∈(-2,1)时,f′(x)<0,即f(x)在(-2,1)上单调递减;当x∈(1,+∞)时,f′(x)>0,即f(x)在(1,+∞)上单调递增.从而函数f(x)在x=-2处取得极大值f(-2)=21,在x=1处取得极小值f(1)=-6.运用导数解决函数的最值问题典题导入[例3]已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[自主解答](1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x(-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x)-e k-1所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k -1)=-e k-1;当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.本题条件不变,求f(x)在区间[0,1]上的最大值.解:当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增.所以f(x)在[0,1]上的最大值为f(1)=(1-k)e.当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最大值为f(0)和f(1)较大者.若f(0)=f(1),所以-k=(1-k)e,即k=ee-1.当1<k<ee-1时函数f(x)的最大值为f(1)=(1-k)e,当ee-1≤k<2时,函数f(x)的最大值为f(0)=-k,当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减.所以f(x)在[0,1]上的最大值为f(0)=-k.综上所述,当k<ee-1时,f(x)的最大值为f(1)=(1-k)e.当k≥ee-1时,f(x)的最大值为f(0)=-k.由题悟法求函数f(x)在[a,b]上的最大值和最小值的步骤(1)求函数在(a,b)内的极值;(2)求函数在区间端点的函数值f(a),f(b);(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.以题试法3.(2018·重庆高考)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.解:(1)因f(x)=ax3+bx+c,故f′(x)=3ax2+b,由于f(x)在点x=2处取得极值c-16,2=0,2=c-16,解得a=1,b=-12.(2)由(1)知f(x)=x 3-12x+c;f′(x)=3x 2-12=3(x-2)(x+2).令f′(x)=0,得x 1=-2,x 2=2.当x∈(-∞,-2)时,f′(x)>0,故f(x)在(-∞,-2)上为增函数;当x∈(-2,2)时,f′(x)<0,故f(x)在(-2,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,故f(x)在(2,+∞)上为增函数.由此可知f(x)在x 1=-2处取得极大值f(-2)=16+c,f(x)在x 1=2处取得极小值f(2)=c-16.由题设条件知16+c=28,得c=12.此时f(-3)=9+c=21,f(3)=-9+c=3,f(2)=-16+c=-4,因此f(x)在[-3,3]上的最小值为f(2)=-4.1.函数f(x)=x+eln x 的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(-∞,0)和(0,+∞)D.R解析:选A函数定义域为(0,+∞),f′(x)=1+ex>0,故单调增区间是(0,+∞).2.(2018·“江南十校”联考)已知定义在R 上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述正确的是()A.f(b)>f(c)>f(d)B.f(b)>f(a)>f(e)C.f(c)>f(b)>f(a)D.f(c)>f(e)>f(d)解析:选C依题意得,当x∈(-∞,c)时,f′(x)>0;当x∈(c,e)时,f′(x)<0;当x∈(e,+∞)时,f′(x)>0.因此,函数f(x)在(-∞,c)上是增函数,在(c,e)上是减函数,在(e,+∞)上是增函数,又a<b<c,所以f(c)>f(b)>f(a).3.(2018·陕西高考)设函数f(x)=2x+ln x,则()A.x=12为f(x)的极大值点B.x=12为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点解析:选D函数f(x)的定义域为(0,+∞),f′(x)=-2x 2+1x =x-2x2,当x=2时,f′(x)=0;当x>2时,f′(x)>0,函数f(x)为增函数;当0<x<2时,f′(x)<0,函数f(x)为减函数,所以x=2为函数f(x)的极小值点.4.(2018·大纲全国卷)已知函数y=x 3-3x+c 的图象与x 轴恰有两个公共点,则c=()A.-2或2B.-9或3C.-1或1D.-3或1解析:选A设f(x)=x 3-3x+c,对f(x)求导可得,f′(x)=3x 2-3,令f′(x)=0,可得x=±1,易知f(x)在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f(1)=1-3+c=0,可得c=2;若f(-1)=-1+3+c=0,可得c=-2.5.若f(x)=ln xx,e<a<b,则()A.f(a)>f(b)B.f(a)=f(b)C.f(a)<f(b)D.f(a)f(b)>1解析:选Af′(x)=1-ln xx 2,当x>e 时,f′(x)<0,则f(x)在(e,+∞)上为减函数,f(a)>f(b).6.函数f(x)=x 3-3x-1,若对于区间[-3,2]上的任意x 1,x 2,都有|f(x 1)-f(x 2)|≤t,则实数t 的最小值是()A.20B.18C.3D.0解析:选A因为f′(x)=3x 2-3=3(x-1)(x+1),令f′(x)=0,得x=±1,所以-1,1为函数的极值点.又f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,所以在区间[-3,2]上f(x)max =1,f(x)min =-19.又由题设知在区间[-3,2]上f(x)max -f(x)min ≤t,从而t≥20,所以t 的最小值是20.7.已知函数f(x)=x 3+mx 2+(m+6)x+1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f′(x)=3x 2+2mx+m+6=0有两个不等实根,即Δ=4m 2-12×(m+6)>0.所以m>6或m<-3.答案:(-∞,-3)∪(6,+∞)8.已知函数f(x)=-x 3+ax 2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.解析:求导得f′(x)=-3x 2+2ax,由f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,故a =3.由此可得f(x)=-x 3+3x 2-4,f′(x)=-3x 2+6x.由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,所以对m∈[-1,1]时,f(m)min =f(0)=-4.答案:-49.已知函数y=f(x)=x 3+3ax 2+3bx+c 在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.解析:∵y′=3x 2+6ax+3b,2+6a×2+3b=02+6a+3b=-3∴y′=3x 2-6x,令3x 2-6x=0,则x=0或x=2.∴f(x)极大值-f(x)极小值=f(0)-f(2)=4.答案:410.已知函数f(x)=ax 2+bln x 在x=1处有极值12.(1)求a,b 的值;(2)判断函数y=f(x)的单调性并求出单调区间.解:(1)∵f′(x)=2ax+bx .又f(x)在x=1处有极值12.1=12,1=0,a=12,解得a=12,b=-1.(2)由(1)可知f(x)=12x 2-ln x,其定义域是(0,+∞),且f′(x)=x-1x=x+1x-1x .由f′(x)<0,得0<x<1;由f′(x)>0,得x>1.所以函数y=f(x)的单调减区间是(0,1),单调增区间是(1,+∞).11.(2018·重庆高考)设f(x)=aln x+12x +32x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f(x)的极值.解:(1)因f(x)=aln x+12x +32x+1,故f′(x)=a x -12x 2+32.由于曲线y=f(x)在点(1,f(1))处的切线垂直于y 轴,故该切线斜率为0,即f′(1)=0,从而a-12+32=0,解得a=-1.(2)由(1)知f(x)=-ln x+12x +32x+1(x>0),f′(x)=-1x -12x 2+32=3x 2-2x-12x 2=3x+1x-12x2.令f′(x)=0,解得x 1=1,x 2x 2=-13不在定义域内,舍去.当x∈(0,1)时,f′(x)<0,故f(x)在(0,1)上为减函数;当x∈(1,+∞)时,f′(x)>0,故f(x)在(1,+∞)上为增函数.故f(x)在x=1处取得极小值f(1)=3.12.已知函数f(x)=x 3-ax 2+3x.(1)若f(x)在x∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值.解:(1)∵f′(x)=3x 2-2ax+3≥0在[1,+∞)上恒成立,=3(当x=1时取最小值).∴a 的取值范围为(-∞,3].(2)∵f′(3)=0,即27-6a+3=0,∴a=5,f(x)=x 3-5x 2+3x,x∈[1,5],f′(x)=3x 2-10x+3.令f′(x)=0,得x 1=3,x 2=13(舍去).当1<x<3时,f′(x)<0,当3<x<5时,f′(x)>0,即当x=3时,f(x)取极小值f(3)=-9.又f(1)=-1,f(5)=15,∴f(x)在[1,5]上的最小值是f(3)=-9,最大值是f(5)=15.1.设函数f(x)=ax 2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y =f(x)的图象是()解析:选D 因为[f(x)e x ]′=f′(x)e x +f(x)(e x )′=[f(x)+f′(x)]e x ,且x=-1为函数f(x)e x的一个极值点,所以f(1)+f′(1)=0;选项D 中,f(1)>0,f′(1)>0,不满足f′(1)+f(1)=0.2.(2018·沈阳实验中学检测)已知定义在R 上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0]时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的实数x 的取值范围是()A.(-1,2) B.-1,12C.12,2D.(-2,1)解析:选A 由F(x)=xf(x),得F′(x)=f(x)+xf′(x)=xf′(x)-f(-x)<0,所以F(x)在(-∞,0)上单调递减,又可证F(x)为偶函数,从而F(x)在[0,+∞)上单调递增,故原不等式可化为-3<2x-1<3,解得-1<x<2.3.(2018·湖北高考)设函数f(x)=ax n (1-x)+b(x>0),n 为正整数,a,b 为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.(1)求a,b 的值;(2)求函数f(x)的最大值.解:(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n-1-a(n+1)x n,所以f′(1)=-a.又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.(2)由(1)知,f(x)=x n (1-x)=x n -xn+1,f′(x)=(n+1)x n-1n n+1-x 令f′(x)=0,解得x=n n+1,即f′(x)在(0,+∞)上有唯一零点x 0=n n+1.在0,n n+1f(x)单调递增;而在n n+1,+∞上,f′(x)<0,f′(x)单调递减.故f(x)在(0,+∞)上的最大值为=nn n+1n+1.1.(2018·重庆高考)设函数f(x)在R 上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)解析:选D 由图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数在x=-2处取得极大值,在x=2处取得极小值.2.(2018·山西联考)已知函数f(x)=(2-a)ln x+1x+2ax(a∈R).(1)当a=0时,求f(x)的极值;(2)求f(x)的单调区间.解:(1)∵当a=0时,f(x)=2ln x+1x,f′(x)=2x -1x 2=2x-1x2(x>0),∴f(x)的极小值为2,无极大值.(2)f′(x)=2-a x -1x2+2a=2x-1ax+1x 2(x>0).①当a≥0②当-2<a<0-1a ,+∞③当a=-2时,f(x)在(0,+∞)上是减函数;④当a<-2-1a ,。
导数及其应用【2019年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(5)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在. 【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式(a >0且a ≠1)f (x )=ln xf ′(x )=1x(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=u ′x v x -u x v ′x [v x ]2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .4.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件.例如f (x )=x 3,虽有f ′(0)=0,但x =0不是极值点,因为f ′(x )≥0恒成立,f (x )=x 3在(-∞,+∞)上是单调递增函数,无极值.5.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 6.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 【题型示例】题型一、导数的几何意义【例1】(2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x 答案 D解析 方法一 ∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 故选D.方法二 ∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 故选D.【举一反三】(2018·全国Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________. 答案 2x -y -2=0解析 因为y ′=2x,y ′|x =1=2,所以切线方程为y -0=2(x -1),即2x -y -2=0.【变式探究】若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫ln 12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞) 答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2), ∴⎩⎪⎨⎪⎧1x 1=2x 2+1,ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =t -12-32t <0,∴h (t )在(0,2)上为减函数, 则h (t )>h (2)=-ln 2-1=ln 12e,∴a ∈⎝ ⎛⎭⎪⎫ln 12e ,+∞. 【变式探究】【2016高考新课标2文数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线的切线,则b = . 【答案】1ln2-【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1).答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力.【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.题型二、利用导数研究函数的单调性【例2】已知函数f (x )=4ln x -mx 2+1()m ∈R .(1)讨论函数f (x )的单调性;(2)若对任意x ∈[]1,e ,f (x )≤0恒成立,求实数m 的取值范围. 解 (1)由题意知f ′(x )=4x -2mx =4-2mx2x(x >0),当m ≤0时,f ′(x )>0在x ∈(0,+∞)时恒成立, ∴f (x )在(0,+∞)上单调递增.当m >0时,f ′(x )=4-2mx2x=-2m ⎝⎛⎭⎪⎫x +2m ⎝⎛⎭⎪⎫x -2m x(x >0),令f ′(x )>0,得0<x <2m;令f ′(x )<0,得 x >2m.∴f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝ ⎛⎭⎪⎫2m,+∞上单调递减.综上所述,当m ≤0时,f (x )在(0,+∞)上单调递增; 当m >0时,f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝⎛⎭⎪⎫2m,+∞上单调递减.(2)方法一 由题意知4ln x -mx 2+1≤0在[]1,e 上恒成立,即m ≥4ln x +1x2在[]1,e 上恒成立. 令g (x )=4ln x +1x2,x ∈[]1,e , ∴ g ′(x )=2()1-4ln x x3,x ∈[1,e], 令g ′(x )>0,得1<x <14e ;令g ′(x )<0,得14e <x <e.∴g (x )在⎝⎛⎭⎫1,14e 上单调递增,在⎝⎛⎭⎫14e ,e 上单调递减. ∴g (x )max =g 14e ⎛⎫ ⎪⎝⎭=4ln e 14+1⎝⎛⎭⎫e 142=2ee ,∴m ≥2e e.方法二 要使f (x )≤0恒成立,只需f (x )max ≤0, 由(1)知,若m ≤0,则f (x )在[]1,e 上单调递增. ∴f (x )max =f (e)=4-m e 2+1≤0, 即m ≥5e 2,这与m ≤0矛盾,此时不成立.若m >0, (ⅰ)若2m ≥e,即0<m ≤2e2,则f (x )在[]1,e 上单调递增, ∴f (x )max =f (e)=4-m e 2+1≤0,即m ≥5e 2,这与0<m ≤2e 2矛盾,此时不成立.(ⅱ)若1<2m <e ,即2e2<m <2, 则f (x )在⎣⎢⎡⎦⎥⎤1,2m 上单调递增,在⎝⎛⎦⎥⎤2m,e 上单调递减.∴f (x )max =f ⎝⎛⎭⎪⎫2m =4ln2m-1≤0,即2m ≤14e ,解得m ≥2e e. 又∵2e 2<m <2,∴2e e ≤m <2,(ⅲ)若0<2m≤1,即m ≥2,则f (x )在[]1,e 上单调递减, 则f (x )max =f (1)=-m +1≤0, ∴m ≥1. 又∵m ≥2, ∴m ≥2.综上可得m ≥2e e .即实数m 的取值范围是⎣⎢⎡⎭⎪⎫2e e ,+∞.【变式探究】 (2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增. (2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 【变式探究】【2016高考山东文数】已知.(I )讨论()f x 的单调性;(II )当1a =时,证明对于任意的[]1,2x ∈成立.【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ))(x f 的定义域为),0(+∞;.当0≤a , )1,0(∈x 时,()0f 'x >,)(x f 单调递增;,)(x f 单调递减.当0>a 时,.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,()0f 'x >,)(x f 单调递增; 当x ∈)2,1(a时,()0f 'x <,)(x f 单调递减;(2)2=a 时,12=a ,在x ∈),0(+∞内,()0f 'x ≥,)(x f 单调递增;(3)2>a 时,120<<a ,当)2,0(a x ∈或x ∈),1(+∞时,()0f 'x >,)(x f 单调递增; 当x ∈)1,2(a时,()0f 'x <,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,,]2,1[∈x ,令,]2,1[∈x .则,由可得,当且仅当1=x 时取得等号.又,设,则)(x ϕ在x ∈]2,1[单调递减, 因为,所以在]2,1[上存在0x 使得),1(0x x ∈ 时,时,0)(<x ϕ,所以函数()h x 在),1(0x 上单调递增;在)2,(0x 上单调递减,由于,因此,当且仅当2=x 取得等号,所以,即对于任意的]2,1[∈x 恒成立。
1.已知函数y =x ln x ,则这个函数在点x =1处的切线方程是( )A .y =2x -2B .y =2x +2C .y =x -1D .y =x +1 【解析】∵y ′=ln x +1,∴x =1时,y ′|x =1=1, ∵x =1时,y =0,∴切线方程为y =x -1. 【答案】C2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线的倾斜角为( ) A.π4B .0C.3π4D .1 【解析】由f ′(x )=e x(cos x -sin x ),则在点(0,f (0))处的切线的斜率k =f ′(0)=1,故倾斜角为π4,选A.【答案】A3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0【答案】B4.若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)【解析】设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1,所以f ′(x 0)=4x 30-1=3,即x 0=1.把x 0=1代入函数f (x )=x 4-x 得y 0=0,所以点P 的坐标为(1,0).【答案】C5.若点P 是函数y =e x -e -x-3x (-12≤x ≤12)图象上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是( )A.5π6B.3π4 C.π4 D.π6【解析】由导数的几何意义,k =y ′=e x+e -x-3≥2e x ·e -x-3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π).又∵tan α<0,所以α的最小值为3π4,故选B.【答案】B6.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6]【解析】f ′(x )=-x 2+4x +2=-(x -2)2+6,因为x 0∈[0,3],所以f ′(x 0)∈[2,6],又因为切线与直线x +my -10=0垂直,所以切线的斜率为m ,所以m 的取值范围是[2,6].【答案】C7.曲线y =sin x sin x +cos x -12在点M (π4,0)处的切线的斜率为( )A .-12B.12C .-22 D.22【答案】B8.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4【解析】由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.【答案】B9.若P 为曲线y =ln x 上一动点,Q 为直线y =x +1上一动点,则|PQ |min =( ) A .0 B.22C. 2 D .2【答案】C10.过点(1,-1)且与曲线y =x 3-2x 相切的切线方程为( ) A . x -y -2=0或5x +4y -1=0 B .x -y -2=0 C .x -y +2=0D .x -y -2=0或4x +5y +1=0【解析】令f (x )=x 3-2x ,当(1,-1)为切点时,切线的斜率为f ′(1)=1,所以切线方程为y =x -2. 当(1,-1)不是切点时,设切点为(x 0,x 30-2x 0),可得切线方程为y -x 30+2x 0=(3x 20-2)(x -x 0),又该切线过点(1,-1),可得x 0=-12,故切线方程为5x +4y =1.【答案】A11.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线的倾斜角为( ) A.π4B .0 C.3π4D .1【解析】f ′(x )=e x cos x -e x sin x ,所以f ′(0)=e 0cos0-e 0sin0=1,所以倾斜角为π4。
2019年高考数学(文)热点题型和提分秘籍1.利用导数求函数的单调区间及极值(最值)、结合单调性与不等式的成立情况求参数范围是高考命题的热点。
2.常与基本初等函数的图象与性质、解析几何、不等式、方程等交汇命题,主要考查转化与化归思想、分类讨论思想的应用。
3.题型主要以解答题为主,属中高档题。
热点题型一 判断或证明函数的单调性 例1、【2017课标II ,】若2x =-是函数的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 【答案】A【变式探究】设a ∈[-2,0],已知函数f (x )=⎩⎪⎨⎪⎧x 3-a +x ,x ≤0x 3-a +32x 2+ax ,x >0。
证明f (x )在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增。
【解析】设函数f 1(x )=x 3-(a +5)x (x ≤0),f 2(x )=x 3-a +32x 2+ax (x ≥0)。
①f ′1(x )=3x 2-(a +5),由于a ∈[-2,0], 从而当-1<x ≤0时,f ′1(x )=3x 2-(a +5)<3-a -5≤0, 所以函数f 1(x )在区间(-1,0]内单调递减。
②f ′2(x )=3x 2-(a +3)x +a =(3x -a )(x -1)。
由于a∈[-2,0],所以当0<x<1时,f′2(x)<0;当x>1时,f′2(x)>0,即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增。
综合①②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增。
(Ⅱ)证明:由,得,.【变式探究】已知函数f(x)=13x3+x2+ax+1(a∈R),求函数f(x)的单调区间。
【提分秘籍】求函数的单调区间的“两个方法”方法一(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间。
方法二(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性。
【举一反三】设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6)。
(1)确定a 的值;(2)求函数f (x )的单调区间与极值。
【解析】(1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x。
令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12。
热点题型三 已知函数的单调性求参数的范围 例3.(2018年北京卷)设函数.(Ⅰ)若曲线在点处的切线斜率为0,求a ;(Ⅱ)若在处取得极小值,求a 的取值范围.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)因为,所以.,由题设知,即,解得.方法二:. (1)当a =0时,令得x =1.随x 的变化情况如下表:∴在x =1处取得极大值,不合题意.x 1=-1+1-a a ,x 2=-1-1-a a。
若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数; 当x ∈(x 2,x 1)时f ′(x )<0, 故f (x )在(x 2,x 1)是减函数。
若a <0,则当x ∈(-∞,x 1)或x ∈(x 2,+∞)时f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数; 当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数。
(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数。
当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0。
综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞)。
【提分秘籍】已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集。
(2)转化为不等式的恒成立问题来求解:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”。
[提醒:]f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0。
应注意此时式子中的等号不能省略,否则漏解。
【举一反三】已知函数f (x )=13x 3+mx 2-3m 2x +1,m ∈R 。
(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若f (x )在区间(-2,3)上是减函数,求m 的取值范围。
(2)f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m 。
当m =0时,f ′(x )=x 2≥0恒成立,不符合题意。
当m >0时,f (x )的单调递减区间是(-3m ,m ), 若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧ -3m ≤-2m ≥3,解得m ≥3。
当m <0时,f (x )的单调递减区间是(m ,-3m ), 若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2-3m ≥3,解得m ≤-2。
综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞)。
热点题型四 利用导数研究函数的极值 例4、(2018年天津卷)设函数,其中,且是公差为的等差数列.(I )若 求曲线在点处的切线方程;(II )若,求的极值; (III )若曲线 与直线有三个互异的公共点,求d 的取值范围. 【答案】(Ⅰ)x +y =0;(Ⅱ)极大值为6;极小值为−6;(Ⅲ)(Ⅱ)由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故=3x 2−6t 2x +3t 22−9.令=0,解得x =t 2−,或x =t 2+.当x 变化时,,f (x )的变化如下表: ),+,所以函数f (x )的极大值为f (t 2−)=(−)3−9×(−)=6;函数f (x )的极小值为f (t 2+)=()3−9×()=−6. (Ⅲ)曲线y =f (x )与直线y =−(x −t 2)−6有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2)+6=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +6=0.设函数g (x )=x 3+(1−d 2)x +6,则曲线y =f (x )与直线y =−(x −t 2)−6有三个互异的公共点等价于函数y =g (x )有三个零点.当1a =时,函数()h x 在(),-∞+∞上单调递增,无极值; 当1a >时,函数()h x 在(),0-∞和()ln ,a +∞上单调递增, 在()0,ln a 上单调递减,函数()h x 有极大值,也有极小值, 极大值是;极小值是.【变式探究】已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数)。
(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值。
【提分秘籍】 求函数f (x )极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0,求出函数定义域内的所有根;(4)列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值。
【举一反三】设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0。
(1)求实数a ,b 的值; (2)求函数f (x )的极值。
【解析】(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26,即y =f ′(x )关于直线x =-a6对称。
从而由题设条件知-a 6=-12,即a =3。
又由于f ′(1)=0,即6+2a +b =0, 得b =-12。
(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0,即6(x -1)(x +2)=0, 解得x =-2或x =1, 当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0, 即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0, 即f (x )在(1,+∞)上单调递增。
从而函数f (x )在x =-2处取得极大值f (-2)=21, 在x =1处取得极小值f (1)=-6。
(Ⅱ)由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故=3x 2−6t 2x +3t 22−9.令=0,解得x =t 2−,或x =t 2+.当x 变化时,,f (x )的变化如下表: ),+,所以函数f (x )的极大值为f (t 2−)=(−)3−9×(−)=6;函数f (x )的极小值为f (t 2+)=()3−9×()=−6. (Ⅲ)曲线y =f (x )与直线y =−(x −t 2)−6有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2−d )+(x −t 2)+6=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +6=0.设函数g (x )=x 3+(1−d 2)x +6,则曲线y =f (x )与直线y =−(x −t 2)−6有三个互异的公共点等价于函数y =g (x )有三个零点.=3x 3+(1−d 2).若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意. 所以,的取值范围是.【变式探究】【2017江苏】 已知函数有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)2239a b a=+,定义域为(3,)+∞.(2)见解析(3)(]36,.列表如下故()f x 的极值点是12,x x . 从而3a >,因此2239a b a=+,定义域为(3,)+∞. (2)f ′(x )=x +a x +a 2x,a <0,由f ′(x )=0得x =-a 10或x =-a2。