世纪之交谈物理学发展的方向
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
世界物理发展史世界物理学的发展是人类科学史上的重要一环,它深刻地影响了人类对世界的认知和科技进步。
本文将简要介绍世界物理学发展的历程,重点涵盖了古代、中世纪、近代和现代等不同时期的重要进展。
古代物理学的发展可以追溯到古希腊时期,该时期的许多学者对物质和自然现象进行了独立思考和实证研究。
其中,古希腊著名的哲学家和科学家亚里士多德提出了许多物理学理论,包括他的运动学和四元素理论。
亚里士多德的理论主张地心说,即认为地球是宇宙中心,其他天体则绕地球旋转。
这种观点在接下来的数个世纪中占据了主导地位,直至哥白尼提出地日运动说。
中世纪物理学的发展受到了宗教的影响,虽然有一些重要进展,但整体上停滞不前。
其中最著名的一位物理学家是英国的威廉·奥卡姆(William of Ockham),他提出了奥卡姆剃刀原则,强调通过简单的假设来解释自然现象。
此外,中世纪期间的穆斯林学者也在物理学领域做出了重要贡献,他们对光学、力学和声学等进行了研究。
近代物理学的发展始于16世纪末,这一时期的突破性进展来自于科学革命的推动。
伽利略·伽利雷是近代物理学的奠基人之一,他提出了天体运动的数学描述,并通过实验研究力学和重力等问题。
伽利略的工作为后来的牛顿力学奠定了基础。
同时,著名的科学家爱尔兰牧师罗伯特·博义提出了反对亚里士多德的地心说的地日运动说,这一理论后来得到了哥白尼的支持。
17世纪末到18世纪是物理学发展的黄金时期,牛顿在这一时期提出了经典力学的三大定律和万有引力定律,为后来的科学发展奠定了基础。
同时,光学领域也取得了重大突破,如伽利略眼镜的发明和托马斯·杨的波动光理论等。
20世纪是物理学史上最激动人心的时期之一,相对论和量子力学的提出给物理学带来了革命性的变化。
爱因斯坦的相对论理论改变了我们对时空的理解,并以其狭义相对论和广义相对论的理论提出了质能方程E=mc²。
与此同时,量子力学的诞生也完全颠覆了我们对微观世界的认知,通过波粒二象性解释了微观粒子的行为。
世纪之交谈物理学发展的方向世纪之交谈物理学开展的方向:回忆了物理学开展的历史,讨论了二十一世纪物理学开展的方向。
以为二十一世纪物理学将在三个方向上继续开展:〔1〕在微观方向上深化下去;〔2〕在微观方向上拓展开去;〔3〕深化探求各层次间的联络,进一步开展非线性迷信。
能够应该从两方面去探寻现代物理学革命的打破口:〔1〕发现客观世界中的四种力以外的其他力;〔2〕经过审思相对论和量子力学的实际基础的不完善性,重新定义时间、空间,树立新的实际。
二十世纪行将结,二十一世纪即未来临,二十世纪是光芒绚烂的一个世纪,是个类社会开展最迅速的一个世纪,是迷信技术开展最迅速的一个世纪,也是物理学开展最迅速的一个世纪。
在这一百年中发作了物理学革命,树立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。
在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃开展,发生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深入的看法,物理学实际到达了一个新高度,现代物理学到达了成熟的阶段。
在此世纪之交的时分,人们自然想展望一下二十一世纪物理学的开展前景,探求今后物理学开展的方向。
我想谈一谈我对这个效果的一些看法和观念。
首先,我们来回忆一下上一个世纪之交物理学开展的状况,把以后的状况与一百年前的状况作比拟关于探求二十一世纪物理学开展的方向是很有协助的。
一、历史的回忆十九世纪末二十世纪初,经典物物学的各个分支学科均开展到了完善、成熟的阶段,随着热力学和统计力学的树立以及麦克斯韦电磁场实际的树立,经典物理学到达了它的高峰,事先人们以系统的方式描画出一幅物理世界的明晰、完整的图画,简直能完美地解释一切曾经观察到的物理现象。
由于经典物理学的庞大成就,事先不少物理学家发生了这样一种思想:以为物理学的大厦曾经建成,物理学的开展基本上曾经完成,人们对物理世界的解释曾经到达了终点。
物理学的一些基本的、原那么的效果都曾经处置,剩上去的只是进一步准确化的效果,即在一些细节上作一些补充和修正,使公式中的各个常数测得更准确一些。
物理学发展简史物理学是一门探索自然界基本规律和物质性质的科学。
它的发展可以追溯到古代,随着时间的推移,物理学经历了许多重要的里程碑和突破。
本文将为您呈现物理学发展的简史。
1. 古代物理学古代物理学起源于古希腊时期,最早的物理学思想可以追溯到毕达哥拉斯学派。
毕达哥拉斯学派认为世界是由数学规律构成的,他们的研究重点是几何学和数学。
此外,亚里士多德也对物理学做出了重要贡献,他提出了天体运动的观点,并将物质分为四个元素:地、水、火、气。
2. 文艺复兴时期文艺复兴时期是物理学发展的重要阶段。
尼古拉·哥白尼提出了地心说的反对者——日心说,认为地球绕太阳运动。
这一观点对物理学和天文学产生了深远的影响。
同时,伽利略·伽利莱通过实验和观察,提出了自由落体定律和斜面上物体滑动的规律,奠定了现代物理学实验方法的基础。
3. 经典物理学时期经典物理学时期是物理学发展的黄金时代。
伊萨克·牛顿的《自然哲学的数学原理》是经典物理学的里程碑之一。
牛顿提出了万有引力定律和运动定律,解释了行星运动、物体运动和力的关系。
此外,光的波动性也是经典物理学时期的重要研究领域,光的波动性理论由克里斯蒂安·惠更斯和托马斯·杨提出。
4. 20世纪的物理学革命20世纪是物理学发展的革命性时期,许多重要的理论和发现改变了我们对自然界的理解。
阿尔伯特·爱因斯坦提出了相对论,揭示了时间和空间的相互关系,同时提出了质能等效原理,即著名的E=mc²公式。
量子力学的发展也是20世纪物理学的重要里程碑,尤其是马克斯·波恩和埃尔温·薛定谔的工作。
量子力学描述了微观世界的行为,解释了原子和分子的结构和性质。
5. 当代物理学当代物理学继续推动着科学的边界。
粒子物理学的发展揭示了基本粒子的性质和相互作用,如标准模型理论。
宇宙学也成为物理学研究的热点,我们对宇宙的起源、演化和结构有了更深入的了解。
世纪之交物理学的几个活跃领域和发展趋势来源一、21世纪物理学的几个活跃领域蒸蒸日上的凝聚态物理学自从80年代中期发现了所谓高临界温度超导体以来,世界上对这种应用潜力很大的新材料的研究热情和乐观情绪此起彼伏,时断时续。
这种新材料能在液氮温区下传导电流而没有阻抗。
高临界温度超导材料的研究仍是今后凝聚态物理学中活跃的领域之一。
目前,许多国家的科学工作者仍在争分夺秒,继续进行竞争,向更高温区,甚至室温温区超导材料的研究和应用努力。
可以预计,这个势头今后也不会减弱,此外,高临界温度的超导材料的机械性能、韧性强度和加工成材工艺也需进一步提高和解决。
科学家们预测,21世纪初,这些技术问题可以得到解决并将有广泛的应用前景,有可能会引起一场新的工业革命。
超导电机、超导磁悬浮列车、超导船、超导计算机等将会面向市场,届时,世界超导材料市场可望达到2000亿美元。
由不同材料的薄膜交替组成的超晶格材料可望成为新一代的微电子、光电子材料。
超晶格材料诞生于20世纪70年代末,在短短不到30年的时间内,已逐步揭示出其微观机制和物理图像。
目前已利用半导体超晶格材料研制成许多新器件,它可以在原子尺度上对半导体的组分掺杂进行人工“设计”,从而可以研究一般半导体中根本不存在的物理现象,并将固态电子器件的应用推向一个新阶段。
但目前对于其他类型的超晶格材料的制备尚需做进一步的努力。
一些科学家预测,下一代的电子器件可能会被微结构器件替代,从而可能会带来一场电子工业的革命。
微结构物理的研究还有许多新的物理现象有待于揭示。
21世纪可能会硕果累累,它的前景不可低估。
近年来,两种与磁阻有关的引起人们强烈兴趣的现象就是所谓的巨磁阻和超巨磁阻现象。
一般磁阻是物质的电阻率在磁场中会发生轻微的变化,而巨磁和超巨磁可以是几倍或数千倍的变化。
超巨磁现象中令人吃惊的是,在很强的磁场中某些绝缘体会突变为导体,这种原因尚不清楚,就像高临界温度超导材料超导性的原因难以捉摸一样。
叙述十九世纪末物理学三大发现的时间、人物和历史意义。
学院:专业:学号:姓名:日期:论述19世纪末物理学三大发现对物理学发展的意义19世纪末,物理学上出现了三大发现,即X射线、放射性和电子。
这些新发现猛烈地冲击了道尔顿关于原子不可分割的观念,从而打开了原子和原子核内部结构的大门,揭露了微观世界中更深层次的奥秘。
1895年11月8日到12月28日,德国物理学家伦琴在研究阴极射线时,发现了具有惊人贯穿能力的X射线。
19世纪末,阴极射线是物理学研究课题,许多物理实验室都开展了这方面的研究。
1984年11月8日,伦琴将阴极射线管放在一个黑纸袋中,关闭了实验室灯源,他发现当开启放电线圈电源时,一块涂有氰亚铂酸钡的荧光屏发出荧光。
用一本厚书,2-3厘米夺取的木板或几厘米厚的硬橡胶插在放电管和荧光屏之间,仍能看到荧光。
他又用盛有水、二硫化碳或其他液体进行实验,实验结果表明它们也是“透明的”,铜、银、金、铂、铝等金属也能让这种射线透过,只要它们不太厚。
伦琴意识到这可能是某种特殊的从来没有观察到的射线,它具有特别强的穿透力。
他一连许多天将自己关在实验室里,集中全部精力进行彻底研究。
6个星期后,伦琴确认这的确是一种新的射线。
1895年12月22日,伦琴和他夫人拍下了第一张X射线照片。
天然放射性的发现与X 射线的发现直接相关。
1895 年末,伦琴发现X 射线后,把他的论文的预印本和一些X 射线照片分别寄给了欧洲各国著名的物理学家,其中包括法国科学家庞加莱。
在1896 年1 月20 日的法国科学院每周例会上,庞加莱展示了伦琴的论文和照片,立即引起了贝克勒耳的极大兴趣。
了解到X 射线是从管子正对着阴极的区域也就是玻璃管壁发出荧光的区域发出的,贝克勒耳提出了这样的猜测:X 射线和荧光之间可能存在着某种联系,能够发出荧光的物质可能同时也可以发出X射线。
1896年,法国物理学家贝克勒尔在研究铀盐的实验中,首先发现了铀原子核的天然放射性。
附:物理学史和物理思想方法(一)高中物理的重要物理学史1.力学部分(1)经典力学的发展①1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快)。
伽利略通过斜面实验“冲淡”重力,对落体运动的研究,确立了描述运动的基本概念,创造了一套科学方法“观察—假设—数学推理”。
这些方法的核心是:把实验和逻辑推理(包括数学演算)和谐地结合起来,从而发展了人类的科学思维方式和科学研究方法。
②17世纪,伽利略通过构思的理想实验指出,在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去,得出结论:力是改变物体运动状态的原因。
推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国数学家和物理学家笛卡儿进一步指出,如果运动的物体没有受到力的作用,它将继续以同一速度沿着同一条直线运动,既不会停下来,也不会偏离原来的方向。
③1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
④20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
(2)天体运动规律的发现①人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是该观点的代表人物;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
②17世纪,德国天文学家开普勒在第谷的观测数据的基础上提出行星运动的三大定律。
③牛顿于1687年正式发表万有引力定律;100多年后英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了万有引力常量。
④英国剑桥大学学生亚当斯和法国天文学家勒维耶各自独立地应用万有引力定律,计算出海王星的轨道。
1846年9月23日,德国的伽勒在勒维耶预言的位置附近发现了海王星。
2.电磁学部分(1)1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
现代物理学的发展与演化之路现代物理学通常是指二十世纪初开始发展起来的物理学,包括相对论,量子力学,原子和原子核物理学,粒子物理学等,是物理学的一个重要组成部分。
它彻底改变了人们以往的时空观,使人们对这个世界有了新的认识,也大大地改变了人们的生活方式。
在21世纪,物理学将进一步获得迅速发展,物理学仍将是整个自然科学的基础,物理学的进展仍是推动整个自然科学发展的一个最重要的动力。
十九世纪末二十世纪初,经典物理学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。
由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。
物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。
首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。
其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。
这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。
由此引起了物理学的一场伟大的革命。
爱因斯坦创立了相对论;海森堡、薛定谔等一群科学家创立了量子力学。
现代物理学诞生了!现代物理学革命的最主要成果是由爱因期坦的相对论和由普朗克,玻尔奠基,德布罗意,薛定谔,海森堡,狄拉克等建立的量子力学,发现高速领域和微观领域内新的物质运动规律,揭示了物质和运动以及它们同时间,空间等物质存在形式的有机联系,揭示了微观世界中波动性和微粒性,连续性和间断性,必然性和偶然性之间的辩证关系。
物理学发展简史物理学作为自然科学的一门重要学科,涉及了物质的结构、性质、运动以及与能量和力的关系等方面的研究。
本文将为您介绍物理学发展的历史,从古代至现代,概括了物理学的重要里程碑和贡献。
古代物理学的起源可以追溯到古希腊时期,其中最重要的贡献者之一是亚里士多德。
他提出了天体运动的理论,并通过观察和推理,建立了一套天体物理学的基本框架。
另一位重要的古希腊物理学家是阿基米德,他研究了浮力和杠杆原理,这对于后来力学的发展起到了重要的推动作用。
在中世纪,欧洲的物理学研究受到了宗教和哲学的限制,科学发展相对缓慢。
然而,伽利略·伽利莱的实验和观察为物理学的现代发展奠定了基础。
他通过实验验证了自由落体定律和斜面上物体滑动的规律,提出了相对运动的概念,这些成果对力学和运动学的发展产生了深远的影响。
17世纪是物理学史上的一个重要时期,被称为科学革命的时代。
伽利略的观点和理论在当时引起了广泛的关注,而伊萨克·牛顿则在力学和引力理论方面取得了突破性的成果。
牛顿的经典力学成为了物理学的基石,他的三大定律和万有引力定律为后来的科学家提供了重要的指导。
18世纪是实验物理学的时代。
许多科学家开始进行各种实验,以验证和拓展牛顿的理论。
其中最著名的实验物理学家之一是迈克尔·法拉第,他研究了电磁感应和电磁场的概念,奠定了电磁学的基础。
此外,拉普拉斯、亥姆霍兹和开普勒等科学家的工作也对物理学的发展产生了重要的影响。
19世纪是物理学的快速发展时期,涌现出了许多重要的理论和发现。
詹姆斯·克拉克·麦克斯韦提出了电磁场理论,将电磁学和光学联系在一起,开创了电磁理论的新纪元。
此外,热力学和统计物理学的发展也是这个时期的重要成就,卡诺和博尔兹曼等科学家为热力学的基本原理提供了解释。
20世纪是物理学的革命性时期,涌现了许多重要的理论和发现,包括相对论、量子力学和核物理学等。
爱因斯坦的相对论理论彻底改变了物理学的观念,提出了时间和空间的相对性,揭示了质能等价原理。
世纪之交谈物理学发展的方向摘要回顾了物理学发展的历史,讨论了二十一世纪物理学发展的方向。
认为二十一世纪物理学将在三个方向上继续发展1在微观方向上深入下去;2在宏观方向上拓展开去;3深入探索各层次间的联系,进一步发展非线性科学。
可能应该从两方面去探寻现代物理学革命的突破口1发现客观世界中已知的四种力以外的其他力;2通过审思相对论和量子力学的理论基础的不完善性,重新定义时间、空间,建立新的理论。
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。
在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。
在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。
我想谈一谈我对这个问题的一些看法和观点。
首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。
由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。
物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
从诺贝尔物理学奖历届获奖研究方向中总结近百年来物理学科的发展方向诺贝尔物理学奖是根据瑞典化学家诺贝尔遗嘱所设的系列奖项之一,也是举世瞩目的最高科学大奖,是科学家们最梦想得到的奖项。
诺贝尔物理学奖的颁发已经持续一百余年了。
这一百余年正是现代物理学大发展的时期。
诺贝尔物理学奖包括了物理学的许多重大研究成果,遍及现代物理学的各个主要领域。
一百多年来的颁奖显示了现代物理学发展的轨迹。
可以说,诺贝尔物理学奖显示了现代物理学伟大成就的缩影,折射出了现代物理学的发展脉络。
诺贝尔物理学奖的颁发体现了物理学新成果的社会价值和历史价值,对科学进步有举足轻重的影响。
(注:摘自郭奕玲沈慧君《物理学史》)下面,我们把一百多年来历届诺贝尔物理学奖跟物理学的发展联系起来,把从1901年开始到1976年分为三个25年,也就是三个时代,从1777年到至今称为第四个时代,从这四个时代的诺贝尔得主的研究方向总结归纳出现代物理的发展轨迹及方向。
在第一个25年里,是一个从理论物理过度到量子物理的重要时期。
这一时期中,X射线的研究起到了十分重要的作用,首届诺贝尔物理学奖授予伦琴就是由于他发现了X射线,正是这一发现拉开了现代物理学革命的序幕。
X射线的发现和随后和放射性和电子的发现以及作为其起因的阴极射线的研究相继在1902年、1903年、1905年、1906年被授予诺贝尔物理学奖。
贝克勒尔和居里夫妇对放射性的工作获得了1903年的诺贝尔物理学奖,这些工作再加上卢瑟福对α射线的研究,使人们认识到以前被看成大概是没有结构的原子实际上包含了非常小而又非常紧凑的核。
人们还发现,有些原子核不稳定,会发射α,β等辐射。
在当时这可以说是一种革命性的简介,后来和物理学其他领域的并行工作一起,导致了创立第一章有用的原子结构图像。
X射线的研究,特别是X射线光谱学的研究,为原子结构提供了详细的信息,为此劳厄、亨利布拉格和劳伦斯布拉格、巴拉克以及曼妮西格班相继于1914年、1915年、1917年、1924年获得了诺贝尔物理学奖。
世纪之交谈物理学发展的方向
摘要:回顾了物理学发展的历史,讨论了二十一世纪物理学发展的方向。
认为二十一世纪物理学将在三个方向上继续发展:在微观方向上深入下去;在宏观方向上拓展开去;深入探索各层次间的联系,进一步发展非线性科学。
可能应该从两方面去探寻现代物理学革命的突破口:发现客观世界中已知的四种力以外的其他力;通过审思相对论和量子力学的理论基础的不完善性,重新定义时间、空间,建立新的理论。
二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。
在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。
在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。
在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。
我想谈一谈我对这个问题的一些看法和观点。
首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。
一、历史的回顾十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。
由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。
物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。
首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。
其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。
[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。
由此引起了物理学的一场伟大的革命。
爱因斯坦创立了相对论;海林堡、薛定谔等一群
科学家创立了量子力学。
现代物理学诞生了!把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。
在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。
人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。
可以说,现代物理学的大厦已经建成。
在这一点上,目前有情况与上一个世纪之交的情况很相似。
因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。
然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。
另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。
在这方面,目前的情况与上一个世纪之交的情况不同。
在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。
因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。
在这方面,目前的情况与上一个世纪之交的情况不同。
在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。
因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。
客观物质世界是分层次的。
一般说来,每个层次中的体系都由大量的小体系构成。
从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。
物质世界从微观到宏观分成很多层次。
物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。
回顾二十世纪物理学的发展,是在三个方向上前进的。
在二十一世纪,物理学也将在这三个方向上继续向前发展。
1)在微观方向上深入下去。
在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。
今后可能会有新的进展。
但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。
2)在宏观方向上拓展开去。
1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。
1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。
八十年代以后,英国的霍金[2,3] 等人开始论述
宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。
从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。
我个人对于近年来提出的宇宙创生学说是不太信的,并且认为”大爆炸”理论只是对宇宙的一个近似的描述。
因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。
现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。
3)深入探索各层次间的联系。
这正是统
计物理学研究的主要内容。
二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。
近年来把这些分支学科都纳入非线性科学的范畴。
相信在二十一世纪非线性科学的发展有广阔的前景。
上述的物理学的发展依然现代物理学现有的基本理论的框架内。
在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。
在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。
爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4] ,但是他努力探索了三十年,最终没有成功。
我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。
且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。
因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。
无数相对的真理之总和,就是绝对的真理。
”“人们在实践中对于真理的认识也就永远没有完结。
”[5]
现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:1)客观世界可能不是只有四种力。
第五、第六……种
力究竟何在呢?现在我们不知道。
我的直觉是:将来最早发现的第五种力[1] [2] [3] 下一页。