单相SPWM逆变器并联解耦控制策略
- 格式:doc
- 大小:666.50 KB
- 文档页数:21
逆变器并联系统的控制策略研究逆变器并联系统的控制策略研究主要涉及逆变器的运行控制和并联系统的协调控制两个方面。
逆变器的运行控制策略研究主要包括以下几个方面:1. PWM控制策略:通过调节逆变器的开关频率和占空比实现输出电压的控制,常用的控制策略有Carrier-Based PWM、Space Vector PWM等。
2. 控制模式选择:逆变器可以采用直流电流控制、直流电压控制或者交流电流控制等多种控制模式。
不同的控制模式适用于不同的应用场景,需要根据具体要求选择合适的控制模式。
3. 控制方式选择:逆变器的控制方式可以采用闭环控制或者开环控制,闭环控制可以提高系统的稳定性和动态性能,但增加了系统的复杂性和成本。
4. 多电平逆变控制策略:多电平逆变控制策略可以通过增加逆变器的电平数来提高输出波形质量,降低谐波含量,常用的控制策略有多电平对称调制、多电平与合成等。
并联系统的协调控制策略研究主要包括以下几个方面:1. 功率分配策略:在并联系统中,各逆变器的功率分配对于系统的正常运行至关重要。
常用的功率分配策略有平均负载功率法、功率最大电流法、功率分配比例法等。
2. 电流共享控制策略:并联系统中的逆变器需要实现电流共享,即各逆变器的输出电流要保持一致。
常用的电流共享控制策略有主从控制、自适应控制等。
3. 故障容错控制策略:并联系统中的任何一个逆变器出现故障都会对整个系统产生影响,因此需要具备故障容错的能力。
常见的故障容错控制策略有失效检测与切换、故障恢复等。
4. 智能化控制策略:随着智能化技术的发展,可以利用人工智能、模糊控制、神经网络等方法对并联系统进行智能化控制,提高系统的性能和稳定性。
以上是逆变器并联系统控制策略研究的一些主要内容,研究人员可以根据具体需求选择合适的策略进行研究。
592016年/第三十四期/十二月(上)一种基于SPWM 的逆变电源并联运行参数设计及控制策略仿真关冠晖傅伟豪(武汉大学电气工程学院湖北・武汉430072)摘要一种逆变电路采用IGBT 桥,逆变方式为SPWM ,两个逆变电源并联运行。
该电源采用LC 滤波器,主要滤除高次谐波。
逆变电源采用压瞬时值反馈单环PID 控制,改善输出波形质量。
该并联逆变电源在Matlab 的Simulink 组件中模拟,分别测试分析了带动线性负载动态均流效果和非线性负载静态均流效果。
关键词逆变电源SPWM并联运行PID 控制中图分类号:TM743文献标识码:ADOI:10.16400/ki.kjdks.2016.12.027Parameter Design and Control Strategy Simulation ofParallel Operation of Inverter Based on SPWMGUAN Guanhui,FU Weihao(School of Electrical Engineering,Wuhan University,Wuhan,Hubei 430072)Abstract An inverter circuit uses IGBT bridge,the inverter mode is SPWM,and the two inverters are connected in parallel.The power supply using LC filter,mainly to filter out high.The inverter is controlled by the instantaneous value feedback loop PID,which improves the quality of the output waveform.The parallel inverter is simulated in the Simulink component of Mat-lab,and it is tested and analyzed respectively to drive the dynamic current sharing effect of linear load and the effect of static load current of nonlinear load.Keywordsinverter power supply;SPWM;parallel operation;PID control1主电路参数设计与选型1.1直流电压,额定电流与IGBT 选型选择输出线电压有效值为380V+-5%,额定容量100kV A ,故选择直流电压、额定电流如下:U D =2202=311.1V(1.1)I==100=160.7A (1.2)本实验采用Universal Bridge 来实现IGBT (图1,2):图1Universal Bridge图示图2IGBT 参数1.2主电路设计与参数本三相四线电路采取SPWM 控制逆变电路,利用正弦波与三角波比较产生的反映正弦波特性的一系列不同宽度的脉冲,这些脉冲序列作为开启/关闭逆变桥开关器件的信号,使直流电压变为一系列周期性阶梯波,波形在电容的作用下得到近似正弦波的波形,并在输出滤波电路的作用下最终生成正弦波。
SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏会直接影响整个系统的逆变性能和带载能力。
逆变器的控制目标是提高逆变器输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。
在这些指标中对输出电压的THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。
文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外环和电压瞬时值内环进行控制。
针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。
通过仿真,验证了控制思路的正确性以及存该控制策略下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。
并以仿真为先导,将其思想移植到具体开发中,达到预期效果。
1 三电平逆变器单相控制模型的建立带LC 滤波器的单相逆变器的主电路结构如图1 所示。
图1 中L 为输出滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。
在建立控制系统的仿真模型时,需要采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所需要调节的值。
在此仿真模型中,驱动波形采用的是三电平的SPWM 波形,具体的产生原理在这不做详细描述。
在Matlah 的Simlink 库中SPWM 波的产生如图2 所示,这里调制比设为0.8.。
逆变电源并联技术的策略
以下是一些常见的逆变电源并联技术策略:
1. 下垂控制法:下垂控制法是一种基于输出功率的控制方法,它通过调整逆变电源的输出电压和频率,使其根据负载需求自动分配输出功率。
这种方法简单易行,但在负载变化较大时容易出现不稳定的情况。
2. 主从控制法:主从控制法是一种基于主从关系的控制方法,其中一个逆变电源作为主电源,其他逆变电源作为从电源。
主电源负责控制系统的输出电压和频率,从电源则根据主电源的指令进行调整。
这种方法可以提高系统的稳定性,但需要一个可靠的主电源。
3. 平均电流控制法:平均电流控制法是一种基于电流的控制方法,它通过控制每个逆变电源的输出电流,使其平均分配到各个负载上。
这种方法可以提高系统的效率,但需要对每个逆变电源进行独立的控制。
4. 分布式控制法:分布式控制法是一种基于分布式控制理论的控制方法,它将系统的控制任务分配到各个逆变电源上,通过相互协作来实现系统的稳定运行。
这种方法可以提高系统的可靠性和灵活性,但需要较高的控制算法和通信协议。
总之,逆变电源并联技术的策略需要根据具体的应用场景和需求来选择,以确保系统的稳定性、可靠性和效率。
SPWM逆变电源无互联信号线并联控制技术摘要:该文提出了一种可适用于分布式发电系统或大容量UPS系统的高性能数模混合型逆变电源无线并联控制方案。
这种控制技术以DSP为核心,通过检测逆变电源自身的输出功率来对高性能模拟SPWM逆变电源的电压幅值及频率进行下垂控制,从而实现了逆变电源的并联同步运行。
实验结果表明,逆变电源均分负载电流的效果很好,逆变电源之间的环流很小。
关键词:正弦脉宽调制逆变器;无线并联;均流引言逆变电源广泛应用于UPS等供电设备,多台SPWM逆变电源的并联运行可以扩大系统的容量,还可以组成并联冗余系统以提高系统的可靠性及可维护性[1],同时可以通过逆变电源的并联运行将分布式洁净能源组成分布式发电系统。
然而,SPWM逆变电源的并联运行相对的困难[2],因为所有并联运行的SPWM逆变电源必须同步运行,否则,各逆变电源之间将存在很大的环流,过大的环流会使逆变器的负担加重,发散的环流将使系统崩溃,导致供电中断。
SPWM逆变电源的并联运行控制方式一般分为集中控制、主从控制、分散逻辑控制和无互联线独立控制4种方案[2]。
在前3种控制方式中,各逆变电源之间存在较多的控制用互联信号线,且大容量的逆变电源并联时互连线的距离较远,干扰严重,尤其在分散式发电系统中,各逆变电源之间的距离在几百米甚至几公里以上,使得信号的传输变得复杂且降低了系统的可靠性,因此,这些控制方式不适合应用在分散式发电系统中。
目前,可并联使用的UPS逆变电源系统基本为前3种控制方式,国外只有几家公司生产无信号线并联控制的UPS 系统。
本文提出了一种高性能数模混合型逆变电源无线并联控制方案:数字均流外环控制高性能模拟逆变电源。
逆变电源为高性能SPWM逆变电源,其控制方式为采用PI调节器的带电容电流反馈的瞬时电压波形控制[3~5]。
它具有工作稳定,动态响应快,非线性负载适应能力强等特点,为实现高性能SPWM逆变电源无互联信号线并联奠定了基础。
2电工电气 (20 7 No.4)作者简介:王博超(1992- ),女,硕士研究生,研究方向为电力电子控制技术与仿真。
基于LC滤波器的单相SPWM逆变器双环控制设计王博超(东南大学 电气工程学院,江苏 南京 210096)摘 要:对基于LC 滤波器的单相SPWM 逆变器的双环控制进行了分析,得到了LC 滤波器在逆变器使用单极性倍频的调制方式下的参数设定,以此为基础对单相逆变器的双环控制方式进行了建模及电压环、电流环的参数确定。
利用MATLAB/Simulink 软件对该逆变器模型进行了线性负载的突加突减仿真与带非线性负载时开、闭环的谐波畸变率的对比仿真。
仿真结果表明,该种控制策略下逆变器具有较好的动态响应性能及较低的谐波畸变率。
关键词:SPWM 逆变器;LC 滤波器;双环控制中图分类号:TM464 文献标识码:A 文章编号:1007-3175(2017)04-0021-05Abstract: This paper analyzed the double loop control of sigle-phase sinusoidal pulse width modulation (SPWM) inverter based on the LC filter and obtained the parameters setting of the LC filter under the conditions that the inverter used the unipolarity frequency-doubled modula -tion mode. On the basis of this, this paper established the sigle-phase inverter model with double loop control mode and determined the pa -rameters of voltage loop and current loop. The Simulink in MA TLAB was used to carry out simulation of sharp increase and reduction for the linear load of the inverter model, comparing with the loop-opened or loop-locked harmonic distortion rate for the nonlinear load. The simulation results show that this kind of control strategy can obtain favorable dynamic response and low total harmonic distortion (THD). Key words: sinusoidal pulse width modulation inverter; LC filter; double loop controlWANG Bo-chao(School of Electrical Engineering, Southeast University, Nanjing 2 00 , China )Design of Double Loop Control in Single-Phase Sinusoidal Pulse WidthModulation Inverter Based on LC Filter0 引言近些年来,为了获得具有更高的供电质量以及供电稳定性的供电系统,高性能的SPWM 逆变电源的研究、开发及其应用受到了各方面的关注,而其中的瞬时控制方案则是最重要的部分之一。
英文资料原文来源: 出自JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA,VOL.7,NO.3, SEPTEMBER 2009Decoupling Control Strategy for Single Phase SPWM ParallelInvertersShun-Gang Xu,Jian-Ping Xu,and Tai-Qiang CaoAbstract: A decoupling control strategy of inverter parallel system is proposed based on the equivalent output impedance of single phase voltage source SPWM (sinusoidal pulse width modulation) inverter. The active power and reactive power are calculated in terms of output voltage and current of the inverter, and sent to the other inverters in the parallel system via controller area network(CAN)bus. By calculating and decoupling the circumfluence of the active power and reactive power, the inverters can share load current via the regulation of the reference-signal phase and amplitude.Experimental results of an 110V/2kV A inverter parallel system show the feasibility of the decoupling control strategy.Index Terms-CAN bus, current sharing, inverters, parallel operation.1. IntroductionParallel operation of inverters is an efficient way to enhance the capacity and reliability of inverter systems. The key issue of parallel operation is the distribution of the load current. In an inverter parallel system, the amplitudes and phases of output voltages of all inverters should strictly equal to each other to guarantee that each inverter shares the same load current. Otherwise, the current circumfluence and overload of some inverters in the inverter parallel system may exist. The current circumfluence may also decrease the efficiency and reliability of the inverter parallel system.There are various techniques for the control of inverter parallel operation. Among these techniques, central control and master-slave control are easy to implement and have good current-sharing performance. However, these two control strategies work at the cost ofsystem reliability because of conjunction operation among inverters.In instantaneous-current control of inverter parallel system, there is a current bus to share the current signal among inverters and the instantaneous circumfluence is used to regulate the output current, each inverter has good transient performance and the parallel system has good current sharing performance. However, its analog signal communication is easy to be disturbed and the signal isolation is complicated, which decrease the reliability of the parallel system.Independent control without interconnection droops the output voltage and frequency of inverters, the link among inverters is only via power lines. Thus fewer interconnections are needed and the reliability of inverter parallel systems is improved. Traditionally, this control strategy assumes the output impedance of inverters is mainly inductive due to high inductive component of the line impedance and the large inductor filter. Thus active power-frequency droop and reactive power-voltage droop schemes are adopted. However, this is not always true as the closed-loop output impedance also depends on the control strategy, and the line impedance is predominantly resistive for low voltage cabling. Thus, there is coupling relationship between output active/reactive power and frequency/amplitude of the output voltage. Traditional independence control may lead to instability of inverter parallel systems.In this paper, a decoupling control strategy for inverter parallel systems is proposed. The active power and reactive power of inverters in a parallel system are calculate by their corresponding output voltage and output current, and the output power information is shared by controller area network(CAN)bus communication. Then the active and reactive power circumfluence of each inverter is calculated and applied to regulate its corresponding output voltage and output frequency by decoupling of the power circumfluence, respectively. Thus, the proposed decoupling control strategy overcomes the disadvantages of inverter parallel systems controlled by independence control without intercommunication and instantaneous-current control. The inverter parallel system implemented by this strategy can achieve better current-sharing performance, good stability, and good reliability.2. Analysis of Single Phase PWM InverterDual closed-loop feedback control is usually adopted to control single phase inverters.Fig.1 shows a dual closed-loop feedback control scheme with an inductor-current inner loop and a capacitor voltage outer loop. The capacitor-voltage outer loop adopts proportion-integral control to regulate output voltage, where Pv k and Iv k are proportionalcoefficient and integral coefficient, respectively. The inductor-current inner loop uses proportional control to enhance the transient response of the inverter, Pi k is a proportionalcoefficient.In Fig.1,the power stage includes a full-bridge configuration and an L-C filter,in V is DC link voltage, 1s to 4s are power switches, L and C are filter inductor and capacitor,ref v is a sinusoidal reference voltage signal of the inverter,L r is the sum of inductor equivalent series resistance, switch on-resistance, and connection-line resistance. According to nonlinear control and feedback linearization theory, open-loop averaged output voltage can be characterized by2000002L L in d v d v d i LC r C v L r i V u dt dt dt〈〉〈〉〈〉++〈〉++〈〉=〈〉 (1) where x 〈〉means the average value of x over one switching cycle and u is the control variable, which can take the values 1,0,or-1,depending on the state of switches 1S ,2S ,3S and 4S .For the dual closed-loop feedback control inverter shown in Fig.1,the controller can be characterized by()()000Pv Iv in ref Pi k s k V u v v i Cs v k s +⎛⎫〈〉=-〈〉-〈〉-〈〉 ⎪⎝⎭(2) From (1) and (2) ,the dynamic characteristics of the closed-loop output voltage can be expressed in Laplace domain as()()()()()032203211Pv Pi Pi Iv ref L Pi Pv Pi Pi Iv L Pi L Pi Pv Pi Pi Iv k k s k k v v LCs r C k C s k k s k k Ls r k s i LCs r C k C s k k s k k +=+++++++-+++++ (3)The single phase dual closed-loop inverter can be modeled by two terminal equivalent circuits as00()()ref v G s v Z s i =- (4)()()32()1Pv Pi Pi Iv L Pi Pv Pi Pi Ivk k s k k G s LCs r C k C s k k s k k +=+++++ (5) ()()()232()1L Pi L Pi Pv Pi Pi IvLs r k s Z s LCs r C k C s k k s k k ++=+++++ (6)Fig.1.Block diagram of Single phase dual closed-loop inverter.Frequency (rad/sec)(a)Frequency (rad/sec)(b)Fig.2.Bode diagram of the voltage gain and the equivalent outputimpedance of the dual closed-loop inverter:(a)magnitude vs. frequency and(b)phase vs.frequency.Fig.3.Inverter equivalent circuit.where ()G s is the voltage gain and ()Z s is the equivalent output impedance. The bode diagram of ()G s and ()Z s are shown in Fig.2.From (6), we can know that the equivalent output impedance is closely related to the parameters of the output filter and the feedback control parameters. Let R be the resistive component and X the inductive component of equivalent impedance Z(s).The inverter equivalent circuit can be shown as Fig.3.When 500L H μ=, 10C F μ=, and 0.1L r =Ω,the relations between the impedance ratio R X and the control parameters Pv k ,Pi k , and Iv k are shown in Fig.4.Fig.4.Relations between the impedance ratio R/X and control parameters:(a)R/X vs.Pv k ,(b)R/X vs.Pi k ,and(c)R/X vs.Iv k .From Fig.4, the equivalent output impedance trends to be resistive when PI control parameter Pv k and Pi k are increasing, and trends to be inductive when PI control parameter Iv k is increasing. In the design of dual closed-loop single phase inverter, the PI control parameters must be chosen carefully as they affect both the transient characteristics of the inverter and the current sharing performance of the inverter parallel system.3. Analysis of Inverter Parallel SystemBased on above discussion, the equivalent circuit of inverter parallel system of two inverter modular can be given as Fig.5, where 0E ∠is load voltage, 1111()ref E G s v δ∠=and 111()R jX Z s +=are the output voltage and equivalent output impedance of inverter 1,2222()ref E G s v δ∠=and 222()R jX Z s +=are the output voltage and equivalent output impedance of inverter 2.In the inverter parallel system, the active output power and the reactive output power of the inverter 1 can be expressed as:()()0111101111221101111111012211cos sin cos sin E R E R E X E P R X E X E R E X E Q R X δδδδ-+=+--=+ (7)Due to small difference the phase of output voltage between individual inverters, we can assume that sin ,cos 1i i i δδδ≈≈,12R R R ==and 12X X X ==.Therefore, we have21010101222101010122RE E E E X RE P R X XE E E E R RE Q R X δδ+-=+--=+ (8) Similarly for the inverter 2, we have22020202222202020222RE E E E X RE P R X XE E E E R RE Q R X δδ+-=+--=+ (9)Fig.5.The equivalent circuit of the parallel system of two inverter modular.Fig.6.Structure of parallel operation system.From above analysis we can know that the active/reactive power is related to the amplitude and phase of voltage, and the influence of output voltage amplitude and phase on active and reactive power is closely related to the inductive component and resistive component of the output impedance of the inverter. When resistive component is dominating, active power is mainly depended on the amplitude of output voltage, and reactive power is mainly depended on the phase of the output voltage, and vice versa.4. Control DesignFig.6 shows the structure of inverter parallel system. The digital signal processor TMS320F2812 is adopted in the proposed parallel system; the inverters decouple the active power and the reactive power circumfluence to regulate the amplitude and the phase of the sinusoidal reference voltage signal. Each inverter adopts instantaneous voltage and instantaneous current dual closed-loop feedback control. The inverters can operate not only independently but also in parallel. The CAN bus transfers information of the active power and the reactive power among the inverters.Fig.7.Decoupling control strategy.Fig.8.Experiment wave of inverter parallel system: (a)steady current wave,(b)current wave with a sudden increasing load, and (c)current wave with a sudden decreasing load.In the parallel operation system, the differences between the output active power and reactive power of individual inverter lead to the asymmetry of output current among the inverters. The relation between the active/reactive power and output voltage amplitude/phase is given by (8).In the single phase SPWM inverter which adopts dual closed-loop feedback control, output voltage tracks the amplitude and phase of the sinusoidal reference voltage signal. Thus, the output active and reactive power of the inverter can be controlled by the amplitude and phase of the reference voltage signal. If output active and reactive power equal to each other in the parallel system, the inverters can share the load current well.In the inverter, the output voltage and output current are sampled by digital signalprocessor (DSP) for the calculation of output active and reactive power. All of the inverters share the active and reactive power by the CAN bus, each inverter calculates its corresponding active power circumfluence P∆.These∆and reactive power circumfluence Q circumfluence signals are decoupled to regulate the amplitude and the phase of reference voltage signal as shown in Fig.7.Therefore, each inverter outputs the same active power and reactive power, and the inverters can share the load current in the system.5. Experiment ResultsTwo 2 KV A inverters are used in our experiment. In the parallel system, the output filter inductance is 500μH,the filter capacitance is 10μF,the DC input voltage is 200 V DC, and the AC output voltage is 110 V with 50 Hz. 6N137 is used to isolate the signal between the inverters and the CAN bus, the baud rate of CAN bus is set to 1 Mbps. The closed-loop control, decoupling arithmetic and the SPWM control signal are realized by TMS320F2812 digital signal processor. Experiment results of the inverter parallel system are shown in Fig.8.In the steady state, the two inverters share the current very well and during transient under sudden load variation, the inverter parallel system still can work well. This indicates that excellent load sharing is achieved between these two inverters. 6. ConclusionsThis paper proposes a decoupling control strategy for inverter parallel systems. Theoretical analysis and experimental results verify the feasibility of the proposed control strategy. This control strategy has the following characteristics:1)inverters can work independently or in parallel;2)CAN bus is used for the inverter parallel system; 3)the inverter parallel system supports hot-s operation and has good reliability and expansibility. References[1]Z.-Y.He,Y.Xing,and D.-F.Fu,“Distributed hybrid current sharing control for inverters in parallel operation,”in Proc.of The Chinese Society for Electrical Engineering,vol.27, no.4,pp.113-117,2007(in Chinese).[2]S.-X.Duan,B.-Y.Liu,Y.Kang,and J.Chen,“The techniques of SPWM re-modulation of UPS in parallel operation,”in Proc.of The Chinese Society for ElectricalEngineering,vol.24,no.1,pp.80-86,2004(in Chinese).[3]X.Sun,L.-K.Wong,Y.-S.Lee,and D.-H.Xu,“Design and analysis of an optimal controller for parallel multi-inverter systems,”IEEE Trans.on Circuits and Systems,vol.52,no.1,pp.56-61,2006.[4]W.Yu,D.-H.Xu,and C.-Y Zhou,“Control strategy of paralleled UPS system,”Proceedings of The Chinese Society for Electrical Engineering,vol.28,no.21,pp.63-67,2008 (in Chinese).[5]Y.Feng,S.-P.Wang,P.Luo,Q.-M.Niu,and Z.-J.Li,“A novel FPSM controller for DC-DC switching converters,”Journal of Electronic Science and Technology of China,vol.5,no.2,pp.136-140,2007.[6]S.-G.Xu,J.-P.Xu,and T.-Q.Cao,“Stu dy on parallel operation of single phase inverter,”Journal of University of Electronic Science and Technology of China,vol.38,no.3,pp.380-384,2009(in Chinese).[7]L.Xiao,W.-B.Hu,and Y.-G.Yan,“Summary of the control techniques of paralleled inverters,”in Pr oc.of the 2nd Aeronautics Power Science-Technology Conference, Nanjing,China,2000,pp.164-167.[8]Y.-Q.Pei,G.-B.Jian g,and X.Yang,“Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS,”in Proc.of the 35th Annual P ower Electronics Specialists Conference,Aachen,Germany,2004, pp.2050-2053.[9]C.-J.Zhang,G.-T.Chen,Z.-N.Guo,and W.-Y.Wu,“An alternating-master-salve parallel control research for single phase paralleled inverters based on CAN bus,”in Proc.of the 5th International Power Electronics and Motion Control Conference,Shanghai,China,2006,pp.674-678.[10]L.Xiao,A.-Z.Liu,T.-Z.Fang,and X.-B.Ruan,“Multi inverter parallel system applying average current controlling method,”in Proc.of the Chinese Society for Electrical Engineering,vol.28,no.3,pp.77-82,2008(in Chinese).[11]J.M.Guerrero,L.G.Vicu a,J.Matas,and J.Miret,“A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,”IEEE Trans.on Power Electronics,vol.9,no.19,pp.1205-1212,2004.[12]A.Tuladhar,H.Jin,T.Unger,and K.Mauch,“Control of parallel inverters in distributed AC power systems with consideration of li ne impedance effect,”IEEE Trans.on Industrial Applications,vol.12,no.36,pp.131-137,2000.[13]P.C.Loh,M.J.Newman,a nd D.N.Zmood,“A comparative analysis of multi-loop voltage regulation strategies for single and three-phase UPS systems,”IEEE Trans.on Power Electronics,vol.18,no.9,pp.1176-1185,2003.中文译文单相SPWM逆变器并联解耦控制策略徐顺刚,徐建平,曹太强摘要:基于单相电压源的SPWM(正弦脉宽调制)逆变器的等效输出阻抗,逆变器并联系统的解耦控制策略被提出。