第二章 结晶学基础1
- 格式:ppt
- 大小:6.23 MB
- 文档页数:8
晶体学基础(第二章)第二章晶体的投影2.1面角守恒定律2.2晶体的球面投影及其坐标2.3极射赤平投影和乌尔夫网2.4乌尔夫网的应用举例2.1面角守恒定律面角守恒定律(lawofcontancyofangle),斯丹诺于面角守恒定律(angle)斯丹诺定律(Steno)1669年提出亦称斯丹诺定律年提出,1669年提出,亦称斯丹诺定律(lawofSteno)。
同种晶体之间,对应晶面间的夹角恒等。
这里夹角一般指同种晶体之间,对应晶面间的夹角恒等。
的是面角面角(angle)即晶面法线之间的夹角。
的是面角(interfacialangle),即晶面法线之间的夹角。
晶面角守恒定律告诉我们:晶面角守恒定律告诉我们:将一种物质的一个晶体的m1面与另一晶体的相应面m1´平行放置,则这两个晶体其它的相平行放置,也互相平行,应晶面m2与m2´,…………,mn与mn´也互相平行,即同一种,物质的相应晶面间夹角不变。
物质的相应晶面间夹角不变。
2.1面角守恒定律2.1面角守恒定律成分和结构相同的晶体,成分和结构相同的晶体,常常因生长环境条件变化的影响,而形成不同的外形,影响,而形成不同的外形,或者偏离理想的形态而形成所谓的“歪晶”成所谓的“歪晶”。
2.1面角守恒定律面角守恒定理起源于晶体的格子构造。
面角守恒定理起源于晶体的格子构造。
因为同种晶体具有完全相同的格子构造,晶体具有完全相同的格子构造,格子构造中的同种面网构成晶体外形上的同种晶面。
种面网构成晶体外形上的同种晶面。
晶体生长过程中,晶面平行向外推移,程中,晶面平行向外推移,故不论晶面大小形态如何,对应晶面间的夹角恒定不变。
如何,对应晶面间的夹角恒定不变。
面角守恒定律的确立,使人们从晶形千变万化的面角守恒定律的确立,使人们从晶形千变万化的实际晶体中,找到了晶体外形上所固有的规律性,实际晶体中,找到了晶体外形上所固有的规律性,得以根据面角关系来恢复晶体的理想形状,得以根据面角关系来恢复晶体的理想形状,从而奠定了几何结晶学的基础,奠定了几何结晶学的基础,并促使人们进一步去探索决定这些规律的根本原因。
晶体学复习1 结晶学基础1.1概述1.2 第一章:晶体和非晶质体1.2.1 概念(格子、举例)晶体:具有格子构造的固体非晶质体:不具有格子构造的物质晶体的现代定义是:晶体是内部质点在三维空间成周期性重复排列的固体;或者说,晶体是具有格子构造的固体。
相应地,内部质点在三维空间成周期性重复排列的固体,便称为结晶质晶体的分布极为广泛,不只局限于矿物的范畴。
本质:在一切晶体中,组成它们的质点(原子、离子、离子团、分子等)在空间都是按格子构造的规律来分布的。
例如,石墨、石英、玻璃。
结论:一定化学成分的矿物,大部分都具有由原子规则排列的内部结构。
1.2.2 基本性质(6个)①最小内能:②稳定性:③对称性:④异向性:⑤均一性:⑥自限性:1.2.3 晶体的对称要素组合及规律(9个要素)对称指:物体相同部分的有规律重复.晶体的对称性也是相对的,而不对称则是绝对的。
晶体宏观对称要素:①对称中心(C):假想的一个点,相应的操作是对于这个点的反伸。
其作用相当于一个照相机.结论:晶体如具有对称中心,晶体上的所有晶面,必定全都成对地呈反向平行的关系。
其对称中心必定位于几何中心。
符号为“C”标志:晶体上的所有晶面都两两平行,同形等大,方向相反。
②对称面:为一假想的面,对称操作为对此平面的反映。
方法:P 2P 3P…… 9PP与面、棱有着的关系:(1)对称面垂直并平分晶体上的晶面晶棱;(2)垂直晶面并平分它的两个晶棱的夹角;(3)包含晶棱③对称轴(L n):为一假想的直线。
对称操作为绕此直线的旋转,可使晶体上的相同部分重复出现。
使相同部分重复出现的最小旋转角,称为基转角(α),旋转一周中,相同部分重复出现的次数,称为轴次( n )。
α、 n 之间的关系为:n = 360o/ α对称定律:晶体外形上可能出现的对称轴的轴次,不是任意的,只能是1 2 3 4 6 。
高次对称轴:轴次高于2的对称轴称(3、4、6)对称轴在晶体中可能出露的位置是:(1)两个相对晶面的连线;(2)两个相对晶棱中点的连线;(3)相对的两个角顶的连线(4)一个角顶与之相对的晶面之间的连线④旋转反身轴(L i n)旋转反伸轴是一假想直线和其上一点所构成的一种复合对称要素。
第二章晶体结构与晶体中的缺陷1、证明等径圆球面心立方最密堆积的空隙率为25.9%。
解:设球半径为a,则球的体积为4/3 n3a求的z=4,则球的总体积(晶胞)4X 4/3 n, 立方体晶胞体积:(2.2a)‘=16・2『,空间利用率=球所占体积/空间体积=74.1%, 空隙率=1-74.1%=25.9%。
2、金属镁原子作六方密堆积,测得它的密度为1.74克/厘米3,求它的晶胞体积。
解:p =m/V=1.74g/cm3, V=1.37X10-22。
3、根据半径比关系,说明下列离子与02-配位时的配位数各是多少?解:Si4+ 4; K+ 12; Al 3+ 6; Mg2+ 6。
4、一个面心立方紧密堆积的金属晶体,其原子量为M,密度是8.94g/cm3。
试计算其晶格常数和原子间距。
解:根据密度定义,晶格常数a0=34M/(6.023 10238.94 =0.906 10 *M 1/3(cm) =0.0906M 1/3(nm)原子间距=2r=2 (、2a/4) =0.0906M1/3/. 2 =0.0641M 1/3(nm)5、试根据原子半径R计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。
解:面心立方晶胞:V =a03 =(2 ..2R)3 =16. 2R3六方晶胞(1/3):V 二a02c — 3/2 = (2R)2•(、8/3 ・2R) • .3/2 =8、2R3体心立方晶胞:V 二a。
3 = (4R/、3)3 =64/3、3R3& MgO具有NaCI结构。
根据O2-半径为0.140nm和Mg2+半径为0.072nm,计算球状离子所占据的体积分数和计算MgO的密度。
并说明为什么其体积分数小于74.05%?解:在MgO晶体中,正负离子直接相邻,a0=2(r++r-)=0.424(nm)体积分数=4X (4 n /3) X (0+040723)/0.4243=68.52%密度=4X(24.3+16)/[6.023 1衣3«0.424 X)-7)3]=3.5112(g/cm3)MgO 体积分数小于74.05%,原因在于r+/r-=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。