液力叉车发动机与液力变矩器的匹配及传动系统参数的优化_百度文讲解
- 格式:doc
- 大小:145.00 KB
- 文档页数:4
液力变矩器的选型及与汽油发动机的匹配作者:李侠来源:《中国新技术新产品》2011年第11期摘要:液力变矩器选型计算及其与汽油发动机的匹配。
关键词:液力变矩器计算,汽油发动机匹配中图分类号:TH24 文献标识码:B工程机械的传动大多采用液力传动的形式,其能更大的提高生产率,液力传动具有自适应性,即当外载荷的突然增大,能自动增大牵引力,以克服增大的外载荷,同时能自动的降低行使速度,避免外载荷的自动增加,甚至突然增加而使发动机熄火。
反之,当外载荷减小时,能自动减小牵引力提高车速。
液力传动的介质是液体能吸收并消除发动机和外载荷的振动和冲击,从而提高发动机和机体的使用寿命。
液力传动可减少变速箱排挡数,操作简便。
但是如果发动机与液力变矩器匹配不好,不但不能发挥液力传动的优点,反而适得其反,所以工程机械要恰当的解决液力变矩器的选型及与发动机的匹配。
1.液力变矩器的选型要求工程机械一般情况下负荷较大,工作环境较为恶劣,工作频繁,行驶速度也较低,且散热条件也较差,致使发动机热负荷较大,通常发动机的使用功率要降低10%~20%使用。
从工程机械的性能要求和对发动机功率的要求可以看出:(1)液力变矩器和发动机共同作用时,在全负荷下发动机有较大的功率输出,以满足较大的牵引特性的要求。
(2)根据爬坡性能的要求,液力变矩器失速变矩比尽可能大些,一般=3~3.6,以减少变速箱的排挡数。
(3)要求液力变矩器高效范围宽,工程机械作业时要求变矩器在低速和高速工况下运转,有利于提高发动机的经济性,一般变矩器允许的最低效率η=75%。
(4)为了充分利用发动机的功率,液力变矩器应具有一定的透穿度,这样在启动和低速行驶时能获得较大的牵引力,高速行驶时能充分的利用发动机的功率,提高平均速度,对改善加速性和牵引性都是有利的。
一般要求在低速时透穿度较小,高速时透穿度尽可能较大。
但是有些情况下也选用非透穿液力变矩器。
2.汽油发动机与液力变矩器的匹配汽油发动机的特点是转速高,最大扭矩点和最高功率点转速相差较大,适应性系数较大,所以为了尽可能使功率和扭矩都能得到很好的发挥,一般选用正透穿度较大的液力变矩器,使车辆在启动和低速是获得较大的牵引力,加速性能好,高速时又能充分利用汽油发动机的功率。
毕业设计(论文)设计(论文)题目:工程机械发动机与液力变矩器匹配方法研究姓名秦浩学院(系)专科部专业工程机械年级指导老师年月日目录摘要 (4)第一章绪论 (6)1 课题背景及意义 (6)2 国内研究状况 (7)第二章发动机与液力变矩器的匹配计算 (8)2.1 发动机与液力变矩器匹配计算方法概述 (8)2.2 匹配计算过程 (8)2.2.1 发动机的净外特性 (8)2.2.2 液力变矩器的原始特性 (9)2.2.3 共同工作的输入特性 (9)2.2.4 共同工作的输出特性 (9)2.3 液力传动匹配分析 (10) (10)2.3.1 起动扭矩MT0 (10)2.3.2 变矩器的运动学工作范围dn2.3.3 变矩器的动力学工作范围d (10)M (10)2.3.4 高效范围内平均输出功率NTPj2.3.5 高效范围内平均单位油耗量gePj (10)2.4 算例 (11)2.5总结 (13)2.6液力变矩器与发动机匹配的计算机分析软件 (13)2.6.1 设计思想 (13)2.6.2 软件功能 (13)2.6.3 软件总体结构 (14)2.6.4 程序流程 (14)第三章各参数对车辆动力性能和经济性能的影响 (16)3.1 简述 (16)3.2 主要部件的基本性能分析 (16)3.2.1 柴油发动机 (16)3.2.2 液力变矩器 (17)3.2.3 分动箱 (18)3.2.4 其他部件 (18)3.3 高速工程车柴油发动机与液力变矩器合理匹配的原则 (18)3.4 配过程分析 (18)3.4.1发动机的负荷特性 (18)3.4.2 液力变矩器的特性 (19)3.4.3 发动机与液力变矩器共同工作 (20)第四章总结 (23)4.1 分析结论 (23)4.2 心得体会 (23)参考文献 (24)摘要随着国家机械工业的不断发展,由于液力传动的一系列优点,液力传动在工程机械领域得到了广泛的应用。
液力传动设计中发动机与液力变矩器的匹配是设计的关键技术之一,常规设计计算多采用作图与手工计算相结合的方法,计算时间长、计算精度差,因此,利用计算机快速计算的优点,研究发动机与液力变矩器匹配的计算方法具有实际意义。
浅析叉车的液力传动系统与静压传动系统叉车按动力传动系统的不同分为机械传动、液力传动、静压传动和电传动四种类型。
该文对叉车的液力传动和静压传动从传动装置的结构形式、操纵和控制性能、转矩传递性能、调速准确性、传动性能与效率、制造成本等几个方面分别进行了分析,通过比较,得出了静压传动系统相对于采用液力传动的一些优点。
标签:叉车;液力传动;静压传动前言(国质检特[2010]22根据国家质检总局2010年发布的《增补的特种设备目录》号),场(厂)内机动车辆的含义为指除道路交通、农用车辆以外仅在工厂厂区、旅游景区、游乐场所等特定区域使用的专用机动车辆。
叉车作为场(厂)内机动车辆的一种,用途越来越广、数量也越来越多。
随着需求的广泛与增大,技术的不断进步与改革,各种类型传动系统的叉车也被广泛应用。
叉车按动力传动系统的不同分为机械传动、液力传动、静压传动和电传动四种类型。
传动系统是影响叉车行驶性能的关健,对于叉车而言,其行驶工况复杂,频繁的启制动与换向,这对叉车的传动系统提供了更高的要求。
叉车的传动系统性能与叉车的加速快慢、操作性能、爬坡性能、经济性、可靠性等都是息息相关的。
液力传动和静压传动均采用液体作为工作介质传递功率,均能实现无级变速和动力传递,传动类型及其相似,但两者的工作原理、结构传动性能以及传动效率却截然不同。
1 液力传动系统利用液体的动能来传递动力被称为动液压传递,也称为液力传递。
液力传动实际上是一组离心泵——涡轮机系统。
离心泵作为主动部件带动液体旋转,从泵流出的高速液体推动涡轮机旋转,将液体动能转换为机械能,实现能量传递。
在叉车液力传动系统中由液力变矩器、动力换挡变速器、传动轴、前后桥以及轮边减速器等部件组成。
发动机的动力经液力变矩器传给动力换挡变速器,再经传动轴分别传给前后驱动桥。
驱动桥轴输出的动力经过轮边减速器进一步增大转矩后,再传给轮胎。
液力变矩器的最大特点是由于导轮的作用,能在传递功率的同时,也起到放大扭矩的功能。
叉车柴油机与液力变矩器合理匹配的研究近年来,为了适应各国日益苛刻的排放法规和油耗法规,柴油机得到了快速发展,如采用可调涡轮增压器,优化进气、喷油系统,改善燃烧等;在降低排放的同时,也极大地改善了柴油机扭矩特性,导致出现了一种所谓"等功率"柴油机,即这种柴油机在一定转速范围内可保持功率为一常数(以下简称新型柴油机),如目前被普遍关注的符合EPATierII/EU Stage II排放标准的电喷柴油机。
由于新型柴油机在调速外特性上有十分显著地改变,在与液力变矩器(以下简称变矩器)进行匹配时如何应对这一变化,充分发掘其在动力性、经济性上的改善,既提高整机牵引性能,也使经济性能得以体现,在当今注重整机性能、提倡节能的形势下,进行该项研究具有重要的现实意义。
一、工程机械柴油机不同发展阶段调速外特性对比及当前柴油机与变矩器匹配理论回顾1.柴油机不同发展阶段调速外特性对比在近几十年中工程机械柴油机主要经历了三次大的变化:自然吸气式柴油机、废气涡轮增压式柴油机(以下简称增压柴油机)及现在能满足EPATierII/EU StageⅡ排放标准的新型柴油机,每次变化表现在其调速外特性上都有较大改变。
1.1.自然吸气式柴油机自然吸气式柴油机曾在工程机械上被普遍选用,其输出力矩特性曲线通常比较平坦,扭矩适应性系数K值一般不超过1~1.05,但功率随转速变化较大。
图1玻嵛一自然吸气式柴油机6135K玻吹耐馓匦郧线图。
1保玻增压柴油机近十几年间,增压柴油机在工程机械上得到了广泛应用,其扭矩适应性系数K值可达1.25玻保30,在额定转速时功率最大,随转速下降,其功率呈下降趋势。
图1玻馕一增压柴油机WD615 67G3柴油机外特性曲线图。
1.3.新型柴油机动力性、经济性及排放上的独到优势使得新型柴油机已成为未来工程机械的首选。
新型柴油机可在很宽的转速范围内保持功率为一常数,大大改善了整机的牵引和动力性能,扭矩适应性系数K高达1.50以上。
液力传动车辆动力性及匹配的研究发布时间:2021-12-22T05:20:32.493Z 来源:《科学与技术》2021年第29卷20期作者:丁宁温化玉[导读] 在车辆传动中,液力传动总是构成齿轮传动和液力变速器。
丁宁温化玉中国人民解放军32286部队80分队 111200摘要:在车辆传动中,液力传动总是构成齿轮传动和液力变速器。
适应一定范围内行驶阻力的变化,可以自动、持续地改变输出扭矩和转速。
使用油液作为工作介质,减少传动系统的峰值载荷、动态载荷和扭转振动,使车辆的启动更加平稳。
在变速过程中,车辆形成了柔软均匀、容易与电控系统连接的自动变速器,大大简化了操作,提高了发动机的动力性、经济性和行驶安全性。
液力变矩器是液压传动车辆的重要组成部分,性能与发动机相匹配的合理性直接影响车辆的性能,因此与发动机相结合后的动力计算变得更加重要。
关键词:液力行业;车辆动力性;匹配引言在车辆传动中,液力变矩器总是形成齿轮传动和液压机械传动。
适应一定范围内行驶阻力的变化,可以自动连续地改变输出扭矩和转速。
接入液力变矩器的车辆的输出特性与发动机的输出特性有很大的不同,这主要是由液力变矩器的特性决定的。
在车辆的液力传动系统中,通常将发动机串联连接液力马桶后形成的系统视为一个统一的动力源,并在此基础上优化动力传动系统的传动比。
1内燃机作为动力源的履带车辆1.1机械传动履带车辆履带式车辆开发初期,车辆动力需求不大,其传动系统均采用直接机械传动系统,利用机械齿轮传动实现车辆的动力传动。
机械传动效率高,结构也比较简单,但由于驾驶员操作的疲劳强度高,内燃机的电力利用程度受到阻塞数(阻塞数越多,电力越好)的限制,主传动型履带车辆的车身体积和重量不能太大,机械传动的阻塞数也不能太多,所以机械传动装置有等级。
如果不切断发动机动力,车速不可能降到0。
俄罗斯T-72和T-80系列主战坦克使用的是机械传动系统。
1.2液力液压传动履带车辆随着对履带式车辆动力性能的要求越来越高,对动力的需求也越来越大。
双导轮型液力变矩器在叉车上的应用吴仲辉【摘要】介绍了双导轮型液力变矩器的结构、工作原理及工作特性,并结合实践列举了叉车双导轮型变矩器的匹配方法.叉车整车验证表明,在叉车上应用双导轮型液力变矩器优于单导轮型液力变矩器.%The paper introduces the structure, working principle and working characteristics of the double guide pulley hydraulic torque converter and enumerates the method of how to match forklift truck and torque converter. Demonstration has proved that double guide pulley type works better than single guide pulley type in forklift truck.【期刊名称】《起重运输机械》【年(卷),期】2017(000)010【总页数】4页(P127-130)【关键词】叉车;双导轮型液力变矩器;应用;计算;合理匹配【作者】吴仲辉【作者单位】杭叉集团股份有限公司临安 311305【正文语种】中文【中图分类】TH242双导轮型液力变矩器已在国外叉车用变速箱上得到了广泛的应用, 但在国内叉车行业却很少应用。
双导轮型液力变矩器固有的优点决定其在叉车行业的应用有着广阔的前景, 因此有必要了解其结构、工作原理、工作特性等, 以在整车设计时进行合理匹配。
液力变矩器是一种以液体为工作介质,利用流体速度的变化来传递能量的传动装置。
一般液力变矩器有低速、中速、高速三种工况,在这三种工况下,叉车分别处于重载、中载、轻载工况,见图1。
液力变矩器的泵轮与发动机的飞轮刚性联接,使发动机的动力由飞轮传递给泵轮。
泵轮的旋转将机械能转变成液流的能量冲击涡轮旋转,将液能转变为涡轮的机械能,并通过涡轮轴输出,其结构见图2。
维普资讯 ・44・2rO一机械科学与技术M.—s。
第l卷6{M一)一一)(/(I
1~≥M≥M.≥ ^(54)fo.一H≤{H一")(一n)(一/H…L【1rO≤n.…≤,H≤… M(64);一(一M11)(.M一/06)M06.M.06.MM(74)43多目标模糊优化问题求解.该多目标模糊优化问题常转化为求解如下的单目标模糊优化问题。
FidnmaxX一(,,,l2asf..()焉0XNjX)((一12,,5,34・)(;l23,.)0≤ 1式中,为辅助变量;。
x)(g(=12345.,.,)为式(34)~(7给出的模糊约束条件。
4)为解上式,采用最优水平裁集将其转化为非模糊优化问题。
可限于篇幅・解模型在此求略去。
问题变为普通优化问题,采用相应方法求解。
该可传动系统参数的多目标模糊优化的处理同上。
I01Dl0l0H200锄?0。
3910400e0
0lD20}00620fⅧ …【1『=捌5算倒某集装箱叉车,一1tG一2tI]=3khEg]=02.Q2.2…v0m/,ro.0f=00.nt.2[一=0O,.2[]=005r=06m。
.2,.563QK,10ⅣH一18W1k=20rmi,一=00/n70・m0N按本文模型,目标函数取相同重要程度,到:且得发动机:液力变矩器:353K=28YJ7o,n.,一09.1
维普资讯 第3期邓斌:渡力叉车发动机与液力变矩器的匹配及传动系缱参数的优化・45・2发动机与液力变矩器的共同工作输入特性和输出特性分别如图1图2示。
、所传动系统参数为:S一3q=17.1:91/n.t,.6I2mirz=15rmii=5...1.4ri62/n48=76。
lZ34S6789参GinLuaZrt.doyacTaraotHyrdnmi考文献PrmeesOpiztnSaatrtmiai.AEppr705oae757王彩毕,宋连天.模榴论方法学.北京;中国建筑工业出版杜,9818黄宗益.薛瑞祺,阎以诵.工程矾槭C.AD上海:同济大学出版杜.9119陆植.叉车设计.北京机槭工业出艇杜,9119凌忠社.车用液力变矩器的选择与匹配.叉起重运输机槭.981)218(2;~9胡修章.车用柴油机的废气捧放及其与液力变矩器匹配的关系.工程机械.91】)2 ̄318(0:40孙大刚,请文农,杜涛,李刚.液力机饿传动式重型汽车传动比的优选.建筑机械.955:019()】~I4王彩华,朱煜东.多目标优化模蝴解法中目标权重的处理方法.重庆大学学报.9()9~912l6:2795于光远.程软设计理论.京:工北科学出敝社+9219OpiztnoohMacigadPaaeesornmisotmiaifBtthnnrmtrfTassinoSseoyruicvtrFokitytmfrHdalcExaaor
lfDegBinn(otwetJatniest—egu603)SuhsioogUnvriyChnd101Alta ̄Thlojcuzpimdlfbtthnewenegnnyruioqecn ̄r ̄semutbetfzyotmumoeohmacigbtenieadhdaltruo.locvrenaatrftassinssefrhdaeecvtrfrltipeetdIhsmoe。
etraprmeesornmisoytmyrmixaaookisrsne.ntidofdlnmeilspoitnoohrceiisonieadhdaloqecretrscriUyurcprxmaifsmecaatrscfgnnyruitruotte
ardOtbaotecv'ietemehdoesqa
e,nzyfcos[ecnieeadfrltpwehrceitsadreehtofItsursadfzatrtosdrd。
nkioraatrsinuI—aorofcccnmyaetknfroi ̄.xmpeiie1。
oofaeobeAnealsgvnas.KewodMuojcFuzpiztoHyruixaaookiMacigyrshibetzyotainmidalecvtrfrltcfthn。