第七章失效分析案例分析
- 格式:ppt
- 大小:11.31 MB
- 文档页数:58
fmea失效模式分析案例失效模式分析(Failure Mode and Effects Analysis,简称FMEA)是一种预防性的质量管理工具,旨在通过系统地识别、评估和预防产品或过程中潜在的失效模式,从而减少或消除这些失效对客户或后续过程的影响。
以下是一个FMEA案例的详细内容:在进行FMEA之前,首先需要组建一个跨部门的团队,包括设计、生产、质量控制和客户服务等部门的代表。
团队成员需要对产品或过程有深入的了解,并能够识别潜在的失效模式。
案例背景:假设我们正在分析一款新型智能手机的电池组件。
电池是智能手机的关键部件,其性能直接影响到用户的使用体验和安全。
因此,对电池组件进行FMEA至关重要。
步骤一:定义系统或过程首先,我们需要定义分析的范围。
对于智能手机电池组件,我们将分析从电池设计到最终装配的整个过程。
步骤二:列出所有潜在的失效模式团队成员需要列出所有可能的失效模式,例如电池过热、电池寿命短、电池充电速度慢等。
步骤三:确定失效模式的潜在原因对于每个失效模式,团队需要确定可能导致该失效的原因。
例如,电池过热可能是由于电池设计不当、材料选择错误或制造过程中的缺陷。
步骤四:评估失效模式的严重性使用1到10的评分系统,团队需要评估每个失效模式的严重性。
评分越高,表示失效对客户或后续过程的影响越大。
步骤五:确定失效模式的潜在后果团队需要确定每个失效模式可能导致的后果。
例如,电池过热可能导致设备损坏或用户受伤。
步骤六:评估当前控制措施的有效性团队需要评估现有的控制措施是否能够有效预防或检测到潜在的失效模式。
例如,是否有严格的质量控制流程来检测电池的过热问题。
步骤七:计算风险优先数(RPN)风险优先数是通过将严重性(S)、发生概率(O)和检测难度(D)的评分相乘得到的。
RPN越高,表示该失效模式的风险越大。
步骤八:制定改进措施对于高RPN值的失效模式,团队需要制定改进措施。
这些措施可能包括重新设计电池、改进制造工艺或加强质量控制。
失效分析案例在进行失效分析之前,我们首先需要了解失效分析的概念。
失效分析是指对产品、设备或系统在使用过程中出现的故障进行深入的分析和研究,以找出故障的原因,并提出相应的改进措施,以避免类似故障再次发生。
失效分析通常包括对故障样本的收集、实验室测试、数据分析和结论总结等步骤。
在实际工程中,失效分析是非常重要的一项工作。
通过失效分析,我们可以找出产品或设备的潜在问题,从而提高产品的质量和可靠性。
同时,失效分析也可以为产品的设计和制造提供重要的参考,帮助我们改进产品的设计和工艺,提高产品的性能和可靠性。
下面,我们以一个实际案例来说明失效分析的过程和方法。
某工厂生产的一种电子产品,在使用过程中出现了频繁的断电现象,导致产品无法正常工作。
经过初步调查和分析,发现这一问题已经影响了大量产品的正常使用,严重影响了客户的使用体验和产品的声誉。
因此,我们迫切需要进行失效分析,找出问题的根源,并提出改进措施。
首先,我们收集了大量的故障样本,并进行了详细的外观检查和实验室测试。
通过对故障产品的拆解和分析,我们发现了一个潜在的问题,产品内部的电路板存在设计缺陷,导致在特定条件下容易发生短路现象,从而引起产品的断电故障。
接着,我们对电路板的设计和工艺进行了深入分析,找出了设计和制造过程中存在的问题和不足。
在数据分析的基础上,我们得出了结论,产品断电故障的根本原因是电路板的设计缺陷和制造工艺不合理。
为了解决这一问题,我们提出了相应的改进措施,对电路板的设计进行优化,增强其抗干扰能力;对制造工艺进行调整,提高产品的稳定性和可靠性。
经过一系列的改进和验证,最终成功解决了产品的断电故障问题,提高了产品的质量和可靠性。
通过这个案例,我们可以看到失效分析对产品质量和可靠性的重要性。
只有通过深入的失效分析,找出问题的根源,并提出相应的改进措施,才能真正解决产品存在的问题,提高产品的质量和可靠性。
因此,在工程实践中,我们应该重视失效分析工作,不断提升自身的失效分析能力,为产品的设计和制造提供更好的支持和保障。
失效模式分析案例失效模式分析(FMEA)是一种系统性的方法,用于识别和评估产品、系统或过程中可能出现的失效模式,以及这些失效模式对系统功能的影响。
通过对失效模式的分析,可以帮助我们预防潜在的问题,提高产品的可靠性和性能。
在本文中,我们将通过一个实际案例来介绍失效模式分析的过程和方法。
案例背景:某汽车制造公司计划推出一款新的电动汽车,为了确保产品的质量和可靠性,他们决定对电动汽车的电池系统进行失效模式分析。
失效模式分析过程:1. 确定分析范围,首先,团队确定了失效模式分析的范围,包括电池系统的各个组成部分,如电池单体、电池管理系统、电池充电系统等。
2. 识别失效模式,团队成员通过头脑风暴和专家访谈的方式,识别了各种可能的失效模式,如电池过热、电池短路、充电系统故障等。
3. 评估失效影响,针对每种失效模式,团队评估了其对电动汽车性能和安全性的影响程度,以及可能导致的后果,如电池过热可能导致起火爆炸,充电系统故障可能导致无法充电等。
4. 确定优先处理失效模式,根据评估结果,团队确定了优先处理的失效模式,如电池过热的影响最为严重,因此被确定为首要处理的失效模式。
5. 制定改进措施,针对优先处理的失效模式,团队制定了相应的改进措施,如优化散热系统、增加温度监测和报警装置等。
6. 跟踪和验证,团队对实施改进措施后的效果进行跟踪和验证,确保改进措施的有效性和可行性。
通过失效模式分析,团队发现了电动汽车电池系统存在的潜在问题,并采取了相应的改进措施,最终提高了电动汽车的可靠性和安全性。
结论:失效模式分析是一种非常有价值的工具,可以帮助我们预防潜在的问题,提高产品的可靠性和性能。
通过系统性的分析和评估,我们可以更好地了解产品、系统或过程中可能出现的失效模式,及其对系统功能的影响,从而及时采取有效的措施,确保产品的质量和安全性。
在实际应用中,失效模式分析需要团队成员之间的密切合作和充分的沟通,以确保分析的全面性和准确性。
失效模式分析案例
失效模式分析是指通过对一个系统或者设备进行各种测试和观察,来确定其可能出现的失效模式,并进行分析和评估。
以下是一个关于汽车制动系统的失效模式分析案例:
汽车制动系统是汽车上非常重要的一个部件,其失效可能会导致严重的交通事故。
因此,对汽车制动系统进行失效模式分析是非常关键的。
首先,我们假设这个汽车制动系统由以下几个部件组成:制动液压泵、制动液压管路、制动踏板、制动鼓、制动盘、制动片、制动器等。
在进行失效模式分析之前,我们首先要确定系统的工作原理和设计要求。
汽车制动系统的工作原理是通过制动踏板对制动液压泵施加力来产生压力,使制动液通过制动液压管路传输到制动鼓或制动盘上,从而实现车辆的制动。
设计要求是确保制动系统能够在各种条件下可靠工作,包括正常驾驶、急刹车、长时间制动等。
接下来,我们可以通过对制动系统进行各种测试和观察,来确定其可能的失效模式。
例如,在进行制动踏板压力测试时,可能会发现制动踏板松动、制动液泄漏等失效模式;在进行制动盘和制动片磨损测试时,可能会发现制动盘或制动片的磨损超过了设计要求,导致制动效果下降等失效模式。
最后,我们需要对这些失效模式进行分析和评估,并提出相应
的改进措施。
例如,对于制动踏板松动的失效模式,可以进行材料和结构改进,提高其强度和稳定性;对于制动液泄漏的失效模式,可以增加密封件,提高制动系统的密封性。
通过失效模式分析,我们可以及时发现和解决汽车制动系统可能存在的问题,提高其可靠性和安全性。
同时,失效模式分析也可以应用于其他领域,如电子设备、航空航天等,帮助人们更好地理解并改进现有系统和设备。
最新失效分析经典案例分享案例一:某知名手机品牌电池爆炸事件某知名手机品牌近期发生了一起电池爆炸事件,导致用户受伤。
经过详细的失效分析,发现电池在高温环境下,由于内部结构设计不合理,导致电池内部短路,进而引发爆炸。
这一案例提醒我们,在产品设计和生产过程中,必须高度重视电池的安全性,严格把控电池的质量和性能。
案例二:某电动车品牌刹车失灵事件某电动车品牌近期发生了一起刹车失灵事件,导致用户在行驶过程中无法及时停车,造成交通事故。
经过失效分析,发现刹车系统中的传感器存在设计缺陷,导致刹车信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注关键部件的可靠性,确保产品的安全性。
案例三:某智能门锁品牌指纹识别失效事件某智能门锁品牌近期发生了一起指纹识别失效事件,导致用户无法正常使用门锁。
经过失效分析,发现指纹识别模块中的芯片存在质量问题,导致识别准确率下降。
这一案例提醒我们,在产品设计和生产过程中,必须关注关键零部件的质量,确保产品的稳定性和可靠性。
最新失效分析经典案例分享案例四:某品牌空调制冷效果不佳事件某品牌空调近期被用户投诉制冷效果不佳,经过详细的失效分析,发现空调制冷系统中的冷凝器存在制造缺陷,导致制冷剂泄漏,影响了空调的制冷效果。
这一案例提醒我们,在产品设计和生产过程中,必须重视冷凝器等关键部件的质量,确保空调的制冷效果。
案例五:某品牌笔记本电脑触摸屏失灵事件某品牌笔记本电脑近期发生了一起触摸屏失灵事件,导致用户无法正常使用触摸屏功能。
经过失效分析,发现触摸屏的传感器存在设计缺陷,导致触摸信号无法正常传输。
这一案例警示我们,在产品设计和生产过程中,必须关注触摸屏等关键部件的可靠性,确保产品的使用体验。
案例六:某品牌洗衣机漏水事件某品牌洗衣机近期发生了一起漏水事件,导致用户家中地面受损。
经过失效分析,发现洗衣机的排水系统存在设计缺陷,导致排水不畅,进而引发漏水。
这一案例提醒我们,在产品设计和生产过程中,必须关注排水系统等关键部件的设计,确保产品的使用安全。
失效分析案例1:电浪涌导致器件失效
某产品在用户现场频频出现损坏,经过对返修单板进行分析,发现大部分返修单板均是某接口器件失效,对器件进行解剖后,在金相显微镜下观察,发现器件是由于EOS导致内部铝线融化,导致器件失效,该EOS能量较大。
进一步分析和该铝条相连的管脚电路应用,发现电路设计应用不当,没有采用保护电路,在用户现场带电插拔产生的电浪涌导致该器件失效。
通过模拟试验再现了失效现象。
解决方法:在用户手册中强调该产品不支持带电插拔。
预防措施:在今后的设计中,考虑用户的使用习惯,增加防护电路设计,对产品进行热插拔设计。
案例1
案例2:MSD控制不当导致产品在用户现场大量失效
某产品在用户现场使用半年以后,返修率惊人,达到30%,对产品进行分析,对主要失效器件进行失效分析,在扫描电镜下发现金属丝疲劳断裂导致器件失效。
进一步的原因分析,发现是该产品的生产加工控制出现了问题,对潮湿敏感器件的管理没有按照J-STD-033A 标准进行,导致受潮器件没有按照规定时间进行高温烘烤,在过回流焊时出现“爆米花”效应,对器件造成了损伤,降低了可靠性,导致在用户现场器件失效。
解决措施:对用户现场的所有有问题的批次产品进行召回。
预防措施:在生产加工过程中严格进行MSD的管理和控制。
案例2
案例3:电迁移
某产品在用户现场使用3年以后,返修率开始出现明显异常,进行失效分析发现,主要是某功率器件内部电迁移引起。
该问题属于器件厂家的设计和制造缺陷。
解决措施:和厂家联系,确定有问题的批次,更换有问题批次的器件。
预防措施:对器件可靠性认证体系重新进行设计,减少厂家批次性问题的发生。
案例3。