第五章机械振动
- 格式:pptx
- 大小:1.10 MB
- 文档页数:5
5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。
第五章两自由度系统振动§5-1 概述单自由度系统的振动理论是振动理论的基础。
在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。
两自由度系统是最简单的多自由度系统。
从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。
研究两自由度系统是分析和掌握多自由度系统振动特性的基础。
所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。
很多生产实际中的问题都可以简化为两自由度的振动系统。
①汽车动力学模型:图3.1两自由度汽车动力学模型§5-2 两自由度系统的自由振动一、系统的运动微分方程②以图3.2的双弹簧质量系统为例。
设弹簧的刚度分别为k 1和k 2,质量为m 1、m 2。
质量的位移分别用x 1和x 2来表示,并以静平衡位置为坐标原点,以向下为正方向。
(分析)在振动过程中的任一瞬间t ,m 1和m 2的位移分别为x 1及x 2。
此时,在质量m 1上作用有弹性恢复力()12211x x k x k -及,在质量m 2上作用有弹性恢复力()122x x k -。
这些力的作用方向如图所示。
应用牛顿运动定律,可建立该系统的振动微分方程式:()()⎭⎬⎫=-+=--+00122221221111x x k x m x x k x k xm (3.1)令2212121,,m k c m k b m k k a ==+=则(3.1)式可改写成如下形式:()()⎭⎬⎫=-+=--+00122221221111x x k x m x x k x k xm⎭⎬⎫=+-=-+00212211cx cx xbx ax x(3.2) 这是一个二阶常系数线性齐次联立微分方程组。
(分析)在第一个方程中包含2bx -项,第二个方程中则包含1cx -项,称为“耦合项”(coupling term )。
这表明,质量m 1除受到弹簧k 1的恢复力的作用外,还受到弹簧 k 2的恢复力的作用。
第五章 机械振动前言1. 振动是一种重要的运动形式2. 振动有各种不同的形式——机械振动:位移 x 随t 变化;电磁振动;微观振动广义振动:任一物理量(如位移、电流等)在某一数值附近反复变化。
3. 振动分类§5.1 简谐振动的动力学特征一、 弹簧振子的振动 二、谐振动方程 f = - k x x mk m f a -==令 2ω=m k 则有x dtxd a 222ω-== 即 0x dtx d 22=+2ω 其解为()()0t Acos t x ϕω+=振动 受迫自由 阻尼 无阻尼自由非谐 自由谐动mo x X 0 = 0 A x m o X 0 = Ax m o -A X 0 = -Aωt+ϕ解:选平板位于正最大位移处t=0(00=ϕ),由πππω4212T2===则 t Acos4x π= t Acos4-16a 2ππ= (1)对物体 ma N -mg = t mAcos416mg ma -mg N2ππ+==物体对平板压力 t m Acos416--m g -N F 2ππ== (SI )t cos41.28--19.62ππ=(N )负号表示向上(2) N=0 时,物体离开平板。
即0t m Acos416m g 2=+ππ时,由(1)知当 -1t cos4=π时,N 最小,(即 当 x = -A 时)∴ 6.2116gm 16mg A 22≈==ππ(cm )六 单摆如图所示,m 受合外力沿轨道切线方向分力θsin mg f t -=,负号表示力的方向与θ角的方向相反。
当 5<θ时θθmg mg f t -≈-=sin 有θθβmg dtd ml ml ma t -===22 即 022=θ+θlgdt d 令 l g =ω20222=θω+θdtd 所以,在角位移很小( 5<θ)情况下,单摆的振动才是近似的简谐振动。
l g =ω ,gl T π=2 ,lgπ=ν21 。