初中数学分式专项训练
- 格式:doc
- 大小:331.50 KB
- 文档页数:9
七年级下册+分式计算一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.2.(2022秋•门头沟区期末)先化简,再求值:,其中.3.(2022秋•泸县校级期末)计算:.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.8.先化简,再求值:(1+)÷,其中x=﹣1.9.(2020秋•宿城区校级月考)计算:(1);(2).10.化简:(1)÷;(2)()2÷.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).14.(2022秋•和平区校级期末)计算:(1);(2).15.(2022秋•顺义区期末)先化简,再求值:,其中.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).17.(2022秋•单县期中)计算:(1);(2).18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.19.(2022秋•周村区期中)计算:(1);(2).20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.22.(2022秋•大兴区期末)计算:﹣.23.(2022秋•大连期末)计算:1+()÷.24.(2022秋•房山区期末)计算:.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.26.(2022秋•丰台区期末)计算:.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.28.(2022秋•昌平区期末)先化简,再求值:,其中.29.(2022秋•和平区校级期末)计算:(1);(2).30.(2022秋•海淀区校级期末)计算:(1);(2).31.(2022秋•海淀区期末)化简:.32.(2022秋•滨海新区校级期末)(1);(2).33.(2022秋•北京期末)求代数式的值,其中a=﹣1.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.36.(2022秋•河西区期末)计算:(1);(2).37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.44.(2022秋•定陶区期中)化简下列分式:(1);(2).45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x=3.48.(2022秋•光山县期中)化简:.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.52.(2021秋•镇安县期末)化简:1﹣.53.(2022•赣州模拟)先化简,再求值:,其中a=3.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.57.(2021秋•普陀区期末)计算:÷.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.七年级下册+分式计算参考答案与试题解析一.解答题(共60小题)1.(2022秋•永城市校级期末)先化简,再求值,其中x=﹣1.【解答】解:原式=÷=•=(x+2)(x+3)=x2+5x+6,当x=﹣1时,原式=1﹣5+6=2.2.(2022秋•门头沟区期末)先化简,再求值:,其中.【解答】解:原式=•=•=x2﹣x,∵,∴x2﹣x=,∴原式=.3.(2022秋•泸县校级期末)计算:.【解答】原式=+===.4.(2022秋•密山市校级期末)先化简,再求值:(1),其中x=2tan45°.【解答】解:(1)=[﹣1]•=(﹣1)•=•=•=﹣,当x=2tan45°=2×1=2时,原式=﹣=﹣1.5.(2022秋•平南县期末)先化简,再求值:÷(+x﹣2),其中x=﹣1.【解答】解:÷(+x﹣2)=÷=•=•=,当x=﹣1时,原式==1.6.(2022秋•荆门期末)先化简,再求值:,其中a.b满足.【解答】解:=[﹣]•=()•=•∵.∴a﹣=0,b+1=0,解得a=,b=﹣1,当a=,b=﹣1时,原式==﹣.7.(2022秋•番禺区校级期末)先化简,再求值:(1),其中x=5,y=3.5.(2),并从3,2,1,0这四个数中取一个合适的数作为x的值代入求值.【解答】解:(1)==,当x=5,y=3.5时,原式===﹣;(2)=[﹣]•=(﹣)•=•=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠±2且x≠3,∴当x=1时,原式=1+2=3.8.先化简,再求值:(1+)÷,其中x=﹣1.【解答】解:原式=(+)÷=x﹣2,当x=﹣1时,原式=﹣1﹣2=﹣3.9.(2020秋•宿城区校级月考)计算:(1);(2).【解答】解:(1)原式===.(2)原式====.10.化简:(1)÷;(2)()2÷.【解答】解:(1)原式=•=.(2)原式=•=.11.(2020秋•任城区校级月考)计算:(1)+;(2)﹣a﹣1.【解答】解:(1)原式=﹣=﹣===;(2)原式=﹣(a+1)=﹣===.12.(2022秋•哈巴河县期末)先化简:(﹣)÷,然后从﹣3<m<0的范围内选取一个合适的整数作为m的值代入求值.【解答】解:原式=(﹣)•=•﹣•=2(m﹣2)﹣(m+2)=2m﹣4﹣m﹣2=m﹣6.当m=﹣1时,原式=﹣1﹣6=﹣7.13.(2022秋•甘井子区校级期末)分式计算:(1);(2).【解答】解:(1)原式=÷==;(2)原式====﹣2(3+m)=﹣6﹣2m.14.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)==;(2)=÷=•=﹣.15.(2022秋•顺义区期末)先化简,再求值:,其中.【解答】解:原式=•﹣=﹣===,当x=﹣2时,原式===.16.(2022秋•涪陵区月考)计算:(1)(x+y)2﹣x(x+2y);(2).【解答】解:(1)原式=x2+2xy+y2﹣x2﹣2xy=4xy.(2)原式=••==.17.(2022秋•单县期中)计算:(1);(2).【解答】解:(1)==2x;(2)===1.18.(2021秋•集贤县校级期末)先化简,再求值,其中x=﹣2.【解答】解:==﹣,当x=﹣2时,原式=﹣=﹣4.19.(2022秋•周村区期中)计算:(1);(2).【解答】解:(1)原式=====;(2)原式====.20.(2022秋•洞口县期中)先化简:÷(a﹣1﹣);再请从﹣2,﹣1,0,1,2中选择一个合适的数值代入求值.【解答】解:÷(a﹣1﹣)=﹣÷=﹣•=﹣=﹣=,∵当a=﹣2,﹣1,2时,原分式无意义,∴a=0,1,当a=0时,原式==1.21.(2022•南岗区校级开学)先化简,再求值:÷(x﹣1﹣),其中x=+(﹣π)0.【解答】解:原式===;当x=+(﹣π)0=时,原式=.22.(2022秋•大兴区期末)计算:﹣.【解答】解:﹣=﹣==.23.(2022秋•大连期末)计算:1+()÷.【解答】解:原式=1+•=1+==.24.(2022秋•房山区期末)计算:.【解答】解:原式=••=.25.(2022秋•莱州市期末)先化简,然后在2,﹣2,﹣1中选一个你认为合适的a 值,代入求值.【解答】解:====,∵a﹣2≠0,a+1≠0,∴a≠2,a≠﹣1,∴当a=﹣2时,原式=.26.(2022秋•丰台区期末)计算:.【解答】解:=•=•=.27.(2022秋•朝阳区期末)先化简,再求值:,其中a=.【解答】解:=+•(a﹣2)=+==,当a=时,原式==3.28.(2022秋•昌平区期末)先化简,再求值:,其中.【解答】解:=﹣•=﹣==﹣,当时,原式=﹣=﹣.29.(2022秋•和平区校级期末)计算:(1);(2).【解答】解:(1)原式=;(2)原式=()2•=•=.30.(2022秋•海淀区校级期末)计算:(1);(2).【解答】解:(1)原式=+=+=;(2)原式=÷=•=.31.(2022秋•海淀区期末)化简:.【解答】解:原式=÷=•=x.32.(2022秋•滨海新区校级期末)(1);(2).【解答】解:(1)原式==;(2)原式=====.33.(2022秋•北京期末)求代数式的值,其中a=﹣1.【解答】解:=[+]÷=(+)•a(a﹣1)=•a(a﹣1)=3a,当a=﹣1时,原式=3×(﹣1)=﹣3.34.(2022秋•河北区期末)先化简,再求值:,其中a是8的立方根.【解答】解:==.∵a==2,把a=2代入.35.(2021秋•荷塘区校级期末)先化简,再求值:()÷,其中a=+1,b=−1.【解答】解:原式=(+)•=•=,当a=+1,b=﹣1时,原式===.36.(2022秋•河西区期末)计算:(1);(2).【解答】解:(1)=﹣===﹣;(2)=÷[﹣(a﹣1)]=÷=•=﹣.37.(2022秋•桂平市期中)先化简,再求值:(﹣)÷,其中x﹣2=0.【解答】解:(﹣)÷=[﹣]•=(﹣)•=•=,∵x﹣2=0,∴x=2,当x=2时,原式=.38.(2022春•庐江县月考)先化简,再求值:,其中m=1.【解答】解:=•==﹣m﹣9,当m=1时,原式=﹣1﹣9=﹣10.39.(2022春•碑林区校级月考)化简求值,并在﹣3,﹣2,2,3这四个数中取一个合适的数为的a值代入求值.【解答】解:原式=[﹣]•=(﹣)•=•=a+3,由题意得:a≠2和±3,则当a=﹣2时,原式=﹣2+3=1.40.(2022秋•巴彦县校级期末)先化简,再求值,其中a=﹣1.【解答】解:=•=•=,当a=﹣1时,原式=.41.(2022秋•辛集市校级期末)化简,然后从1,2,3,中选一个你喜欢的数代入求值.【解答】解:=•=•=,由分式有意义的条件可知:x≠2,±3,0,∴x=1,当x=1时,,原式=.42.(2022秋•长春期末)先化简,再求值:÷(1﹣),其中a=3.【解答】解:原式=÷=•=2a,当a=3时,原式=2×3=6.43.(2022秋•定陶区期中)(1)先化简,再求值,其中x=﹣5.(2)若,求值.【解答】解:(1)∵===,∴当x=﹣5时,原式==4;(2)∵,∴b﹣a=4ab,即a﹣b=﹣4ab,∴====.44.(2022秋•定陶区期中)化简下列分式:(1);(2).【解答】解:(1)====;(2)=()÷==x﹣1.45.(2021秋•雷州市校级期末)先化简,再求值:(a+1﹣)÷,其中a是4的平方根.【解答】解:(a+1﹣)÷=÷,=×=,由题意知a==±2,又a≠1且a≠2,∴a=﹣2,则原式==0.46.(2022秋•莱西市期末)计算:(1)(+)÷(﹣);(2)÷﹣.【解答】解:(1)(+)÷(﹣)===;(2)÷﹣=﹣=﹣=.47.(2022秋•阳春市校级期末)先化简,再求值:,其中x =3.【解答】解:=•===x (x +1)=x 2+x ,当x =3时,原式=32+3=12.48.(2022秋•光山县期中)化简:.【解答】解:原式=÷﹣=×﹣=﹣==1.49.(2022•金华模拟)已知a2+2a﹣1=0,求代数式÷的值.【解答】解:原式=[]•a(a﹣1)=(+)•a(a﹣1)=•a(a﹣1)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1.50.(2022春•吴中区校级月考)先化简,再求值:÷(a+2﹣),其中a=﹣.【解答】解:÷(a+2﹣)=÷=•=﹣=﹣,当a=﹣时,原式=﹣=﹣=﹣.51.(2022秋•绥宁县期中)先化简,再求值:,其中a=﹣3.【解答】解:原式===,当a=﹣3时,原式=.52.(2021秋•镇安县期末)化简:1﹣.【解答】解:1﹣=1﹣=1﹣==.53.(2022•赣州模拟)先化简,再求值:,其中a=3.【解答】解:=+•=+==,当a=3时,原式==2.54.(2022秋•鼓楼区校级期中)先化简,再求值,其中x=﹣2.【解答】解:===,当x=﹣2时,原式=.55.(2022秋•海安市月考)先化简代数式÷﹣1,然后选一个你喜欢的值代入.【解答】解:原式=﹣1=x﹣1,∵要使分式有意义,∴x不能取﹣1,1,0,当x=2时,原式=2﹣1=1,(答案不唯一,只要x不取﹣1,1,0均可).56.(2021秋•汉川市期末)先化简,再求值:﹣(),其中x=2022.【解答】解:原式=•﹣(+)=﹣=,当x=2022时,原式==.57.(2021秋•普陀区期末)计算:÷.【解答】解:÷=÷=•==.58.(2022春•庐阳区校级月考)先化简,若分式的值是负数,求a的取值范围.【解答】解:∵=•=•=,∴当a﹣2<0,a≠0,且a﹣1≠0时的值是负数,即a的取值范围是a<2且a≠1,a≠0.59.(2022春•九龙坡区校级月考)先化简,再求值:÷,其中|x﹣2|=1.【解答】解:÷=﹣•=﹣===,∵|x﹣2|=1,∴x﹣2=±1,∴x=3或x=1,∵x2﹣1≠0,x(x﹣2)≠0,∴x≠±1,x≠0,x≠2,∴当x=3时,原式===.60.(2022春•碑林区校级月考)先化简(﹣a﹣1)÷然后从﹣1,0,1,2中选一个合适的数a的值代入求值.【解答】解:(﹣a﹣1)÷=[﹣(a+1)]÷=•=•=a﹣2;∵a≠2且a≠﹣1,∴当a=0时,原式=﹣2,当a=1时,原式=﹣1.。
分式计算题分类训练(5种类型50道)【答案】(1)23x ;(2)5ac −【分析】(1)根据分式乘法法则,可得答案;(2)根据分式的除法,除以一个分式等于乘以这个分式的倒数,可得答案;【详解】解:(1)3324423263x y xy y xx y x ⋅==; (2)32233222222254422425105ab a b ab cd ab cd bd ccd c a b a b c ac −÷=⋅=−=−−. 【点睛】本题考查了分式的乘除法,根据法则计算是解题关键. 2442a a a a −++【答案】(1)12;(2)a【分析】(1)由分式的除法运算法则进行计算,即可得到答案; (2)由分式的乘法运算法则进行计算,即可得到答案.【详解】解:(1)原式=21x x +14x x +=12;(2)原式=()22a a a +−()222a a −+=2a a −; 【点睛】本题考查了分式的乘法、除法运算法则,解题的关键是掌握运算法则,正确的进行化简.【答案】(1)2152()ab a b +;(2)2(2)x x y x y +−+ 【分析】(1)先对分子、分母分解因式,再约分,即可求解;(2)先对分子、分母分解因式,再把除法化为乘法,然后约分即可求解.【详解】解:(1)原式=()()()2332510a b a b ab a b a b −⋅−+ =2352ab a b ⋅+ =2152()ab a b +;(2)原式=()()()()22222y x y x x yx x y x y +−−÷++=()()()()22222y x y x x x y x y x y +−+⋅−+ =2(2)x x y x y +−+. 【点睛】本题主要考查分式的乘除法,掌握因式分解以及约分是解题的关键.【答案】(1)2(1)(2)a a a −−+;(2)7m m −+【分析】(1)先把分式的分子分母因式分解,再约分化简即可;(2)先把分式的分子分母因式分解,再除法变乘法,最后约分化简即可.【详解】(1)222441214a a a a a a −+−⋅−+−22(2)1(1)(2)(2)a a a a a −−=⋅−−+ 22(2)(1)(1)(2)(2)a a a a a −−=−−+2(1)(2)a a a −=−+;(2)2211497m m m ÷−−()221(7)749(7)(7)m m m m m m m −=−⋅−=−−+−7mm =−+.【点睛】本题考查分式的乘除运算,一般都是先把分子分母因式分解,最后约分化简.【答案】(1)224a ab+(2)22239x x x --+【分析】(1)根据分式的乘法运算法则进行计算即可;(2)根据除以一个数等于乘以这个数的相反数进行计算即可.【详解】(1)解:22234246a b a b a b ab −⋅− =3a 2b2(a −2b )∙(a +2b)(a −2b)6ab (2)4a a b += 224a ab =+;(2)2222133218412x x x x x x −+−÷−−2(1)4(3)2(3)(3)3(1)x x x x x x --=×+-- 2(1)3(3)x x x -=+22239x x x --+=.【点睛】本题考查了分式的乘法运算以及除法运算,熟练掌握相关运算法则是解本题的关键.【答案】(1)22b(2)2−【分析】(1)直接根据分式的乘除运算法则解答即可;(2)分式的分子、分母先分解因式,把除法转化为乘法,再约分即可得到答案.【详解】(1)原式2222245353422a b c d d cd ab abc b =⋅⋅=;(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握分式的乘除运算法则是解题的关键.【答案】(1)234a c −;(2)21−−ab b . 【分析】分式相乘的法则是:用分子的积作为积的分子,分母的积作为积的分母,并将乘积化为既约分式或整式,作分式乘法时,也可先约分后计算.【详解】(1)解:原式2232162b a a bc a b ⎛⎫− ⎪⎝=⋅⎭⋅ 3221216a b ab c =−234a c =−(2)解:原式()22122()a b ab ab b a −=−⋅⋅−()2222()ab a b b a ab −=−−()1b a b =−−21ab b =−− 【点睛】本题考查分式的乘除运算.分式的除法运算实质上是乘法运算.掌握分式的乘法运算法则是解题关键.【答案】(1)()()()()3242x x x x −++−(2)22aa −+【分析】根据分式的乘除混合计算法则求解即可.【详解】(1)解:原式()()()()()()2232444322x x x x x x x x −+−=⋅⋅+−−+−()()()()3242x x x x −+=+−;(2)解:原式()()()()()211221112a a a a a a a −++−=⋅⋅+−+22aa −=+.【点睛】本题主要考查了分式的乘除混合计算,熟知相关计算法则是解题的关键.【答案】(1)2a −(2)12x x ++【分析】(1)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算;(2)根据平方差公式,十字相乘法,完全平方公式等进行分解因式,再计算.【详解】(1)原式()()()()()244214222a a a a a a a +−−=⋅⋅+−−−42a a −=−.(2)原式()()()()()()()()2314444322x x x x x x x x x x −−++−=⋅⋅+−−+−12x x +=+. 【点睛】本题考查了分式的乘除混合运算,正确分解因式是关键,属于基础题.【答案】(1)42b a -(2)-2【分析】(1)先将除法转化为乘法,再约分即可得出答案;(2)先利用完全平方公式整理,将除法化为乘法,最后约分即可得出答案.【详解】(2)原式()()()()()2992332993a a a a a a a +−++=⋅⋅=−−−++.【点睛】本题考查了分式的乘除,熟练掌握运算法则是解题的关键.【答案】(1)a b +(2)x y −【分析】(1)根据同分母分式的运算法则计算即可;(2)根据同分母分式的运算法则计算即可.【详解】(1)解:原式()()a b a b a b a b +−==+−.(2)解:原式222x y xy x y x y +=−−− 222x y y x y x −+=−()2x y x y −=−x y =−.【点睛】本题考查了同分母分式的加减法以及平方差公式,熟练掌握同分母分式的加减法法则是解题的关键.【答案】(1)1x +(2)12x y +【分析】(1(2)先将异分母分式化为同分母分式,再进行同分母分式加减运算即可;【详解】(1)原式2221311x x x x x +−=+−−22131x x x x ++−=−22121x x x +−=−()()()2111x x x +=−−11x x −=+; (2)原式()()2222422x y x y x y x y x −++−−+=2224y xy x −−=12x y =+. 【点睛】本题考查了异分母分式相加减的运算,熟练掌握运算法则并你能将异分母分式互为同分母分式是解题的关键.【答案】(1)21m m −(2)224x x −【分析】(1)根据分式与整式的加法进行计算即可求解;(2)根据异分母的加法进行计算即可求解.【详解】(1)解:111m m ++−()()11111m m m m +−=+−−2111m m +−=−21m m =−; (2)解:2242x x x x −−− ()()()2222x x x x x −+=+−22224x x x x −−=−224x x =−.【点睛】本题考查了分式的加减计算,熟练掌握分式的运算法则是解题的关键.【答案】(1)3a +(2)221212a a a a −−++【分析】(1)先将分子分母能因式分解的进行因式分解,再通分计算即可;(2)先将分子分母能因式分解的进行因式分解,再通分计算即可.【详解】(1)解:22193a a a −−−()()21333a a a a =−+−− ()()()()233333a a a a a a +=−+−+− ()()2333a a a a −−=+− ()()333a a a −=+− 13a =+;(2)解:221121a a a a a a −−++++()()21111a a a a a −−=+++ ()()()()()2211111a a a a a a −−+=+++()()()21211a a a −+=+221212a a a a =−−++.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算的运算顺序和运算法则.【答案】(1)221x −−;(2)2x x −+【分析】(1)根据异分母分式相加减法则,异分母分式相加减,先通分,分母都变为()()11x x +−,变为同分母分式,再加减计算即可;(2)根据异分母分式相加减法则,异分母分式相加减,先通分,使前两项分数的分母都变为()()22x x +−,变为同分母分式,再加减计算,约分化简,再把1−这项写成同分母的形式22x x +−+,再加减计算即可.【详解】(1)原式()()()()111111x x x x x x −+=−+−+−()()()1111x x x x −−+=+−221x −=−;(2)原式()()()()()22412222x x x x x x +=−−+−−+()()()22122x x x −=−+−2222x x x +=−++2x x =−+. 【点睛】本题考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.【答案】(1)a b +(2)21m m +【分析】(1)先通分计算括号内,再根据分式的除法法则进行计算即可;(2)先算除法,再通分进行加法运算即可.【详解】(1)解:原式()2222a ab b ab a b a b ab −+=⋅−+()()2a b ab ab b a a b −=⋅+−a ba b −=+;(2)原式()()()()23313321m m m m m m −+=−+⋅+−+111m m =−++ 2111m m −+=+21m m =+.【点睛】本题考查分式的混合运算,解题的关键是掌握分式的混合运算法则,正确的计算.【答案】(1)26m +(2)11x −【分析】(1)通分计算加减法,再约分计算乘除法即可求解; (2)通分计算加减法,再约分计算乘除法即可求解.【详解】(1)解:原式()22224523m m m m m ⎛⎫−=−⋅ ⎪−−−−⎝⎭ ()222923m m m m −−=⋅−−()()()332223m m m m m +−−=⋅−−26m =+;(2)解:原式22121x x x x x x ⎛⎫++=÷− ⎪⎝⎭211x x x x +−=÷()()111x x x x x +=⋅+−11x =− 【点睛】本题考查分式的混合运算.异分母分式的加减运算关键是通分,分式的乘除运算关键是将分子分母因式分解后进行约分.【答案】3x − 【分析】先将括号内的两个式子通分并化简,然后将除法改为乘法,分子分母调换位置,最后再约分,可得最终化简结果.【详解】解:2569122x x x x −+⎛⎫−÷ ⎪++⎝⎭ 22569222x x x x x x +−+⎛⎫=−÷ ⎪+++⎝⎭()23322x x x x −−=÷++()23223x x x x −+=+−g13x =−.【点睛】本题考查了用公式法因式分解、约分、通分、分式的化简等知识点.熟知分式的化简步骤是解题的关键,同时要将结果化为最简分式或整式.【答案】232a a −++【分析】根据分式的混合运算顺序和运算法则化简原式,即可求解.【详解】解:22231211a a a a a a −⎛⎫÷−+ ⎪+++⎝⎭ ()()22231111a a a a a a −⎛⎫−=÷− ⎪+++⎝⎭()()()()221221a a a a a a −+=⋅+−+()()12a a a =−++ 232aa a =−++.【点睛】本题主要考查分式的化简,解题的关键是掌握分式的混合运算顺序和运算法则.【答案】1 【分析】通分,计算括号内,再将除法变成乘法,约分即可.【详解】解:原式()()2a ab a b a a b −−=⋅−1=.【点睛】本题考查分式的混合运算.熟练掌握相关运算法则,是解题的关键.【答案】2241x xx ++【分析】再括号外的分式2乘法运算即可化简原式.【详解】解:231111x x x x x x ⎛⎫⋅ ⎭−⎝−−++⎪ ()()()()()()31111111x x x x x x x x x +−−−+=⋅−++22331x x x x x +−+=+2241x x x +=+.【点睛】本题考查分式的混合运算,熟练掌握分式的混合运算法则并正确求解是解答的关键.【答案】1aa −【分析】先计算括号里边的式子,通分化成同分母的分式相加,再计算除法运算即可. 【详解】解:+⎛⎫+÷ ⎪−−−+⎝⎭2a 11a a 1a 1a 2a 1=(a +1a −1+1(a −1)2)÷a a −1=a 2(a−1)2÷a a−1 =a 2(a−1)2×a−1a 1aa =−.【点睛】此题考查学生分式运算,以及完全平方公式、平方差公式的运用,解答此题的关键是把分式化到最简.【答案】26x + 【分析】先通分括号内的式子,然后将括号外的除法转化为乘法,再约分即可.【详解】解:532224x x x x −⎛⎫+−÷ ⎪−−⎝⎭ ()()()2252223x x x x x +−−−=⋅−− ()222923x x x x −−=⋅−− ()()()332223x x x x x +−−=⋅−− ()23x =+ 26x =+.【点睛】本题考查分式的混合运算,熟练掌握运算法则是解答本题的关键.【答案】2x +,1.【分析】首先把括号内的分式进行通分、相减,把除法转化为乘法,即可化简,最后代入数值计算即可.【详解】解:原式()22121x x x x +−=⨯+− 2x =+,当=1x −时,原式121=−+=.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.【答案】1x −,4 【分析】先计算括号内加法,再计算除法即可得到化简结果,再把字母的值代入计算即可.【详解】解:22121124x x x x −+⎛⎫+÷ ⎪−−⎝⎭ 222121224x x x x x x −−+⎛⎫=+÷ ⎪−−−⎝⎭()()()211222x x x x x −−=÷−+− ()()()222121x x x x x +−−=⋅−− 21x x +=− 当3x =−时, 原式32113144−+−===−−− 【点睛】此题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.【答案】1x −,2−(答案不唯一) 【分析】根据分式的减法和除法可以化简题目中的式子,然后从1−,0,1和2中选一个使得原分式有意义的值代入化简后的式子,即可解答本题.【详解】解: 原式211(2)(2)1(2)x x x x x −−+−=⋅−−2212x x x x −+=⋅−−21x x +=−,∵1x ≠,2x ≠±∴当0x =时,原式02201+==−−(答案不唯一).【点睛】本题考查分式的化简求值,解答本题的关键是掌握分式混合运算法则.【答案】2,当2m =时,值为12−【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的m 的值代入进行计算即可.【详解】解:22221369m m m m −⎛⎫+÷ ⎪−−+⎝⎭()()2323321m m m m −+−=⋅−−()()231321m m m m −−=⋅−−32m −=, 3010m m −≠−≠,,31m m ∴≠≠,,∴当2m =时,原式23122−==−【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解题的关键.【答案】3a b −+,11− 【分析】先根据分式混合运算的法则把原式进行化简,再求出a 、b 的值代入进行计算即可.【详解】解:原式()()()()2232251=222a b a b a b b a a b a b a b a ⎡⎤−+−÷−−⎢⎥−−−⎣⎦ ()()()2222531=224a b a b a a b a b a b −−−÷−−−()()222321=29a b a b a a b a b a −−−−⋅−()()()()23321=32a b a b a a b a b a b a −−+−−−⋅()31=3a b a a b a −−+ ()()()=3333b a b a a b a b a a +−++− 23a b =−+, 解方程组51a b a b +=⎧⎨−=−⎩得23a b =⎧⎨=⎩,当2,3a b ==时,原式有意义,∴原式2223311=−=−+⨯.【点睛】本题考查了分式的化简求值,掌握分式混合运算的法则是解题的关键.【答案】4【分析】根据2222244x y x y A x xy y x y −+=⋅+++,即可化简求值. 【详解】解:∵2222244x y x y A x xy y x y −+÷=+++ ∴()()()22222224422x y x y x y x y x y x y A x xy y x y x y x y x y +−−++−=⋅=⋅=++++++ 当2,1x y ==时,2112214A −==+⨯ 【点睛】本题考查分式的化简求值.将分子分母正确的进行因式分解是解题关键.【答案】2a +,5【分析】根据分式的减法和除法可以化简题目中的式子,然后从2−,2,3中选取一个使得原分式有意义的值代入化简后的式子即可. 【详解】解:22224a a a a a ⎛⎫−÷ ⎪−−⎝⎭ ()()22222222a a a a a a a a +−⎛⎫−=−⨯ ⎪−−⎝⎭()()22222a a a a a +−=⋅−2a =+,∵要使分式有意义,a 不能取0和2±,∴当3a =时,原式325=+=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式除法和减法的运算法则.【答案】26x −−;6− 【分析】直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:233139x x x +⎛⎫+÷ ⎪−−⎝⎭ ()()333333x x x x x ++−=÷−+− ()()33363x x x +−=−⋅− ()23x =−+26x =−−,当()()330x x +−=,即3x =或3x =−时,分式没有意义,当0x =时,原式266x =−−=−.【点睛】此题主要考查了分式的化简求值,正确掌握分式的混合运算是解题关键.【答案】()122x −;14042【分析】先根据分式混合运算法则进行化简,然后再代入数据求值即可. 【详解】解:2142422x x x x x +⎛⎫+÷ ⎪+−+⎝⎭ ()2142222x x x x x ⎡⎤++÷⎢⎥+−+⎣⎦=()()()()()()224222222222x x x x x x x x x ⎡⎤−++÷⎢⎥+−+−⎣⎦++= ()()22422224x x x x x ++=⋅+−+()122x =−,当2023x =时,原式()112202324042==⨯−.【点睛】本题主要考查了分式化简求值,解题的关键是熟练掌握分式混合运算法则,准确计算.【答案】3a +【分析】先根据分式的加法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【详解】解:()()()()23333233231339323323a a a a a a a a a a a a a a a a −+−+−+−−⎛⎫+÷=⋅=⋅=+ ⎪−−−−−−⎝⎭,当3=a 时,原式33=+=【点睛】本题考查了分式的化简求值,能正确根据分式的运算法则进行化简是解此题的关键.【答案】(1)无解(2)无解【分析】(1)去分母,化为整式方程求解,注意检验;(2)去分母,化为整式方程求解,注意检验;【详解】(1)解:2216124x x x ++=−−−,两边同时乘以2(4)−x ,得22(2)16(4)x x −++=−−, 44164x −−+=,2x =,2x =时,240x −=∴原方程无解.(2)解:两边同时乘以2(9)x −,得32(3)12x x −++=,39x =,3x =,3x =时,290x -=∴原方程无解.【点睛】本题考查分式方程的求解;掌握分式方程的求解步骤,注意检验是解题的关键.【答案】(1) 1.5x =(2)无解【分析】(1)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可;(2)先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】(1)解:2111x x x +=−−, 去分母得:12x x +−=,移项合并同类项得:23x =,系数化为1得: 1.5x =,检验:把 1.5x =代入1x −得:1.510.50−=≠,∴ 1.5x =是原方程的解.(2)解:2216124x x x −−=+−,去分母得:()222164x x −−=−,去括号得:2244164x x x −+−=−,移项合并同类项得:48x −=,系数化为1得:2x =−,检验:把2x =−代入得:()2240−−=,∴2x =−是原方程的增根,∴原方程无解. 【点睛】本题主要考查了解分式方程,解题的关键是熟练掌握解分式方程的一般步骤,准确计算,注意最后要对方程的解进行检验.【答案】(1)4x =;(2)原分式方程无解.【分析】(1)方程两边乘以最简公分母()22x x −,把分式方程转化成整式方程求解即可; (2)方程两边乘以最简公分母()()22x x +−,把分式方程转化成整式方程求解即可.【详解】(1)解:()21522x x x x +=−, 方程两边同乘()22x x −,得482510x x −+=−,解得:4x =,检验:当4x =时,()22160x x −=≠,4x ∴=是原方程的解,∴原方程的解为4x =;(2)解:2224162424x x x x x −++=+−−,()()()()2221622222x x x x x x +−−=+−+−,()()22162222x x x x x x −+−=+−+−,方程两边都乘()()22x x +−,得:()()222216x x −−+=,解得:2x =−,检验:当2x =−时,()()220x x +−=,∴2x =−是增根,即原分式方程无解.【点睛】本题考查解分式方程,熟练掌握解分式方程的方法是解题的关键. ) ).【答案】见解析【详解】解:(1),去分母,方程两边同时乘以x (x ﹣1),得:x2﹣2(x ﹣1)=x (x ﹣1),x2﹣2x+2=x2﹣x ,﹣x=﹣2,x=2,经检验:x=2是原分式方程的解;(2)去分母,方程两边同时乘以x2﹣1,得:(x+1)2﹣4=x2﹣1,x2+2x+1﹣4=x2﹣1,2x=2,x=1,经检验:x=1不是原分式方程的解,原分式方程无解.【点评】本题是解分式方程,明确解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论;注意去分母时,要同时乘以所有分母的最简公分母,解分式方程时,一定要检验.【答案】(1)1x =(2)2x =【分析】(1)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母,得32x x +−−,解,得1x =,经检验知1x =是分式方程的解;(2)原方程变形得()()23111111x x x x +=+−+− 去分母,得()()213111x x −++=, 解,得2x =,经检验知2x =是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。
《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x有意义?(2)当x 为何值时,分式22211x x的值为零?解题策略(1)要使分式22211x x有意义,应有分母不为零这个分式有两个分母x 和11x,它们都不为零,即0x 且110x,于是当0x 且1x 时,分式22211x x有意义,(2)要使分式22211x x的值为零,应有2220x且110x,即1x 且1x ,于是当1x 时,分式22211x x的值为零画龙点睛1.要使分式有意义,分式的分母不能为零.2.要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1.(1)要使分式24x x 有意义的x 的取值范围是()(A)2x (B) 2x ( C)2x (D)2x (2)若分式的的值为零,则x 的值为() (A)3(B)3或3(C)3(D)02.(1)当x时,分式23(1)16x x 的值为零;(2) 当x时,分式2101x x 3.已知当2x 时,分式x b xa无意义;当4x时,分式的值x b xa为零,求a b .融会贯通4.若201a a ,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题若2731x xx ,求2421x xx 的值解题策略因为2731x xx ,所以0x 将等式2731x xx 的左边分子、分母同时除以x ,得1713x x,所以有1227xx因此242222211149112214351()1()17xx xxxxx画龙点睛对于含有1xx 形式的分式,要注意以下的恒等变形:22211()2x x x x 22211()2x xx x 2211()()4xxxx举一反三1.(1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b ca b c(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a aa 2.已知13xy xy,求2322x xy y xyxy的值.3.已知13xx,求2421x xx 的值.融会贯通4.已知3a b ba,求22224a ab baabb的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x yx yx y xyxyxy解题策略原式2222()4()43()()8xy y x y xxy x y xyx y x yx yg()(3)(3)()(3)(3)x y x y x y yx xy x y x y xy xy ggyx画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1.先化简,再求值:262393m m mm ,其中2m .2.计算:322441124a aa babab ab3.(1)已知实数a 满足2280aa ,求22213211143a aa a aaa的值(2)已知a 、b 为实数,且1ab ,设11a b Ma b ,1111Na b ,试比较M 、N 的大小关系.融会贯通4.甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x xx x 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B ABBA,111(1)1n n nn 经典例题已知54(1)(21)121x A B x x x x ,求A 、B 的值解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x (2)(1)(21)A B x B Ax x ,可得254A B BA,解得13A B画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B的值即可. 举一反三1.若在关于x 的恒等式222Mx N c xxxax b中,22Mx N xx 为最简分式,且有a b ,abc ,求M ,N .2.化简:222211113256712xxxx xx xx 3.计算:222222a b c b c a c a b aabacbcbabbcaccacbcab融会贯通4.已知21(2)(3)23xb c ax x x x ,当1,2,3x时永远成立,求以a 、b 、c为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决. 经典例题已知x y z x y z x y zzyx,且()()()1x y y z z x xyz,求x y z 的值解题策略由x y z x y z x y zzyx得111x yx zy zz y x 从而xy x z yz z yx设x yxz y zk zyx,则x y kz ,x z ky ,y z kx三式相加得2()()x yz k xyz ,即()(2)0x y z k ,所以0xy z ,或2k若0xy z ,则1x y xz y zzy x g,符合条件;若2k ,则()()()81x y y z zx xyz与题设矛盾,所以2k 不成立因此0x yz画龙点睛1.将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2.在得到等式2()()x yz k x y z 后.不要直接将等式的两边除以x y z ,因为此式可能等于0.3.在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1.(1)已知275x y z ,求值①x y zz;②x yz;③x y zx(2)已知2310254a b b c c a,求56789a b cab的值2.若a b c d bcaa,求a b c d abcd的值3.已知实数a 、b 、c 满足0a b c,并且a b c k bccaab,则直线3y kx 一定通过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限融会贯通4.已知9pq r ,且222p qrxyzyzxzxy,求px qy rz xyz的值6 整数指数幂一般地,当n 是正整数时,1(0)nnaaa,这就是说(0)na a是na 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2mx ,3ny,求24()mn xy 的值解题策略242(4)(4)84()mn m n mnxy xyxyg g 848481()()23256mn xy 画龙点睛将所求的代数式转化为以mx、ny 为底的乘方,进而代入相应的值进行计算.举一反三1.计算(1)222242(2)()ab a b a b g (2)541321111(1)()()()()21023(3)10222(510)(0.210)(200)2.水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510kg ,求一个氢原子的质量.3.已知2310aa ,求(1)1a a ;(2)22aa ;(3)44aa融会贯通4.如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答. 经典例题解方程52432332x x x x 解题策略解法一去分母,得(52)(32)(43)(23)x x x x 2215610486129xxxxxx所以1x 验根知1x 为原方程的解.解法二方程两边加1,得5243112332x x x x 即222332x x 所以2332x x 解得1x 验根知1x 为原方程的解.解法三原式可化为22112332x x所以222332xx以下同解法二画龙点睛1.通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2.除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3.解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1.(1)解方程2227461xxxxx。
初中数学分式的化简求值专项练习题一、解答题1.先化简,再求值: 2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中x 是不等式组()5331 131922x x x x -⎧⎪⎨>+<-⎪⎩-的整数解.2.先化简,再求值: 22111121x x x x x ⎛⎫+÷ ⎪+-++⎝⎭,其中x =3.先化简,再求值: 222111x x x x x x --⎛⎫+-÷ ⎪++⎝⎭ ,其中()10132x -⎛⎫=+- ⎪⎝⎭. 4.先化简,再求值: 22214244a a a a a a a a +--⎛⎫+÷ ⎪--+⎝⎭,其中(1012a π-⎛⎫=+ ⎪⎝⎭. 5.先化简,再求值: 524223m m m m -⎛⎫+-⋅ ⎪--⎝⎭,其中12m =-. 6.先化简,再求值: 222444142x x x x x x -++⎛⎫-÷- ⎪-+⎝⎭,其中2210x x +-=. 7.先化简,再求值: 69933a a a a a a +⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭,其中3a =. 8.先化简,再求值: 2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 9.先化简再求值: 112y x y x y x y ⎛⎫-÷⎪-+-⎝⎭,其中x 、y 满足()2120x y -++= . 10.先化简,再求值: 22121x x x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x =11.先化简,再求值: 22a 1a 1(a)a a+÷-+,其中a=2. 12.化简,再求值: 22221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组13 22124x x ⎧≤-<⎪⎨⎪⎩+的整数解. 13.先化简,再求值: 2224124422a a a a a a ⎛⎫--÷ ⎪-+--⎝⎭,其中, a 是方程2310x x ++=的根. 14.先化简,再求值: 211122a a a -⎛⎫-÷ ⎪++⎝⎭,其中220a a += 15.先化简,再求值: 221111442x x x x x x -⎛⎫+⋅- ⎪++++⎝⎭,其中2x =. 16.先化简,再求值: 2211111x x x x ⎛⎫-÷ ⎪+--⎝⎭,其中12x =-. 17.先化简,再求值: 2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中 5x =-.18.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成ABC ∆的三边,且a 为整数.19.先化简,再求值: 223a 9a 3a a 3a 3a ⎛⎫+-÷ ⎪--⎝⎭,其中2a =. 20.化简: 228161212224x x x x x x x -+⎛⎫÷--- ⎪+++⎝⎭ 21.化简: 2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭22.当1a =,求211121a a a a a a+-÷--+的值. 二、计算题23.计算 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 24.计算: 221b a a b a b ⎛⎫÷- ⎪--⎝⎭. 25.计算 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭. 26.2244233x x x x x x +-+⎛⎫++÷ ⎪--⎝⎭27.化简: 21321121x x x x x x --⎛⎫-÷ ⎪++++⎝⎭28.化简: 2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭. 29.化简: 228161212224x x x x x x x -+⎛⎫÷--- ⎪+++⎝⎭30.2344311a a a a a ++⎛⎫++÷ ⎪--⎝⎭31.先化简,再求值: 2241222a a a a a ⎛⎫-⋅ ⎪--+⎝⎭其中a =32.先化简,再求值: 22224x x x x x x ⎛⎫+÷ ⎪-+-⎝⎭,其中x=﹣1. 33.计算: 222442342a a a a a a-+-÷--+ 三、填空题34.计算: 212111x x x -⎛⎫-÷ ⎪--⎝⎭ ____________.参考答案1.答案:13 解析:2.答案:原式=13221x x 解析:3.答案:1x ,13 解析:4.答案:()212a -,1解析: 5.答案:-2(m+3),-5解析:6.答案:242x x +,4 解析:7.答案:3a a +,1-解析:8.答案:22m m-+;1 解析:9.答案:1x y +,-1 解析:10.答案:x 2-1,7解析: 11.答案:3解析:12.答案:21x x +,x=2时,原式= 43. 解析: 13.答案:原式()()()()22221222a a a a a a ⎡⎤+--=+⨯⎢⎥--⎢⎥⎣⎦()221222a a a a a -+⎛⎫=+⨯ ⎪--⎝⎭()32a a += ()2132a a =+ ∵a 是方程2310x x ++=的根∴2310a a ++=∴231a a +=-原式12=-解析:14.答案:11a --,1 解析:15.答案:3解析:16.答案:4解析:17.答案:18-解析:18.答案:原式()()()212232aa a a a a a +=⋅++--- ()()11232a a a =+--- ()()1323a a a +-=-- ()()223a a a -=-- ()13a =-, ∵a 与2、3构成ABC ∆的三边,且a 为整数 ∴15a <<,即2,3,4a =当2a =或3a =时,原式没有意义则4a =时,原式1=解析:19.答案:原式=212a =解析:20.答案:()44x x -+ 解析:21.答案:22x x --+解析:22.答案:12- 解析:23.答案:2m+6解析:24.答案:原式 1a b=+解析:25.答案:2m+6 解析:26.答案:22x x +- 解析:27.答案:x+1 解析:28.答案:-x 2-x+2 解析:29.答案:()44x x -+ 解析:30.答案:2a a + 解析:31.答案:4 解析:32.答案:3x+2;-1 解析:33.答案:a-3 解析:34.答案:x+1 解析:。
初中数学分式的化简求值专项训练题(精选历年60道中考题 附答案详解)1.化简求值 :22244(4)2x x x x x+--÷+,其中2x = 2.先化简、再求值:352242a a a a -⎛⎫÷-- ⎪--⎝⎭,其中a3. 3.()1化简:21111x x x ⎛⎫÷+ ⎪--⎝⎭然后选择你喜欢且符合题意的一个x 的值代入求值. ()2分解因式:22344xy x y y --4.先化简再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中x =135.先化简(2341x x +-﹣21x -)÷2221x x x +-+,再从﹣2,﹣1,0,1,2中选一个你认为合适的数作为x 的值代入求值.6.2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭7.先化简再求值:(2221244x x x x x x ---+++)÷42x x -+,其中x =(﹣1)0. 8.先化简,再求值:22214244a a a a a a a a +--⎛⎫-÷⎪--+⎝⎭,其中3a =. 9.先化简,再求值: 2295(2)242y y y y y -÷----,其中y =. 10.先化简,再求值:(2241x x x -+-+2-x)÷2441x x x++-,其中x-2. 11.化简求值:22111m m m m +-⎛⎫-÷ ⎪⎝⎭,其中m12.(1)计算:22214()244x x x x x x x x+---÷--+; (2)解分式方程:1121x x x -=+-. 13.(1)化简2422x x x+-- (2)先化简,再求值221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11622x x --⎧⎨+≥⎩>.14.先化简,再求值:(11x +﹣1)÷21x x -,其中x =2 15.(1)化简:2112x x x x x ⎛⎫++÷- ⎪⎝⎭; (2)化简分式:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从13x -≤≤中选一个你认为适合的整数x 代人求值.16.先化简,再求值:211()1211x x x x x x ++÷--+-,其中x=3. 17.先化简,再求值:(522a a -++a ﹣2)÷22a a a -+,其中a =2+1. 18.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么? 19.先化简,再求值:2211()3369x x x x x x --÷---+,其中x 满足240x +=. 20.先化简再求值2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x =2017的解. 21.化简求值:22a 2ab b 2a 2b-+÷-(11b a -),其中a 2=1,b 2=1. 22.(1)解方程 :21124x x x -=-- (2)先化简,再求值:22112()2a a b a b a ab b+÷+--+,其中269a a -+与|1|b -互为相反数. 23.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中2.24.先化简,再求值:2221111a a a a a ⎛⎫++-÷ ⎪--⎝⎭,其中a =﹣3. 25.(1)计算:23(3)3x x x x--- (2)计算:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭ (3)先化简,再求值: 已知a b =3,求222443a ab b b a b a b a b ⎛⎫++÷-- ⎪--⎝⎭的值. 26.计算:(1)2111a a a a -++-; (2)2222421121a a a a a a a ---÷+--+; (3)先化简再求值:(132x -+)212x x x -÷+-,其中x 是﹣2,1,2中的一个数值. 27.先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解. 28.先化简,再求代数式214(1)33x x x -+÷--的值,其中3tan 3022cos 45x =- 29.()1解方程:28124x x x -=-- ()2先化简后求值2221412211a a a a a a --⋅÷+-+-,其中a 满足20a a -= 30.若13x x +=,求: (1)221x x+的值; (2)1x x-的值; (3)221x x -的值. 31.先化简再求值:221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =-.32.先化简,再求值:233()111a a a a a -+÷--+,其中. 33.先化简,再求值22111211a a a a -⎛⎫÷+ ⎪-+-⎝⎭,其中a =2.34.先化简再求值:22221111x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中x 是不等式组30223x x x +>⎧⎪-⎨<+⎪⎩的最大整数解.35.(1)先化简22121211x x x x x ÷---++,然后从-1,0,2中选一个合适的x 的值,代入求值. (2)解不等式组3(2)2513212x x x x +>+⎧⎪⎨+-<⎪⎩36.先化简,再取一个你喜欢的x 的值带入并求值21211()()111x x x x x x +⨯--+-+ 37.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x ≠. 38.已知,求的值.39.化简:222524(1)244x x x x x x -+-+÷+++,并求当=-123x 40.先化简,再求值:265222x x x x -⎛⎫÷-- ⎪--⎝⎭,其中x =﹣1. 41.先化简,再求值:2112111x x x x +⎛⎫-÷⎪-+-⎝⎭,其中x 满足240x -=. 42.先化简(22444a a a -+-﹣2a a +)÷12a a -+,再从a ≤2的非负整数解中选一个适合的整数代入求值.43.先化简,再求值:2222444x x x x x x x--+-÷-,其中1x =. 44.化简求值:2121(1)m m m m--+÷,从-1,0, 1,2中选一个你认为合适的m 值代入求值.45.(1)计算:()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦; (2)先化简,再求值:524223x x x x-⎛⎫++⋅ ⎪--⎝⎭,其中5x =.46.(1)先化简,再求值:24512111a a a a a a -⎛⎫⎛⎫+-÷- ⎪ ⎪---⎝⎭⎝⎭,其中4a = (2)解分式方程:28142y y y +=-- 47.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=2.48.化简求值:244()33x x x x x ---÷--,其中-249.先化简,再求值:222a b 2ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中,a 1b 1=+=. 50.先化简,再求值:223232442x x x x x x -⎛⎫-÷ ⎪--+-⎝⎭,其中3x =. 51.先化简,再求值22214244a a a a a a a a +--⎛⎫+÷⎪--+⎝⎭并从04a ≤≤中选取合适的整数代入求值. 52.先化简,再求值:23(1)11x x x x -÷----,其中1x =- 53.化简并求值:2x+221x 111x x x --÷+--,其中x=﹣3. 54.先化简,再求值:(1)()223(2)(2)844a b a b a b ab ab +---÷其中2,1a b ==(2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭其中3x =. 55.先化简,再求值231(1)22x x x --÷++的值,其中2sin 45x ︒=︒.56.先化简,再求值:22(1)x y x y x y -÷--,其中x 2,y =11()2-. 57.先化简再求值2324()422x x x x x --÷---,其中x=3tan30°-4cos60°. 58.先化简,再求值:2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭,其中3a =. 59.化简分式222x x x x x 1x 1x 2x+1-⎛⎫-÷ ⎪---⎝⎭,并从﹣1≤x≤3中选一个你认为合适的整数x 代入求值.60.(1)解方程:2236111x x x +=+-- (2)计算:3a(2a 2-9a+3)-4a(2a-1)(3)计算:(×(-1|+(5-2π)0(4)先化简,再求值:(xy 2+x 2y )222222x x y x xy y x y ⋅÷++-,其中,y=2.参考答案 1.2x -;2.【解析】 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,现时利用除法法则变形,约分得到最简结果,再把x 的值代入计算即可.【详解】22244(4)2x x x x x+--÷+ =244(2)(2)(2)x x x x x x x +-+-÷+ =2(2)(2)(2)(2)x x x x x x -+⨯+- =2x -; 当22x =+时,原式=2222+-=.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2.1-2(3+a),【解析】【详解】解:原式=35(2)(2)2(2)22a a a a a a ⎡⎤--+⎛⎫÷- ⎪⎢⎥---⎝⎭⎣⎦322(2)(3)(3)12(3)a a a a a a --=-⋅--+=-+ 当33时,原式=3-3.(1)11x+,取x=2,得原分式的值为13(答案不唯一);(2)-y(2x-y)2.【解析】【分析】(1)先根据分式的运算法则进行化简,再选一个使原分式有意义的x的值代入求值即可;(2)先提取公因式,再利用完全平方公式进行二次分解即可.【详解】解:(1)原式=1111 (1)(1)1(1)(1)1x x x xx x x x x x x-+-÷=⨯= +--+-+,取x=2代入上式得,原式11213==+.(答案不唯一)(2)原式=y(4xy-4x2-y2)=-y(2x-y)2.【点睛】本题考查分式的化简求值以及因式分解,掌握基本运算法则和乘法公式是解题的关键.4.化简的结果是1x-;2 3 -.【解析】【分析】先计算括号里的减法,将21x-进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值.【详解】解:211122xx x-⎛⎫÷-⎪++⎝⎭=(1)(1)122x x xx x-++÷++=(1)(1)221x x xx x-++⋅++=1x-,当x=13时,原式=113-=23-【点睛】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.5.原式=11xx-+,当x=0时,原式=﹣1.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的除法运算,最后选择使分式的意义的x 的值代入进行计算即可得.【详解】原式=()()()()()23422211111x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎢⎥⎣⎦ =()()()212·112x x x x x -++-+ =11x x -+, ∵x≠±1且x≠﹣2,∴x 只能取0或2,当x=0时,原式=﹣1.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.6.2-【解析】【分析】先算括号内分式的减法,得()()269233x x x x -+-+-,根据完全平方公式化简得()()()23233x x x --+-,再根据分式的除法法则计算即可.【详解】 2316133962x x x x x x --⎛⎫÷-- ⎪+--+⎝⎭ ()()232612433233x x x x x x x -+--+-=÷++- ()()23693233x x x x x x --+-=÷++-()()()2333233x x x x x ---=÷++- ()()()2233333x x x x x +--=⨯+-- 2=-.【点睛】本题考查了分式的化简运算,掌握分式的运算法则以及完全平方公式是解题的关键. 7.212x x +,13【解析】【分析】直接将括号里面通分运算,再计算除法,化简后,再代入x 的值得出答案.【详解】 解:原式=2214[](2)(2)2x x x x x x x ----÷+++ =22(2)(2)(1)4[](2)(2)2x x x x x x x x x x -+---÷+++ =222244[](2)(2)2x x x x x x x x x ----÷+++ =242(2)4x x x x x -++- =1(2)x x + =212x x+ 当x =(﹣1)0=1时,原式=2111213=+⨯ 【点睛】本题主要考查分式的化简求值,掌握分式加减乘除混合运算顺序和法则是解题的关键.8.21(2)a -,1 【解析】【分析】根据分式的混合运算法则化简,再将a 的值代入化简后的式子计算即可.【详解】 解:22214244a a a a a a a a +--⎛⎫-÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⋅⎢⎥---⎣⎦ 22(2)(2)(1)(2)(2)4a a a a a a a a a a ⎡⎤+--=-⋅⎢⎥---⎣⎦ 2224(2)4a a a a a a a --+=⋅-- 24(2)4a a a a a -=⋅-- 21(2)a =- 当3a =时,22111(2)(32)a ==--. 【点睛】 本题考查了分式的化简求值问题,解题的关键是掌握分式混合运算的法则,正确化简.9.12y 【解析】【分析】先把原式化简,化为最简后再代数求值即可.【详解】解:原式=()()3y)3y 22y y +-÷-([52y --()()222y y y +--] =()()()()3y)3y 522222y y y y y +--+-÷--(=()()()3y)3y 2223y)3y y y y +--⨯-+-(( =12y当y =时,原式=4. 【点睛】本题考查了化简求值问题,正确化简是解题的关键.10.-12x +【解析】【分析】先用乘法的分配律去括号,利用分式的加减进行化简后代入数值即可.【详解】 原式=2241x x x -+-2(1)(2)x x --+-(x -2) 2(1)(2)x x --+ =-2224(2)x x x -+++2(1)(2)(2)x x x --+ =()()2222432(2)x x x x x --++-++ =2(2)(2)x x -++ =-12x + 当x-2=-6【点睛】 本题考查的是分式的化简求值,掌握分式的运算法则和二次根式的化简是关键.11.11m --【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m 的值代入计算即可求出值.【详解】22111m m m m +-⎛⎫-÷ ⎪⎝⎭ ()()2111m m m mm m --=+- ()()111m m mm m +=-+- 11m =--当1m =时,原式===. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则及分式有意义的条件.12.(1)21(2)x -;(2)x =0. 【解析】【分析】 (1)原式括号中两项通分并利用同分母分式的减法法则计算,利用除法法则变形,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)原式=[221](2)(2)4x x x x x x x +-----=2224(2)x x x x x --+-•4x x - =21(2)x -; (2)方程两边乘(x +2)(x ﹣1),得x (x ﹣1)﹣(x +2)(x ﹣1)=x +2,整理得:x 2﹣x ﹣(x 2+x ﹣2)=x +2解得,x =0,检验:当x =0时,(x +2)(x ﹣1)≠0,所以,原分式方程的解为x =0.【点睛】此题考查了解分式方程,以及分式的混合运算,熟练掌握运算法则是解本题的关键. 13.(1)x +2;(2)1x x +,当x =﹣2时,原式=2. 【解析】【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出不等式组的整数解,从中找到符合分式的整数,代入计算可得.【详解】 (1)原式2422x x x =--- 242x x -=- ()()222x x x +-=- =x +2;(2)原式()()2111x x x x x =÷+-- ()()211x x x =+-•1x x-1x x =+, 解不等式组11622x x --⎧⎨+≥⎩>①②解不等式①得x <2;解不等式②得x≥-2;∴不等式组的解集是﹣2≤x <2,所以该不等式组的整数解为﹣2、﹣1、0、1,因为x ≠±1且x ≠0,所以x =﹣2, 则原式221-==-+2. 【点睛】本题主要考查分式的化简求值与解不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式组的能力.14.-1【解析】【分析】先对括号内的式子进行通分,再将除法转化为乘法,并对分子、分母因式分解,最后约分即可得到最简形式1-x ;接下来将x=2代入化简后的式子中进行计算即可求得答案.【详解】 解:原式=x x+x-x+1x -(1)(1) =﹣x+1当x =2时原式=﹣2+1=﹣1.【点睛】本题考查分式的混合运算,求代数式的值.在对分式进行化简时,先观察分式的特点,运用合适的运算法则进行化简. 15.(1)21x -;(2)1x x +,x=3时,34【解析】【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从13x -≤≤中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式221212x x x x x=+--÷ ()()122111x x x x x x +⨯=+--=; (2)原式()()()()()()()22111111111x x x x x x x x x x x x x x x +---⨯=⨯=+--+-+, 当3x =时,原式33314==+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.3,12x x - 【解析】【分析】根据分式的乘法和减法可以化简,然后将x 的值代入即可.【详解】2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭ =()()()()22111111x x x x x x ⎛⎫+-- ⎪+⨯ ⎪--⎝⎭ =()2211x x xx -⨯- =1x x -; 当x=3时,原式=33312=-. 【点睛】考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.17.1a a-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=252422(1)a a a a a a -+-+⨯+- =2(1)22(1)a a a a a -+⨯+-=1a a -,当a +1时,=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 18.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 19.31x x -+,5. 【解析】【分析】原式括号中利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出已知方程的解得到x 的值,代入计算即可求出值.【详解】原式=21(3)3(1)(1)x x x x x --⨯-+-=31x x -+, 由2x+4=0,得到x=﹣2,则原式=5.20.1(1)a a -,12017. 【解析】【分析】先计算括号内的分式减法,再计算分式的除法即可化简,然后根据方程的解定义得出一个关于a 的等式,最后代入求解即可.【详解】2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭ 22(1)(1)21111a a a a a a a --+-⎡⎤=÷-⎢⎥-++⎣⎦ 222121()111a a a a a a ---=÷--++ 222211a a a a a --=÷-+ 21(1)(1)(2)a a a a a a -+=⋅+-- 1(1)a a =- 因a 是方程22017x x -=的解,则22017a a -= 将其代入得,原式211(1)20171a a a a -===-. 【点睛】本题考查了分式的化简求值、一元二次方程的解定义,熟记分式的运算法则是解题关键. 21.ab 2,12 【解析】【分析】根据分式的混合运算,先化简,再代入求值,即可得到答案.【详解】原式()2(a b)a b 2a b ab--=÷- a b 2-=•ab a b- ab 2=, 当a =1,b =1时,原式)112=212-=12=. 【点睛】本题主要考查分式的化简求值,掌握分式的约分和通分,是解题的关键.22.(1)x=32-;(2)a b a b -+;12. 【解析】【分析】(1)把方程两边同时乘以最简公分母x 2-4,去分母得整式方程,解整式方程可求出x 的值,把x 的值代入最简公分母检验即可得答案;(2)先把括号内的分式通分,除式的分母因式分解,再根据分式除法法则化简得出最简结果,根据平方和绝对值的非负数性质可求出a 、b 的值,代入化简后的式子计算即可得答案.【详解】(1)21124x x x -=-- 方程两边同时乘以最简公分母x 2-4得:x(x+2)-(x 2-4)=1,整理得:2x=-3,解得:x=32-,检验:当x=32-时,x 2-4≠0, ∴x=32-是原分式方程的解. (2)22112()2a a b a b a ab b+÷+--+ =22()()()a b a b a a b a b a b -++÷+-- =22()()()2a a b a b a b a-⋅+- =a b a b-+, ∵269a a -+与|1|b -互为相反数,∴2(3)a - +|1|b -=0,∴a-3=0,b-1=0,解得:a=3,b=1,当a=3,b=1时,原式=a b a b -+=3131-+=12. 【点睛】本题考查分式的混合运算——化简求值及解分式方程,解分式方程的基本思想是转化思想,把分式方程转化成整式方程再解方程,注意最后要检验是否有增根;熟练掌握分式的混合运算法则及非负数的性质是解题关键23.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=. 点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.24.11a +;12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=21(1)(1)11(1)1a a a a a a a -++-⋅=-++, 当a =﹣3时,原式=﹣12. 【点睛】本题主要考查了分式的混合运算,灵活的利用通分、约分进行分式的化简是解题的关键. 25.(1)22(3)x x -;(2)x ﹣1;(3)22a b b a+-,﹣5. 【解析】【分析】(1)直接通分运算进而利用分式的混合运算法则计算得出答案;(2)直接将括号里面通分进而利用分式的混合运算法则计算得出答案;(3)直接将括号里面通分进而利用分式的混合运算法则计算得出答案.【详解】解:(1)原式2223(3)(3)(3)x x x x x x +-==--; (2)原式2221(1)(1)(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x +++-+-=⋅=⋅=--++-++; (3)原式222(+2)3()()(+2)2(2)(2)2a b b a a b b a b a b a b a b a b a b a b b a b a b a-----+=÷=⋅=---+--∵3a b=, ∴a =3b ,所以原式=32523b b b b +=--. 【点睛】本题考查的知识点是分式的化简求值,掌握分式化简的一般步骤以及分式的混合运算法则是解此题的关键,注意化简过程中各项的符号变化.26.(1)1;(2)21a +;(3)x ﹣1,x =2时,原式=1. 【解析】【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x =2代入计算即可求解.【详解】 (1)2111a a a a -++-, =111a a a +++, =11a a ++, =1;(2)2222421121a a a a a a a ---÷+--+, =222(2)(1)1(1)(1)2a a a a a a a ---⋅++--, =22(1)11a a a a --++, =22(1)1a a a --+, =21a +; (3)(132x -+)212x x x -÷+-, =23(1)(2)21x x x x x +--+⋅+-, =x ﹣1,∵x +2≠0,x ﹣1≠0,∴x ≠﹣2,x ≠1,当x =2时,原式=2﹣1=1.【点睛】此题考查分式的混合运算及化简求值,正确将分式的分子与分母因式分解是解题的关键.27.2a a 1-,910-. 【解析】【分析】先把分式化简后,再解方程确定a 的值,最后代入求值即可.【详解】解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷-- =2(1)(1)(1)1a a a a a a +-⋅-+ =2a a 1- 由2230x x +-=,得11x =,232x =-又10a -≠∴32a =-. ∴原式=23()9231012-=---. 【点睛】本题考查分式的化简求值;一元二次方程的解法,掌握计算法则正确计算是解题关键. 28.12x +,3【解析】【分析】 先去括号,再算乘法约去公约数,即可完成化简,化简3tan 3022cos 45x =-,先算三角函数值,再算乘法,再算减法,再将化简后x 的值代入原式求解即可.【详解】 原式313()33(2)(2)x x x x x x --=+•--+- 233(2)(2)x x x x x --=•-+- 12x =+当33tan 3022cos 453232x =-=⨯-=时原式3=== 【点睛】本题考查了整式的混合运算,掌握整式混合运算的法则是解题的关键.29.(1)无解;(2)22a a --,-2【解析】【分析】(1)根据解分式方程的步骤计算即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再整体代入计算可得.【详解】(1)两边都乘以(x +2)(x ﹣2),得:x (x +2)﹣(x +2)(x ﹣2)=8,解得:x =2,当x =2时,(x +2)(x ﹣2)=0,∴x =2是增根,∴原分式方程无解;(2)原式12a a -=+•()()222(1)a a a +--•(a +1)(a ﹣1) =(a ﹣2)(a +1)=a 2﹣a ﹣2.当a 2﹣a =0时,原式=﹣2.【点睛】本题考查了分式的化简求值,解答本题的关键是掌握分式的混合运算顺序和运算法则及解分式方程的步骤.30.(1)2217x x +=;(2)1x x -=(3)221x x -=±. 【解析】【分析】(1)利用完全平方公式对已知等式变形,即可求得答案;(2)利用(1)的结论运用配方法即可求得;(3)利用(2)的结论结合已知等式,运用平方差公式即可求解.【详解】(1)∵13x x+=, ∴219x x ⎛⎫+= ⎪⎝⎭, 整理,得,22129x x ++=, ∴2217x x +=; (2)由(1)知2217x x+=, ∴22125x x +-=,即215x x ⎛⎫-= ⎪⎝⎭,∴1x x-=(3)∵1x x -=13x x +=,∴11x x x x ⎛⎫⎛⎫-⋅+=± ⎪ ⎪⎝⎭⎝⎭即221x x-=±; 【点睛】本题考查了分式的化简求值,熟练掌握并灵活运用完全平方公式、平方差公式进行变形是解本题的关键.31.3x x+;0. 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】221111x x x x ⎛⎫-÷ ⎪-+-⎝⎭ ()()()()()()()()211111111x x x x x x x x x ⎡⎤+-+-=-⋅⎢⎥+-+-⎣⎦()()()()()()2111111x x x x x x x +--+-=⋅+- 221x x x+-+= 3x x+=; 当3x =-时, 原式3303-+==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.32.【解析】【分析】根据分式的运算法则即可求出答案.【详解】当时,原式=()()333111a a a a a a++-+⨯-+ =()()4111a a a a a+⨯-+ =41a -.【点睛】本题考查分式的运算,解题的关键的是熟练运用分式的运算法则.33.1a a +;32. 【解析】【分析】原式括号中的两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:原式=2(1)(1)(1)a a a +--÷1a a - =2(1)(1)(1)a a a +--•1a a - =1a a+, 当a =2时,原式=32. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.34.13-【解析】【分析】先将分式化简,再求出不等式组,利用分式有意义时分母不等于0,求出x 的值代入即可解题.【详解】 解:原式2(2)121(1)1(1)x x x x x x x ⎛⎫---+=÷ ⎪+⎝-⎭+(1)(1)(2)x x x x =•+-- =11x - ∵x 2﹣1≠0,x ﹣2≠0,x≠0∴x≠±1且x≠2,且x≠0解不等式组,得﹣3<x≤2,则x 整数解为x =﹣2,﹣1,0,1,2,∴x =﹣2 原式=13-.【点睛】本题考查了分式方程的化简求值,不等式组的求解,中等难度,正确化简并利用分式有意义的条件求出x 的值代入是解题关键.35.(1)1x-,12-;(2)13x 【解析】【分析】(1)根据分式的各个运算法则化简,然后选择一个使原分式有意义的x 的值代入即可;(2)根据不等式的基本性质解不等式组即可.【详解】 (1)原式=21(1)2(1)(1)1x x x x x -⋅-+-+ 12(1)(1)x x x x x x -=-++ (1)(1)x x x -+=+ 1x=- 根据原分式有意义的条件:1,0x ≠±当2x =时,原式=12-(2)13212x x ⎪⎨+-<⎪⎩② 解①得,1x >解②得,3x <∴该不等式组的解集为13x【点睛】此题考查的是分式的化简求值题和解不等式组,掌握分式的各个运算法则和不等式的基本性质是解决此题的关键. 36.224421x x x ---,x=2时值为2. 【解析】【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可.【详解】 解:原式2221211=+111x x x x x x x x ++-⎛⎫⎛⎫⨯-- ⎪ ⎪--⎝⎭⎝⎭ ()()()()()()()()()()()()22222122=+1111421114211141211114421x x x x x x x x x x x x x x x x x x x x x x x x x +⎛⎫⨯- ⎪+-⎝⎭+=⨯-+-+=-++--=-+-+---=- 要使分式有意义,则x ≠0,1,-1则当=2x 时,代入得2244244422=2141x x x --⨯-⨯-=--【点睛】 本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键. 37.22x -,12- 【解析】 【分析】先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将2x =-代入化简后的式子即可解答本题. 【详解】 解:原式228(2)(2)(2)22x x x x x x ⎡⎤+-=÷-⎢⎥---⎣⎦22284(2)2x x x x -+=÷-- 282(2)4x x -=⋅- =22x -. ∵2x =,∴2x =±,2x =舍,当2x =-时,原式21222==---. 【点睛】本题考查了分式的化简求值,解题的关键是明确分式化简求值的方法.38.,当x=+1时,原式= 【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简.试题解析:, 当时,原式.考点:1.分式的化简;2.二次根式化简.39.2x -【解析】【分析】根据分式的混合运算法则,先化简,再代入求值,即可求解.【详解】原式=22522(2)2(2)(2)x x x x x x x -++++⨯++- =22(2)(2)2(2)(2)x x x x x -+⨯++- =2x -,当=1x -2= 【点睛】本题主要考查分式的混合运算法则,掌握分式的通分与约分进行化简,是解题的关键. 40.﹣23x +,﹣1 【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】 解:原式=2(3)2x x --÷5(2)(2)2x x x -+-- =2(3)22(3)(3)x x x x x --⋅--+- =﹣23x +, 当x =﹣1时,原式=﹣1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.41.22x ,12. 【解析】【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【详解】 原式11(1)(1)()112x x x x x +-=-⨯-++ 1122x x x x +-=-++ 22x =+ 因为:240x -=2x =当2x =时,原式12=. 【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.42.21a --,2 【解析】【分析】先将分式的分子和分母分解因式,再根据分式的化简求值的过程计算即可求解. 【详解】 解:原式=2(2)2(2)(2)21a a a a a a a ⎡⎤-+-⋅⎢⎥-++-⎣⎦, 22()221a a a a a a -+=-⋅++-, 2221a a a +=-⋅+-, 21a =--. ∵a ≤2的非负整数解有0,1,2,又∵a ≠1,2,∴当a =0时,原式=2.【点睛】此题考察分式的化简求值,化简时需先分解因式约去公因式得到最简分式,求值时选的数需满足分母不为0的数才可代入求值.43.12x +;13【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】 解:原式222(2)(2)(2)x x x x x x x -=-⋅+-- 22(2)(2)(2)(2)x x x x x x +=-+-+- ()()222x x x -=+- 12x =+ 当1x =时,原式11123==+. 【点睛】 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.44.11m +,13【解析】【分析】根据分式的混合运算法则运算即可,注意m 的值只能取2.【详解】解:原式=2121()m m m m m-+-÷=1(1)(1)m m m m m -⎛⎫⋅ ⎪-+⎝⎭ =11m+ 把m=2代入得,原式=13. 【点睛】本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.45.(1)13-;(2)62x --;16-【解析】【分析】(1)根据单项式乘单项式法则、合并同类项法则和单项式除以单项式法则计算即可;(2)根据分式的各个运算法则化简,然后代入求值即可.【详解】解:(1)()()322423523a a a a ⎡⎤⋅+-÷⎢⎥⎣⎦ =()()666589a a a ⎡⎤+-÷⎣⎦ =()()6639aa -÷ =13- (2)524223x x x x-⎛⎫++⋅ ⎪--⎝⎭ =24524223x x x x x ⎛⎫--+⋅ ⎪---⎝⎭=()222923x x x x--⋅-- =()()()332223x x x x x+--⋅-- =()23x -+将5x =代入,得原式=62516--⨯=-【点睛】此题考查的是整式的混合运算和分式的混合运算,掌握整式的各个运算法则和分式的各个运算法则是解决此题的关键.46.(1)22a a -,8;(2)原方程无解【解析】【分析】(1)现根据分式的运算法则化简分式,再将a 的值代入即可;(2)先变形,再把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)原式=2145211(1)a a a a a a a ⎛⎫⎡⎤----÷ ⎪⎢⎥---⎣⎦⎝⎭=244(1)12a a a a a a -+-⨯--=2(2)(1)12a a a a a --⨯--=(2)a a -=22a a -,当a =4时,原式=24248-⨯=;(2)解:解:原方程化为:81,(2)(2)2y y y y +=+-- 方程两边都乘以(y+2)(y-2)得:284(2),y y y +-=+化简得,2y=4,解得:y=2,经检验:y=2不是原方程的解.原方程无解.【点睛】本题考查了分式的化简求值以及解分式方程,分式的化简求值注意运用运算法则先化简再代入计算;解分式方程的关键能把分式方程转化成整式方程并注意要检验.47.13.试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=2时,原式=13.48.22x x -+,33- 【解析】【分析】根据分式的各个运算法则化简,然后代入求值即可.【详解】 解:244()33x x x x x ---÷-- =()()22234333x x x x x x x x +-⎛⎫---÷ ⎪---⎝⎭=()()2443322x x x x x x -+-•-+- =()()()223322x x x x x --•-+- =22x x -+将-2代入,得原式=33- 【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则是解决此题的关键.49.-【解析】【分析】根据分式混合运算的法则把原式进行化简,再把a 、b 的值代入进行二次根式化简即可.【详解】解:原式=()()()()()222a b a b a b a b 2ab b a a a b a a a a ba b +-+---+÷=⋅=----.当a 1b 1=+=-=2==-. 50.33x x-;0. 【解析】【分析】先把括号内的分式的分母因式分解,再根据分式除法法则,利用乘法分配律化简得出最简结果,最后把x=3代入求值即可.【详解】原式=()()2322232x x x x x ⎡⎤---⋅⎢⎥--⎢⎥⎣⎦()312=223x x x x ⎛⎫--⋅ ⎪ ⎪--⎝⎭()3212=2323x x x x x --⋅-⋅-- 11=3x - =33x x-. 当3x =时,原式=33033-=⨯. 【点睛】本题考查分式的运算——化简求值,熟练掌握分式的混合运算法则是解题关键.51.21(2)a -,1. 【解析】【分析】将原式化简成()212a -,由已知条件a 为04a ≤≤中的整数,原式有意义可知0,2,4a a a ≠≠≠,从而得出1a =或3a =,将其代入()212a -中即可求出结论.【详解】 22214244a a a a a a a a +--⎛⎫+÷ ⎪--+⎝⎭ 221(2)(2)4a a a a a a a ⎡⎤+-=-⨯⎢⎥---⎣⎦ 22224(2)(2)4a a a a a a a a a ⎡⎤--=-⨯⎢⎥---⎣⎦ 24(2)4a a a a a -=⨯-- 21(2)a =- ∵04a ≤≤且为整数,且0a ≠,2,4.∴取1a =,原式211(12)==-.或取3a =,原式211(32)==- 【点睛】分式的化简考查了分式的运算,主要涉及分式的加减法、分式的乘除法,分式的加减法关键是化异分母为同分母,分式的除法关键是将除法转化为乘以除式的倒数;求值部分,尤其是这类选取适当的数代入求值时,千万要注意未知数取值的限制,所有使分母等于零的数都不能取,使使除号后紧跟的分式的分子为零的数也不能取避免进入分式无意义的雷区,例如本题已知条件04a ≤≤中选取的合适的整数只有1和3.52.12x -+;1-【分析】 根据分式的化简,通过通分、约分化简得到的式子,把1x =-代入求值即得.【详解】原式223111x x x x --+=÷-- 211(2)(2)x x x x x --=⨯-+- 12x =-+, 把1x =-代入得原式1112=-=--+. 【点睛】考查分式的化简求值,化简中用到因式分解、约分,注意因式分解,约分符号问题,最后使得式子最简.53.2.【解析】试题分析:先将2x+221x 111x x x --÷+--进行化简,再将x 的值代入即可; 试题解析: 原式=﹣•(x ﹣1)==,当x=﹣3时,原式=﹣2.54.(1)242a ab -,12;(2)12x -,1 【解析】【分析】(1)原式第一项利用平方差公式化简,第二项利用多项式除以单项式法则计算,合并得到最简结果,将a 与b 的值代入计算即可求出值;(2)首先计算括号里面的进而利用分式乘除运算法则计算得出最简结果,将x 的值代入计算即可求出值.解:(1)()223(2)(2)844a b a b a b abab +---÷, = ()22242a b ab b---=242a ab -,当2,1a b ==时,原式=242221=164⨯-⨯⨯-=12; (2)22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭=()()()()()222242222x x x x x x x x x --+⎡⎤-÷-⎢⎥-+++⎣⎦=2222x x x x x -÷++ =()222x x x x x +⋅+- =12x -, 当x=3时,原式=132-=1. 【点睛】本题考查分式的化简求值以及整式的混合运算,正确进行分式的混合运算是解题关键.55.11x +;2【解析】【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x ,再代入即可.【详解】 原式2231()2x 22x x x x +-=-÷+++ 223122x x x x +--=÷++ 21221x x x x -+=⨯+-122(1)(1)x x x x x -+=⨯++- 11x =+.当21x ==时,原式11x ===+. 【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握.56.x +y .【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.试题解析:原式=()()x x y x y x y x y y -++-⋅- =()()y x y x y x y y+-⋅-=x +y ,当x 2,y =11()2-=2时,原式57【解析】【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可【详解】 原式32(2)2(2)(2)(2)(2)4x x x x x x x x ⎡⎤+-=-•⎢⎥+-+--⎣⎦ 3242421(2)(2)4(2)(2)42x x x x x x x x x x x x -----=•=•=+--+--+134232x =⨯-⨯=∴原式== 【点睛】此题考查分式的化简求值,掌握运算法则是解题关键58.22a a -+,15-. 【解析】【分析】先对括号里的式子进行通分化简运算,然后进一步化简,最后代入求值即可.【详解】 原式2(2)3(1)(1)11a a a a a ---+=÷++ 22(2)411a a a a --=÷++ 2(2)11(2)(2)a a a a a -+=⋅++- 22a a-=+. ∴当3a =时,原式231235-==-+. 【点睛】本题主要考查了分式的化简求值,熟练掌握相关法则是解题关键.错因分析 容易题.失分原因是:①括号内通分时,忘记变号;②将除法变为乘法时,忘记分子分母调换位置.59.x x+1;x=2时,原式=23. 【解析】【分析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为0的数代入求值.【详解】解:原式=()()()()()()()()()()()222x x+1x x 1x 1x x x ==x+1x 1x+1x 1x+1x 1x x 1x+1x 1⎡⎤---÷⋅⎢⎥-----⎢⎥⎣⎦. ∵﹣1≤x≤3的整数有-1,0,1,2,3,当x=﹣1或x=1时,分式的分母为0,当x=0时,除式为0,∴取x 的值时,不可取x=﹣1或x=1或x=0.不妨取x=2,此时原式=22=2+13.60.(1)分式方程无解;(2)326a 35?a 13a +﹣;(3)(4 【解析】【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把. 【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式322326a 27a 9a 8a 4a 6a 35?a 13a =++=+﹣﹣﹣;(3)原式=11+=(4)原式=xy (x+y )()()()22x y x y xx y x y +-⋅⋅+=x ﹣y ,代入得当,y=2时,原式22= 【点睛】 本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.。
分式化简求值一 、填空题(本大题共2小题)1.已知::2:3:5a b c =,则3264a b c a b c-++-= . 2.已知,则___________. 二 、解答题(本大题共10小题)3.已知4x >-,求218416x x --与的大小关系. 4.先化简再求值:2111x x x ---,其中2x = 5.先化简,再求值:532224x x x x -⎛⎫--÷ ⎪++⎝⎭,其中3x . 6.已知:(),求的值. 7.已知0x y <<,试比较11x y y x++与的大小关系. 8.已知22690x xy y -+=,求代数式2235(2)4x y x y x y +⋅+-的值. 9.已知:220x -=,求代数式222(1)11x x x x -+-+的值. 10.先化简2223352x xy x xy y -+-,再求值. 其中31,22x y =-=. 11.先化简再求值:44()()xy xy x y x y x y x y -++--+,其中1,2x y ==12.已知,,为实数,且,,,求. 234x y z ==222x y z xy yz zx ++=++2244a b ab +=0ab ≠22225369a b a b b a b a ab b a b--÷-++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca ++分式化简求值答案解析一 、填空题1.同样使用“见比设k ”方法,已知条件可变形为:令2,3,5a k b k c k ===,则所求分式变为:66301021253k k k k k k -+=+- 2.本题采用“见比设k ”思想,将已知条件变形为:,2,3,4234x y z k x k y k z k ======则,将其代入所求分式中得:222222491629612826k k k k k k ++=++ 二 、解答题3.作差法. 221841416164x x x x x --==---+,因为4x >-,所以104x >+,所以218416x x >-- 4.先讲原式化简得:211111(1)x x x x x x x --==---,再讲2x =代入1x 得12.5.先化简得:25392(2)22(3)22423x x x x x x x x x --+⎛⎫--÷=⋅=+ ⎪+++-⎝⎭,再将3x 代入2(3)x +得6.将分式化简得:2(3)53523()()a b a b b a b b a b a b a b a b a b a b a b-++--⋅-==+-++++,由已知条件可得:2(2)0a b -=,即2a b =.将2a b =代入2a b a b -+中得:412a a a a-=-+ 7.作差法. 111111()()(1)()(1)xy xy x y x y xy xy y x y x y x xy++-+-+=-=+-=+⋅,因为0x y <<,所以10,0,0xy x y xy +>-<>,,所以11x y y x+<+ 8.将分式化简得:223535(2)42x y x y x y x y x y++⋅+=--,再将已知条件整理得:2(3)0x y -=,即3x y =,将3x y =代入352x y x y +-中得:951465y y y y +=-9.先将分式化简整理得:2222(1)1111x x x x x x x -+-+=-++,由已知条件可得22x =代入化简式中得211111x x x x x +-+==++ 10.化简得:2223(3)352(2)(3)2x xy x x y x x xy y x y x y x y --==+-+-+,再将31,22x y =-=代入2x x y +中得:323312222x x y -==+-+⨯11.化简得:22222244()4()4()()()()()()()()xy xy x y xy x y xy x y x y x y x y x y x yx y x y x y x y x y x y x y -++--++-=⋅-+-++-==+-=-+-,再将1,2x y ==22x y -中得:17244-=- 12.由已知可知 ,三式相加得,, 故. 113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++。
初中数学分式专项训练一、选择题1.000 071 5=57.1510-⨯ ,故选D.2.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】【分析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.【详解】 解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.故选:B.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.下列各式计算正确的是( )A .(﹣x ﹣2y )(x+2y )=224x y -B .13x -=13xC .236(2)6y y -=-D .32()(1)m m m m x x x -÷=- 【答案】D【解析】【分析】根据整式的相关运算法则计算可得.【详解】A .(﹣x ﹣2y )(x+2y )=﹣(x+2y )2=﹣x 2﹣4xy ﹣4y 2,此选项计算错误;B .3x ﹣1=3x,此选项计算错误; C .(﹣2y 2)3=﹣8y 6,此选项计算错误;D .(﹣x )3m ÷x m =(﹣1)m x 2m ,此选项计算正确;故选:D .【点睛】本题主要考查整式的运算,解题的关键是掌握整式的运算法则和负整数指数幂的规定.4.已知17x x -=,则221x x +的值是( ) A .49B .48C .47D .51 【答案】D【解析】【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【详解】 已知等式17x x -=两边平方得:22211()249x x x x -=+-=, 则221x x +=51. 故选D .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.0000025=2.5×10﹣6,故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.若a =-0.22,b =-2-2,c =(-12)-2,d =(-12)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d 【答案】B【解析】【分析】根据正整数指数幂、负整数指数幂以及零次幂的意义分别计算出a ,b ,c ,d 的值,再比较大小即可.【详解】∵a =-0.22=-0.04,b =-2-2=14-,c =(-12)-2=4,d =(-12)0=1, -0.25<-0.04<1<4∴b <a <d <c故选B.【点睛】此题主要考查了负整数指数幂,正整数指数幂、零次幂,熟练掌握它们的运算意义是解题的关键.7.已知m ﹣1m ,则1m +m 的值为( )A .BC .D .11 【答案】A【解析】【分析】根据完全平方公式即可得到结果.【详解】1m-m Q21m-=7m ⎛⎫∴ ⎪⎝⎭,221m -2+=7m ∴,221m +=9m ∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.8.若式子2x -有意义,则x 的取值范围为( ).A .x≥2B .x≠2C .x≤2D .x <2 【答案】D【解析】【分析】根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】解:∵式子2x -有意义∴2x 0x 20-≥⎧⎨-≠⎩∴x <2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.9.一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米时,第二次往返航行时,正遇上发大水,水流速度b 千米时(b a >),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是( )A .第一次往返航行用的时间少B .第二次往返航行用的时间少C .两种情况所用时间相等D .以上均有可能 【答案】A【解析】【分析】甲乙两港之间的路程一定,可设其为S ,两次航行中的静水速度设为v ,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度﹣水流速度,把相关数值代入,比较即可.【详解】解:设两次航行的路程都为S ,静水速度设为v , 第一次所用时间为:222S S vS v a v a v a +=+-- 第二次所用时间为:222S S vS v b v b v b +=+-- ∵b a >,∴22b a >,∴2222v b v a -<-, ∴222222vS vS v b v a >-- ∴第一次的时间要短些.故选:A.【点睛】本题主要考查了列代数式,得到两次所用时间的等量关系是解决本题的关键.10.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.11.下列用科学记数法表示正确的是( )A .10.000567 5.6710-=-⨯B .40.0012312.310=⨯C .20.0808.010-=⨯D .5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.下列运算中正确的是( )A .62652()a a a a a== B .624282()()a a a a == C .62121022()a a a a a== D .6212622()a a a a a== 【答案】C【解析】【分析】根据幂的乘方法则、分式的基本性质及同底数幂除法法则计算即可得答案.【详解】6212122102222()a a a a a a a a a÷===÷, 故选:C .【点睛】本题考查幂的乘方及分式的基本性质,幂的乘方,底数不变,指数相乘;分式的分子、分母同时乘以(或除以)一个不为0的整式,分式的值不变;同底数幂相除,底数不变,指数相减;熟练掌握分式的基本性质是解题关键.13.0000036=3.6×10-6;故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.12×10−3=0.00612,故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.下列计算错误的是( )A .()326327x x -=-B .()()325y y y --=-gC .326-=-D .()03.141π-= 【答案】C【解析】【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算【详解】A . ()326327x x -=-,不符合题意; B . ()()325y y y --=-g ,不符合题意;C . -312=8,原选项错误,符合题意;D . ()03.141π-=,不符合题意;故选:C【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.16.某种病毒变异后的直径为0.000000102米,将这个数写成科学记数法是( ) A .61.0210-⨯B .60.10210-⨯C .71.0210-⨯D .810210-⨯【答案】C【解析】【分析】用科学记数法表示比较小的数时,n 的值是第一个不是0的数字前0的个数,包括整数位上的0.【详解】解:0.000000102=71.0210-⨯.故选:C .【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.下列各数中最小的是( )A .22-B .C .23-D 【答案】A【解析】【分析】先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.【详解】解:224-=-,2139-=2=-, 14329-<-<-<Q , ∴最小的数是4-,故选:A .【点睛】本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.18.一次抽奖活动特等奖的中奖率为150000,把150000用科学记数法表示为( ) A .4510⨯﹣B .5510⨯﹣C .4210⨯﹣D .5210⨯﹣【答案】D【解析】【分析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】150000=0.00002=2×10﹣5. 故选D .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.分式211x x--的值为0,则x 的取值为( ) A .0B .±1C .1-D .1【答案】C【解析】【分析】分式值为0,则分子为0,且分母不为0即可【详解】 要使分式211x x--的值为0 则21010x x ⎧-=⎨-≠⎩解得:x=-1故选:C【点睛】本题考查分式方程为0的情况,注意在涉及到分式方程时,我们都需要考虑分母不为0的情况.20.要使分式81x -有意义,x 应满足的条件是( ) A .1x ≠- B .0x ≠ C .1x ≠ D .2x ≠【答案】C【解析】【分析】直接利用分式有意义的条件得出答案.【详解】要使分式81x有意义,则x-1≠0,解得:x≠1.故选:C.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.。