高阶微分方程小结
- 格式:ppt
- 大小:795.00 KB
- 文档页数:24
常微分方程小结姓名:邱俊铭学号:2010104506姓名:李林学号:2010104404姓名:曾治云学号: 2010104509初等积分法:变量分离形式一、一阶微分程:dy/dx=h(x)g(y) ,其中函数h(x)在区间(a,b)上连续,g(y)在区间(c,d)上连续且不等于0.经过分离变量得: dy/g(y)=h(x)dx 两端积分得:G(y)=H(x)+c ,其中c任意的常数且G(y)= ∧dy/g(y),H(x)= ∧h(x)®x,所以G’(y)=1/g(y)不为0,故G存在逆函数,从而得到:y= (H(x)+c).例1. dy /dx=2xy解:当y ≠0时,分离变量后得:dy/ y =2xdx ,两边积分得:ln|y|=x^2+c1 ,此外y=0也是方程的解,从而方程的解为y=Ce^(x^2),g(y)=0,则y=是方程的解,其中C为任意的常数。
初值问题的解,即y取任意一个数得到的结果,代入通解中,求出具体y 值。
例2.y(1+x^2)dy=x(1+y^2)dx,y(0)=1;解:这是变量分离的方程,分离变量后得:y/(1+y^2)dy=x/(1+x^2),两边积分得其通解为:1+y^2=C(1+x^2),其中C为任意常数,代入初值条件得:C=2.。
故所给的初值问题的解为y=.二、常数变易法一阶非线性方程:dy/dx=a(x)y+f(x).(1)当f(x)=0时,方程为齐次线性方程,解法和上述的一样,通解为y=C ,C为任意的常数。
现在求齐次线性方程的通解,常数C换成x的函数c(x),得到:y= c(x),对x 求导,然后代入(1)中化简,两端积分,得:y=C +f x e ..例3. dy/dx-2xy=x.解:dy/dx=2xy+x ,这里a(x)=2x,f(x).从而可求出原方程的通解为: Y=exp(2 ∧x ®x)(c+ ∧xexp(-2∧x ®x)®x)=-1/2+ce^(x^2),即-1/2+ce^(x^2),其中c 为任意的常数。
高阶微分方程高阶微分方程是微积分中重要的研究对象。
它的研究内容涉及到高等数学、物理学、工程学等学科领域。
在这篇文章中,我们将对高阶微分方程的定义、求解方法及其应用进行全面介绍。
一、高阶微分方程的定义高阶微分方程是指包含导数的方程中,导数的阶数高于一阶的微分方程。
一般形式可以表示为:\[F(x, y, y', y'', ..., y^{(n)}) = 0\]其中,\(x\) 是自变量,\(y = y(x)\) 是因变量,\(y', y'', ..., y^{(n)}\) 分别表示\(y\) 相对于\(x\) 的各阶导数。
二、高阶微分方程的求解方法1. 分离变量法分离变量法是指将微分方程中的自变量和因变量分别放在方程两侧,并进行积分求解的方法。
这种方法适用于一些具有特殊形式的高阶微分方程。
2. 常系数线性微分方程的特征方程法对于常系数线性微分方程,可以通过特征方程法求解。
首先,假设原微分方程的解为指数函数形式,然后将其代入方程中,得到一个关于未知常数的方程,通过求解这个特征方程即可得到原方程的通解。
3. 常数变易法常数变易法是指假设微分方程的特解形式为常数乘以一个已知的函数形式。
通过求解这个常数变易方程,可以得到特解,再将特解与齐次方程的通解相加,即可得到原方程的通解。
4. 线性非齐次微分方程的待定系数法对于线性非齐次微分方程,可以通过待定系数法求解。
假设非齐次方程的解为线性组合形式,将其代入方程中,得到关于未知系数的代数方程组。
通过求解这个方程组,可以得到方程的特解,再将特解与齐次方程的通解相加,即可得到原方程的通解。
三、高阶微分方程的应用高阶微分方程在物理学、工程学等领域中有广泛的应用。
以下是几个典型的应用示例:1. 振动方程振动方程描述了各种振动系统的运动规律。
例如,弹簧振子的运动可以由高阶微分方程进行建模。
2. 电路方程电路方程可以描述电子电路中电流和电压的关系。
高阶微分方程的通解
高阶微分方程的概念:
高阶微分方程是指求解变量未知函数y的多个(大于2个)自变量的微分阶数都大于1的微分方程。
这样的方程比一般的普通微分方程难度更大。
高阶微分方程的通解:
(1)可降低阶的方法:当方程中出现多个高阶(大于2阶)分量时,可以采用先求某一路分量的函数及其导数,再求其它分量的方法,即可降低方程的阶数。
(2)变量替换法:例如将方程中的原函数、导数等分量通过某种变换替换成新的分量,有时可以使方程的表示更加简单,更易于求解。
(3)分部积分法:当方程表达式比较复杂时,可以采用分部积分法,即分几个之间使得每计段都存在一个解。
(4)其它方法:此外,还可以采用参数变换、偶解等方法对高阶微分方程进行求解。
总结:
高阶微分方程相对于普通微分方程难度更大,其常用的通解技术主要有可降低阶的方法、变量替换法、分部积分法以及参数变换、偶解法等技术。
最终由于高阶微分方程的复杂性,合理运用多种技术可以综合考虑最终求出通解。
高阶微分方程高阶微分方程是微积分学中的一个重要分支,研究的是含有未知函数及其导数的方程。
它在数学和工程领域中有着广泛的应用和重要性。
本文将对高阶微分方程的概念、求解方法和应用进行介绍。
1.概念高阶微分方程是指方程中的未知函数的最高阶导数大于等于2的微分方程。
一般形式为:$F(x,y,y',y'',...,y^{(n)})=0$,其中$y$是未知函数,$y^{(n)}$表示它的$n$阶导数,$F$是一个关于$x,y,y',y'',...,y^{(n)}$的函数。
高阶微分方程可以是线性或非线性的,可以是常系数或变系数的。
2.求解方法求解高阶微分方程的方法多种多样,常见的方法有特征根法、常数变易法、级数法等。
下面以特征根法为例进行说明。
特征根法适用于线性常系数高阶齐次微分方程。
首先假设$y=e^{mx}$是方程的一个解,代入原方程得到特征方程$F(m)=0$,然后求解特征方程,得到特征根$r_1,r_2,...,r_n$。
根据特征根的性质,可得到方程的通解形式$y=c_1e^{r_1x}+c_2e^{r_2x}+...+c_ne^{r_nx}$,其中$c_1,c_2,...,c_n$为待定常数。
通过给定的初始条件,可以确定常数的值,从而得到特定的解。
除了特征根法,我们还可以使用常数变易法和级数法等方法来求解高阶微分方程。
不同的方程形式和初始条件可能会适合不同的方法,选择合适的方法是解决高阶微分方程的关键。
3.应用高阶微分方程在许多科学和工程问题中都有着广泛应用。
例如,在物理学中,牛顿第二定律可以通过二阶微分方程来描述物体的运动。
在电路分析中,电感电容电阻(RLC)电路可以通过二阶微分方程来描述电压和电流的变化。
在工程中,高阶微分方程经常出现在振动系统、控制系统和信号处理等领域。
总结高阶微分方程是微积分学中的一个重要分支,研究的是含有未知函数及其导数的方程。
微分方程解法小结PB08207038 司竹最近学习了微分方程,现对各种方法总结如下:一、 一阶微分方程: F (x,y,y ')=0⒈可变量分离方程形如φ(x )dx-ψ(y)dy,或可化为该形式的方程称为可变量分离方程。
解法:两边积分得:∫φ〔x 〕dx=∫ψ〔y 〕dy 。
⒉齐次方程dx dy =φ)(x y 解法:换元。
令y=μx ,则原方程可化为可分离变量方程。
3.一阶线性微分方程dxdy +P (x )y=Q (x )y n 解法:两边同时乘以一个积分因子e ⎰dx )x (P ,可得其通解公式:y=e ⎰-dx x )(P ⎥⎦⎤⎢⎣⎡+⎰⎰c dx e )x (dx x )(P Q 。
4.Bernouli 方程:dxdy +P (x )y=Q (x )y n 解法:两边除以y n 得:+dx dy y 1n P (x )y n 1-=Q (x ),再做代换μ= y n 1-,就化成 dxdy +(1-n )P (x )μ=Q (x )的线性方程。
二、二阶微分方程F (x ,y ,y ',y '')=0⒈可降阶的二阶微分方程① f ( x , y ',y '')=0型:令p= y ',则y ''=p ',将方程降阶为f (x ,p ,p ')=0的一阶方程。
② f (y ,y ',y '')=0型:令p= y ',则y ''=pdy dp ,将方程降阶为f (y ,p ,p dy dp )=0. 2.二阶线性微分方程①齐次方程y ''+ P (x )y '+q (x )y=0由已知条件或观察法或其他方法可得出齐次方程的一个特解y 1,用y=z y 1带入方程,整理后得出另一特解y 2= y 1dx ey 1dx x 21⎰-⎰)(P 。
(或可通过Liouville 公式,亦可得出另一特解。
)再由叠加原理得:齐次方程的通解为y=c 1 y 1+c 2 y 2。
③非齐次方程y ''+ P (x )y '+q (x )y=f (x )解法:先解出对应的齐次方程的通解yp = c1y1+c2y2。
多元函数及多元微分学一 内容1.主要概念及其关系:●主要概念:多元函数,函数的极限,函数在一点连续,偏导数,可微,方向导数,梯度向量 设 2),(),,(R D y x y x f ⊂∈ 二重极限:A y x f y x y x =→),(lim ),(),(00累次极限:),(lim lim 00y x f x x y y →→,),(lim lim 00y x f y y x x →→连续:),(),(l i m00),(),(00y x f y x f y x y x =→偏导数:xy x f y x x f xf x M ∆-∆+=∂∂→∆),(),(lim00000yy x f y y x f yf y M ∆-∆+=∂∂→∆),(),(l i m 000000可微: )(ρo y b x a f +∆+∆=∆,其中 22)()(y x ∆+∆=ρ全微分 bdy adx df +=,其中 x f a ∂∂=,yfb ∂∂= 方向导数:tM f tv M f vft M )()(lim000-+=∂∂→, T v v v ),(21=是单位向量设),,(z y x f 可微,单位向量 T v )cos ,cos ,(cos γβα=γβαcos cos cos zf y f x f v f ∂∂+∂∂+∂∂=∂∂ 梯度向量: 设),(y x f 可微,0),(),(00M Tyf x f y x gradf ∂∂∂∂=●各概念之间的关系:逻辑关系,数量关系。
2.微分法:复合函数微分法,隐函数微分法 3.二元函数的泰勒公式4.曲面的切平面,法向量;曲线的切向量,法平面。
5.极值与条件极值二 典型问题1. 研究某个函数在某点的可微性,连续性等。
2. 求初等函数的导数,微分,方向导数,梯度,泰勒展开3. 抽象函数求导数:复合函数微分法,隐函数微分法的运用。
例如 求 22,dxu d dx du ,其中 0),,(,0),,(),,,(===z y x h z y x g z y x f u4.求曲面的切平面,法向量;曲线的切向量,法平面,以及相关问题。
高阶常微分方程高阶常微分方程是指方程中含有高于一阶导数的微分项的微分方程。
在数学和物理学的研究中,高阶常微分方程是一种常见且重要的方程形式。
本文将探讨高阶常微分方程的定义、性质以及解法方法,以及一些实际应用。
高阶常微分方程的定义高阶常微分方程是指方程中包含有高于一阶导数的微分项的方程。
一般形式可以写为:F(x, y, y', y'', ..., y^(n)) = 0其中,y 是自变量 x 的函数,y' 是 y 对 x 的一阶导数,y'' 是 y 对 x的二阶导数,以此类推,y^(n) 是 y 对 x 的 n 次导数。
而 F 是一个关于x、y、y'、y''、...、y^(n) 的函数。
这样的方程被称为 n 阶常微分方程。
高阶常微分方程的性质高阶常微分方程具有以下性质:1. 线性性质:n 阶常微分方程可以表示为 y^(n) + p_1(x) y^(n-1) + ... + p_n(x) y = f(x),其中 p_1(x)、...、p_n(x)、f(x) 是已知函数。
这种形式的方程是线性的,可以使用线性微分方程的解法。
2. 齐次性质:如果 f(x) = 0,则方程为齐次的。
齐次方程的解集合是线性空间,且满足加法封闭性和数乘封闭性。
高阶常微分方程的解法方法高阶常微分方程的解法方法主要有以下几种:1. 常数变易法:假设方程的解具有特定的形式,然后将其代入方程中,通过解求解常数的值。
2. 初值问题法:给出方程的初值条件,通过代入初值条件解方程,确定特定的解。
3. 特殊函数法:对于某些特殊的高阶常微分方程,我们可以通过特殊函数来求解,如指数函数、三角函数和伽马函数等。
应用实例高阶常微分方程在物理学、生物学、经济学等领域有着广泛的应用。
以下是一些实例:1. 天体运动模型:高阶常微分方程可以用来描述天体的运动模型,如行星绕太阳的运动、人造卫星的轨道等。