液位控制系统设计说明
- 格式:doc
- 大小:319.00 KB
- 文档页数:34
目录1 系统设计理解 (1)1.1 前言 (1)2 系统方案确定、系统建模及原理介绍 (1)2.1 控制方案的确定 (1)2.2 控制系统建模 (1)2.2.1 被告...................................................... ....................... .............................. (1)2.2.2 系统建模 (2)3 系统构成 (4)3.1 控制系统结构 (4)3.2 控制系统框图 (4)4 系统各环节分析 (5)4.1 调节器PID控制 (5)4.2 执行器分析 ................................................... ......................... ............................ . (6)4.3 检测与传输链路分析 (6)4.4 被控对象分析 (6)5 系统仿真 (7)5.1 系统结构图及参数设置 (7)6 仪器选择 (10)6.1 PID调节器选择 (10)6.2 执行器选型 (11)6.2.1 变频器选型 (11)6.2.2 电机选型 (11)6.2.3 泵的选择 (12)6.3 差压变送器的选择 (12)7 课程设计结束语 (14)参考文献 (15)1.对系统设计的理解1.1 前言过程控制已广泛应用于矿山、冶金、机械、化工、电力等领域。
在液位控制方面,如:水塔供水、工矿企业排水、锅炉汽包液位控制、精馏塔液位控制等,发挥着重要作用。
在这些生产领域中,操作基本上是劳动密集型或危险的。
很容易因为操作失误而引发事故,给制造商造成经济损失。
可以看出,在实际生产中,液位控制的准确性和控制效果直接影响工厂的生产成本、经济效益和安全系数。
因此,为了保证安全条件和方便操作,有必要研究和开发先进的液位控制方法和策略。
液位控制系统演示工程操作说明一、创建工程1、双击桌面中的图标,进入MCGS组态环境工作台,如图1所示。
2、点击图1中的“新建窗口”,出现“窗口0”图标。
3、点击“窗口0”鼠标右键,选择“属性”,按照图2进行设置,则窗口名称变为“水位控制系统”,如图2右图所示。
图2二、画面设计1、在“水位控制”窗口点击菜单中的【工具箱】图标,单击插入元件按钮,打开【对象元件管理】中的【储藏罐】,选择罐17,点击确定。
如图3所示,则所选中的罐出现在桌面的左上角,用鼠标改变其大小及位置。
图32、按照同样的方法,【储藏罐】选中2个罐(罐17,罐53),【阀】选中2个阀(阀58,阀44),1个泵(泵40)。
按图4放置。
图43、选中工具箱中的【流动快】按钮,单击鼠标并移动光标放置流动快。
如图5所示设置流动快。
图54、选中流动块,点击鼠标右键【属性】,按图6设置属性。
图65、添加文字,选中工具箱中的【标签】按钮,鼠标的光标变为“十字”形,在窗口任意位置拖曳鼠标,拉出一个一定大小的矩形。
建立矩形框后,鼠标在其内闪烁,可直接输入“水位控制系统演示工程”文字。
选中文字,鼠标右键【属性】,按图7设置。
图76、点击菜单中的,可变更字体大小。
按图5添加其他文字。
三、MCGS数据对象设置2、单击工作台【实时数据库】按钮,进入【实时数据库】窗口。
单击窗口右边的【新增对象】按钮,在窗口的数据对象列表中,就会增加新的数据对象。
双击选中对象,按图8设置数据对象属性。
图83、按照图9设置其他数据对象属性。
图94、双击【液位组】,存盘属性按图10设置,组对象成员按图11设置。
图10图11四、动画连接(一)水罐动画连接1、在【用户窗口】中,双击【水位控制】,进入窗口后双击水罐1,弹出【单元属性设置】窗口,如图12所示。
图122、单击【动画连接】,选中折线,则出现。
单击按钮进入【动画组态属性设置】窗口,各项设置如图13所示,单击确认后,水罐1的对象变量连接就成功了。
过程控制系统设计作业单容水箱液位控制系统设计学生姓名文强学号2212130任课教师陶珑院、系、中心专科部专业生产过程自动化提交日期2015年10 月日太原科技大学单容水箱液位控制系统设计摘要本论文以单容水箱为被控对象,给出了单闭环控制系统、串级控制系统和前馈反馈控制系统的设计方案,实现对水箱液位的控制。
本论文还针对每种控制系统,在Matlab的Simulink中建立仿真模型进行仿真,得到仿真曲线,并且利用仿真曲线分析控制系统的性能,例如最大动态偏差、调节时间、衰减率和积分性能指标IAE 等。
单闭环控制系统的设计包括P、I、PI和PID的设计。
本文分别通过衰减频率特性法(理论整定法)和衰减曲线法(工程整定法)对控制器参数进行了整定。
本论文还通过比较各控制系统的仿真曲线和系统性能指标,对各种控制系统设计方案进行了比较,发现串级控制和前馈反馈控制可提高系统性能。
关键词: PID;串级;前馈反馈;参数整定;SimulinkDesign on Water Level Control in a TankAbstractThis thesis provides design methods of single closed-loop control system, cascade control system and feed forward control system about the controlled object asingle water tank , and it achieves the goal of controlling level. For every kind of control system, simulation model is established by using simulation tool Matlab, simulation curves can analysis the performance of control system, such as the maximum percent overshoot, settling time, attenuation rate and IAE. The design of single closed-loop control system includes designs of P, I, PI and PID. The controller parameter is tuned by frequency response of attenuation rate and the attenuation curve .All the control design methods included are compared by simulation curves and performance indexes and we finally find that cascade control and feed forward control are able to improve system’s performance.Keywords:PID;Cascade;Feedforward- feedback;Parameter tuning;Simulink目录摘要 (I)ABSTRACT ............................................................................................................................ I I 1设计要求及内容 (1)2单容水箱系统建模 (3)3单闭环控制系统设计 (5)3.1比例控制系统设计 (5)3.2积分控制系统设计 (7)3.3比例-积分控制系统设计 (9)3.4比例-积分-微分控制系统设计 (12)4串级控制控制方案设计 (16)5前馈控制方案设计 (18)6实验室水箱实验报告 (19)6.1压力单闭环实验 (19)6.2液位单闭环实验 (20)6.3上水箱液位和流量组成串级实验 (22)6.4前馈反馈控制实验 (24)7总结 (26)参考文献 (27)附录 (28)1设计要求及内容图1 单容水箱液位控制系统单容水箱液位控制系统如题图1所示。
课程设计说明书名称2010年 6月7日至 2010年6月11日共 1 周院系班级姓名学号系主任教研室主任指导教师目录绪论 . (2)第1章液位控制系统总体方案设计 . (3)1.1单回路控制系统 (3)1.2水箱液位的串级控制系统 (4)第2章过程控制装置概述 . (6)2.1系统简介 (6)2.2系统装置 (7)2.3 S7-300PLC 控制柜的组成 . (8)第3章硬件组态设计 . (10)3.1PLC 的选择 (10)3.2组态硬件 (11)第4章软件组态设计 . (12)4.1 实现WINCC 与S 7-300的软件通讯 (12)4.2 程序设计 (15)第5章调试过程及结果分析 . (20)5.1单容液位控制系统调试结果及分析 (20)5.2双容串级液位控制系统调试结果及分析 (23)第6章课程设计总结 . (26)参考文献: . (27)绪论课程设计是检验我们本学期学习的情况的一项综合测试,它要求我们把所学的知识全部适用,融会贯通的一项训练,是对我们能力的一项综合评定,它要求我们充分发掘自身的潜力,开拓思路设计出合理适用的自动控制系统。
课程设计也是教学过程中的一个重要环节,通过设计可以巩固各课程理论知识,培养独立分析和解决实际工程技术问题的能力,同时对工业的有关方针、技术规程有一定的了解,在计算绘图、编号、设计说明书等方面得到训练,为以后工作奠定基础。
工业生产过程控制是现代工业自动化的一个重要领域。
它是控制理论、生产工艺、计算机技术和仪器仪表等知识相结合的一门综合性应用学科,理论性、综合性和实践性都很强。
随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。
在控制方式上经历了从人工控制到自动控制两个发展时期。
在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。
智能单显示液位控制仪产品说明书(V1.0)湖南菲尔斯特传感器有限公司Hunan Firstrate Sensor Co.,Ltd●重要声明非常感谢您购买菲尔斯特传感器(变送器),我们为您真诚服务到永远。
菲尔斯特追求卓越不凡的品质,更注重良好的售后服务,如有问题,请拔打:400-607-8500(7×24h)。
操作错误会缩短产品的寿命,降低其性能,严重时可能引起意外事故。
请您在使用前务必仔细熟读本说明书。
将本说明书交到最终用户手中。
请妥善保管好说明书,以备需要时查阅。
说明书供参考所用,具体设计外形以实物为准。
●主要特点●支持热电偶、热电阻、电压、电流及二线制变送器输入;适合温度、压力、液位、长度等多种物理的测量与显示;可对各种非线性信号进行高精度的线性校正。
●采用高亮LED数码显示,同时采用高精度40线光柱显示,清晰直观的显示测量值。
●支持多达四路报警功能,包括两路上限及两路下限报警,可独立报警。
●采用先进的无跳线技术可自由更改分度号。
●具有多种标准串行双向通讯功能(RS232C、RS-485、RS-422等)。
●配智能数据采集器和基于Windows XP平台的组态软件,可实现与上位机的联网。
●技术规格●输入规格(一台仪表可兼容):热电偶:B、S、K、E、J、T、WRe等热电阻:Pt100、Cu50等远传压力电阻线性电压:0~5V、1~5V、0~10V、1~10V等---输入阻抗≥250Ω线性电流:0~10mA、0~20mA、4~20mA等---输入阻抗≤250Ω线性电阻:0~400Q(可用于测量远传电阻压力表)●测量范围:-1999~1999字●测量精度:0.5%FS±1字●变送输出:模拟量输出DC0~10mA(负载能力≤750Ω)DC4~20mA(负载能力≤500Ω)DC0~5V(负载能力≤250Ω)DC1~5V(负载能力≤250Q)开关量输出继电器控制输出---继电器ON/OFF带回差触点容量:AC220V/3A;DC24V/6A(阻性负载)可控硅控制输入---SCR(可控硅过零触发脉冲)输出,可触发可控硅固态继电器输出---SSR(固态继电器控制信号)输出●使用环境:环境温度0~50℃相对湿度≤85RH避免强腐蚀气体●供电电压:AC220V+10-15%(50Hz±2Hz线性电源)●电源消耗:≤5W●仪表尺寸:48×96mm(宽×高);开口尺寸:45×92mm●面板说明①指示灯:AHH--上上限报警AH--上限报警AL--下限报警ALL--下下限报警②PV窗口:显示测量值,在参数设定状态下,显示参数符号或设定值③设置键:用于进入参数设置状态,确认参数修改等④数据增加键⑤数据减少键⑥数据移位键●操作说明设置参数在基本显示状态下,按SET键并保持3秒钟,即进入现场参数表。
毕业设计开题报告1. PID 简述简述 过程控制通常是指石油、化工、冶金、轻工、纺织、制药、建材等工业生产过程中的自动控制程中的自动控制,它是自动化技术的一个极其重要的方面。
本次毕业设计是基于PLC 的液位控制系统的设计,它的控制对象是水箱的液位,是过程控制中经常遇到热工参数。
本人在这次设计中主要负责控制策略——PID 算法的确定,就在次将PID 算法作个简要的介绍。
算法作个简要的介绍。
在生产过程自动控制的发展历程中在生产过程自动控制的发展历程中,PID ,PID 控制是历史最久、生命力最强的基本控制方式。
它简单实用制方式。
它简单实用,,易于实现易于实现,,适用范围广适用范围广,,鲁棒性好鲁棒性好,,在现今的工业过程中获得了广泛的应用广泛的应用..据统计据统计,,目前工业控制器中约有90%90%仍是仍是PID 控制器。
PID 控制器的设计及其参数整定一直是控制领域所关注的问题。
其设计和整定方法得到国内外广泛研究, 著名的如Ziegler-Nichols 法、基于内模控制的方法及基于误差的积分的优化方法。
基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因基于误差的积分准则由于能较好地反映闭环系统的性能以及易于计算的原因,,在PID 优化设计中被广泛采用。
(1)在工业生产过程控制中,模拟量的模拟量的 PID (比例、比例、积分、积分、微分)调节是常见的一种控制方式,这是由于这是由于PID 调节不需要求出控制系统的数学模型,至今为止,很难求出许多控制对象准确的数学模型,对于这一类系统,使用使用PID 控制可以取得比较令人满意的效果,同时同时PID 调节器又具有典型的结构,可以根据被控对象的具体情况,采用各种PID 的变种,有较强的灵活性和适用性。
在模拟量的控制中,经常用到经常用到PID 运算来执行来执行PID 回路的功能,PID 回路指令使这一任务的编程和实现变得非常容易。
如果一个果一个 PID 回路的输出回路的输出M ( t)是时间的函数,则可以看作是比例项、积分项和微分项三部分之和(2),即:,即:dt de K M edt K e K t M C tc C *+++*=⎰00)( 式中式中 e ——偏差;——偏差;T i ——积分常数;——积分常数;T d ——微分常数;——微分常数;K c ——放大倍数(比例系数)——放大倍数(比例系数)M 0——偏差为零时的控制值,有积分环节存在,此项也可不加——偏差为零时的控制值,有积分环节存在,此项也可不加以上各量都是连续量,第一项为比例项,最后一项为微分项,中间两项为积分项。
SL SL--CD CD电导液位控制器一、概述概述SL-CD 型电导式液位控制器是一种新型的电导式液位控制器。
由于其灵敏度可调,所以对低电导率的液体具有极强的抗结垢能力。
该控制器可以通过测量电极与导电液体的接触,连通控制电路的电流,再由控制电路把这个电流信号转换为继电器的触点开关输出,从而实现了对液位的传感和控制。
适用于轻工、化工、食品、水处理等行业的自动给水、排水控制及各种导电液体的上下限位报警。
二、产品特点产品特点◎ 安装调试简单,运行可靠,价格低廉。
◎ 可通过灵敏度调整适应不同电导率的液体。
◎ 对于较低电导率的液体具有极强的抗结垢能力。
◎ 有一体型和分体型结构,使用方便灵活。
三、主要技术指标主要技术指标◎ 工作电源:AC 220V±10% 50HZ 或DC24V ◎ 功 率:≤5W◎ 环境温度:-30~50℃ ◎ 介质温度:-30~250℃ ◎ 介质压力:1MPa◎ 液体电导率:≤200K.CM◎ 继电器输出触点容量:AC 220V 1A 或DC28V 0.5A ◎ 电极材料:1Cr18Ni9Ti四、仪表的外形尺寸及安装方式1.1.一体型结构的外一体型结构的外一体型结构的外形尺寸及安装方式形尺寸及安装方式形尺寸及安装方式::如图1所示,一体型结构的控制器仪表部分在电极上部的壳体内,采用G1.5″管螺纹安装,亦可配图2所示带螺纹法兰,采用法兰安装。
2.2.分体型结构的外形尺寸及安装方式分体型结构的外形尺寸及安装方式分体型结构的外形尺寸及安装方式::分体型结构的电极用户可自行安装,一般采用Φ6不锈钢,安装时电极与电极之间,电极与金属仓壁之间应相互绝缘。
也可委托我厂设计制造。
分体形型结构控制器的仪表由接线端子插座和仪表两部分接插在一起,外形及尺寸见图3。
可采用固定式安装或盘装,固定式安装时,先把端子插座固定在安装板上,安装尺寸见图4。
再将仪表插入端子插座即可。
盘装时按图5所示尺寸开孔。
目录1 引言 (1)1.1 课题研究背景 (1)1.2 发展历史、现状及发展趋势 (2)1.2.1 国内外水箱控制的发展 (2)1.2.2 控制系统的发展方向 (2)1.3 选题意义 (4)2 双容水箱液位控制实验台设计简介 (5)2.1 双容水箱液位控制试验台特性研究 (5)2.2.1 双容水箱液位控制实验台架的模型搭建 (5)2.2.2 双容水箱液位控制实验台架三维模型搭建 (6)2.3 双容水箱液位控制实验台搭建 (10)2.4 系统搭建总结及过程中存在的问题 (14)3 双容水箱液位控制方案验证 (15)3.1 自动控制基本原理与方式 (15)3.2 过程控制系统的MATLAB计算与仿真 (15)3.2.1 控制系统计算机仿真 (15)3.2.2 控制系统的MATLAB计算与仿真 (16)3.3 双容水箱液位控制系统数学模型建立 (17)3.4 双容水箱液位控制系统动静态仿真 (19)3.4.1 双容水箱液位控制试验台控制流程 (19)3.4.2 双容水箱液位控制试验台的Simulink仿真 (20)3.4.3 经典PID 控制存在的问题及现阶段研究方向 (23)4 双容水箱液位控制实验台设备选型 (24)4.1 动力及控制设备 (24)4.1.1 水泵 (24)4.1.2 调节型电动阀 (25)4.2 传感器及信号采集装置 (26)4.2.1 液位变送器 (26)4.2.2 数据采集卡 (27)5 双容水箱液位控制实验台LabVIEW程序设计 (28)5.1 LabVIEW的VI控制 (28)5.2 控制程序的设计 (28)5.2.1 液位控制总程序 (29)6 液位控制实验过程 (33)6.1 实验过程 (33)6.2 实验效果 (34)6.3 实验结论与收获 (37)7 总结与展望 (38)7.1 结论与收获 (38)7.2 展望与改进 (38)参考文献 (38)致谢 (41)中北大学2017届毕业设计说明书1 引言在科学技术发展的过程当中,现代控制工业生产的工艺当中的各种问题也变得日趋复杂。
文档编号:TSS_CONT.DOC液位控制系统单元仿真培训系统操作说明书北京东方仿真软件技术有限公司二〇〇六年十月目录一、工艺流程说明 (3)1、工艺说明 (3)2、本单元控制回路说明 (3)二、装置的操作规程 (5)1、冷态开车规程 (5)2、正常操作规程 (6)3、停车操作规程 (6)4、仪表一览表 (8)三、事故设置一览 (10)四、仿真界面 (11)附:思考题 (13)一、工艺流程说明1、工艺说明本流程为液位控制系统,通过对三个罐的液位及压力的调节,使学员掌握简单回路及复杂回路的控制及相互关系。
缓冲罐V101仅一股来料,8Kg/cm2压力的液体通过调节产供阀FIC101向罐V101充液,此罐压力由调节阀PIC101分程控制,缓冲罐压力高于分程点(5.0Kg/cm2)时,PV101B自动打开泄压,压力低于分程点时,PV101B自动关闭,PV101A自动打开给罐充压,使V101压力控制在5Kg/cm2。
缓冲罐V101液位调节器LIC101和流量调节阀FIC102串级调节,一般液位正常控制在50%左右,自V101底抽出液体通过泵P101A或P101B(备用泵)打入罐V102,该泵出口压力一般控制在9Kg/cm2,FIC102流量正常控制在20000Kg/hr。
罐V102有两股来料,一股为V101通过FIC102与LIC101串级调节后来的流量;另一股为8Kg/cm2压力的液体通过调节阀LIC102进入罐V102,一般V102液位控制在50%左右,V102底液抽出通过调节阀FIC103进入V103,正常工况时FIC103的流量控制在30000 kg/hr。
罐V103也有两股进料,一股来自于V102的底抽出量,另一股为8kg/cm2压力的液体通过FIC103与FI103比值调节进入V103,比值系数为2:1,V103底液体通过LIC103调节阀输出,正常时罐V103液位控制在50%左右。
2、本单元控制回路说明本单元主要包括:单回路控制系统、分程控制系统、比值控制系统、串级控制系统。
水位液位远程无线自动控制器使用手册一、产品概述SCSW-TR系列远程无线液位控制器,系我公司推出且拥有自主知识产权的智能化新产品,该控制器能解决0.1-60公里的无线自动远程检测控制要求,可广泛应用在:水文、自来水、冶金、矿山、化工等行业。
可用来测量江、河、湖、海的深度和储水池、储水容器内的水位。
例如高山水库之间水位控制,高速公路消防水池水位控制,别墅的排水泵站群自动控制,小区泵房的自动控制,工厂水位水塔的自动控制,不用架设LAN线,不用中继站,不用开挖施工,用极小的投资,就能实现数台设备的远距离双向检测和控制,不但省去了弱电施工成本,后期也基本没有维护费用,避免盗割电缆造成的巨额损失,本控制器可以一对一无线通讯,也可以1对多,标准配置通讯距离3公里,架设天线后可达60公里。
该控制器不同于其它厂供应的调幅民用不可靠无线液位控制器,该控制器采用调频工业级耐高低温、高抗电机干扰电路制造,具有很高的稳定可靠性,具备多项先进而实用的技术功能,精湛的技术,优良的制造封装工艺,确保了本产品的高效、稳定、持久和免维护运行,高强的品质、坚固的结构、稳定的性能,胜任于野外恶劣的环境,是现代工业传统水位(液位)控制方式理想的无线液位控制更新换代产品。
内部设有上下限比较环节,可对水池和储水容器内的上下限水位进行控制,并能提供上下限水位报警。
仪器显示环节可随时显示水位的变化值,仪器内部设有模拟量输出环节,可给出4~20mA电流,便于和其它设备连网使用。
仪器机箱具有防尘防湿功能,安装方式为壁挂式二、主要功能及特点1.全天候运行,无人值守,下限自动启动,上限自动关停。
当主机检测到水位低于低水位时,主机无线通知水泵房的从机开启水泵;2.当水位到达高水位时,主机无线通知水泵房的从机停止水泵工作;3.主机和从机保持随时通信(至少每秒2次),同步水位和设备的状态。
如果通讯失败,或主机检测到水位的输入信号有错误(如有高水位信号却没有低水位信号),就会输出故障。
单容水箱液位控制系统设计(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--辽宁工程技术大学计算机控制技术课程设计设计题目单容水箱液位控制系统设计指导教师院(系、部)专业班级学号姓名日期《计算机控制技术》课程综合设计任务书摘要本文根据液位系统过程机理,建立了单容水箱的数学模型。
介绍了PID控制的基本原理及数字PID算法,利用simulink软件对系统进行系统仿真,并进行了整定PID参数,得到整定后的仿真曲线。
系统由进出水阀门,C51单片机,A/D转换器,D/A转换器,传感器,显示电路和键盘电路等组成。
整个过程保持出水阀的开度比例不变,由传感器检测电路连续不断地相应液位值,送入A/D转换器中处理,输出的数字量送给单片机,控制显示电路实时显示实际液位值,由键盘输入设定值,控制器比较其值控制进水阀门的开度比例,以保持液位稳定在要求范围内。
关键词:单容水箱;水箱建模;液位控制;PID算法AbstractBased on the process mechanism of the liquid level system, this paper establishes the mathematical model of the single-capacity water tank. The basic principle of PID control and the digital PID algorithm are introduced. The system simulation is performed using simulink software, and the PID parameters are adjusted to obtain the simulation curve after the tuning.The system consists of inlet and outlet valves, C51 microcontroller, A/D converter, D/A converter, sensor, display circuit and keyboard circuit. Throughout the entire process, the proportion of opening of the outlet valve is kept constant, and the corresponding level value of the sensor detection circuit is continuously sent to the A/D converter for processing. The output digital quantity is sent to the SCM, and the control display circuit displays the actual liquid level in real time. Value, the set value is input by the keyboard, and the controller compares the value to control the opening ratio of the inlet valve to keep the liquid level stable within the required range.Key words:Single capacity water tank;Water tank modeling;Liquid level control;PID algorithm目录0 前言 (1)1 设计方案 (2)概述 (2)系统结构 (2)2 水箱系统建模 (3)水箱结构图 (3)水箱模型计算 (3)3 硬件设计 (5)C51单片机最小系统 (5)传感器 (5)A/D转换模块 (5)D/A转换模块 (5)显示模块 (6)键盘模块 (6)调节阀 (6)4 PID算法与软件设计 (7)PID算法分析 (7)位置式PID (8)主程序流程图 (10)显示子程序 (11)键盘子程序 (11)A/D子程序 (11)5 系统仿真 (12)系统自衡仿真 (12)simulink仿真图 (12)simulink曲线 (13)6 结论 (14)参考文献 (15)附录:系统硬件电路图 (16)0 前言液位控制技术在现实生活、生产中发挥了重要作用,比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,排水或进水控制得当与否,关系到车间的生产状况;锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可能发生事故;精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。
摘要应用组态软件设计一个仿真实验监控系统,实现对实际工程问题的过程控制,现在我们的具体问题是实现对水箱液位过程控制。
为了能设计一个解决实际工程问题的仿真实验监控系统,我们可以基于各种组态软件来设计这个仿真平台.而MCGS组态软件具有操作简便、可视性好、可维护性强、高性能等突出特点,它可以快速构造和生成上位机监控系统,并可稳定运行于多种操作系统.。
以MCGS组态软件为开发平台,设计一个仿真实验监控平台来实现对实际工程问题的控制.不仅能对水箱的液位进行监控,采集实验数据建立实验报表,而且能够脱机进行仿真实验、模拟控制。
为了能够很好的实现对水箱液位控制系统的仿真,综合考虑多方面的因素,本文将用MCGS组态软件设计一个仿真实验监控平台来对其进行实时控制.具体地,要将MCGS组态软件实现此方案。
在该系统中,利用MCGS组态软件完成数据采集、控制信息输出以及人机交互等工作,完成仿真实验监控平台的设计,最终达到对水箱液位实时监控,实验数据采集,报表的输出和数据的同步显示。
关键词: MCGS组态软件;液位系统;仿真实验AbstractTo design a simulation experiment monitoring platform with application configuration software, realizing the actual engineering problems of process control, currently, our concrete problem is to achieve the temperature of the boiler and water tank level process control.In order to be able to solve real engineering problems to design a simulation experiment monitoring platform, we can base on a variety of configuration software to design this simulation platform. The MCGS configuration software has simple operation, perfect visibility, strong maintainability, high performance and other salient features. It can construct and generate host computer monitoring system quickly, and can be run on different kinds of operating systems steadily.With MCGS configuration software development platform, designing a simulation experiment monitor platform to achieve the process control of the actual engineering problems. Not only can monitor the level of the water tank and the temperature of the boiler, gathering the experiment data and establishing experiment reports, but also can do the off-line simulation experiment, simulation control.In order to control the water tank level and the water temperature of boiler well. Take a comprehensive consideration on various factors; this article will design a simulation experiment monitoring platform with MCGS configuration software to achieve the real-time control for this system. Specifically, we should use MCGS configuration software to implement this program. In this system, realizing the data acquisition, controlling information output, as well as the human-machine interaction by the MCGS configuration software, and accomplishing the design of the simulation experiment monitoring platform, which can to achieve the level of the water tank and the water temperature of the boiler in real-timemonitoring, experimental data collection, report forms of the output and synchronized curve display ultimately.Key Words: MCGS configuration software; liquid level system; simulation experiment目录1绪论.................................................. 错误!未定义书签。
湖南工程学院课程设计课程名称专业综合课程设计课题名称单容水箱液位控制专业班级学号姓名指导教师2014年6月23 日湖南工程学院课程设计任务书课程名称专业综合课程设计课题单容水箱液位控制专业班级学生姓名学号指导老师审批任务书下达日期 2014年6月23日任务完成日期2014年7月4日目录第1章设计目的 (1)第2章系统总体设计方案 (2)2.1 液位控制的实现 (2)2.2 被控对象 (2)2.3 水箱建模 (2)第3章仪器设备 (5)3.1控制器 (5)3.2执行器 (5)3.3检测变送 (5)第4章系统结构框图与工作原理 (7)4.1课设原理说明 (7)4.2 PID控制原理 (7)第5章 MCGS组态软件设计 (9)第6章调试 (12)第7章课程总结 (13)第8章参考文献 (14)课程设计评分表 (15)第1章设计目的课程设计旨在使学生在深入消化课堂教学内容的基础上,综合应用所学课程的基本原理与方法,解决实际设计与应用问题,提高学生分析问题与解决问题的能力,并在设计工作中,学会查阅资料、系统设计、调试与分析、撰写报告等,达到综合能力培养的目的。
1.根据自动控制系统的设计要求,学会方案比较和论证,初步掌握工程设计的基本方法;2.掌握各种变送器以及自动化仪表的工作原理和调校;3.掌握自动控制系统集成技术;4.掌握控制系统的通信技术,学会PCI数据采集卡或远程数据采集模块的应用;5.应用MCGS软件,学会控制算法的设计和调试;6.熟悉MCGS组态软件,学会监控界面、通信驱动程序等的设计;7.提高总结归纳、撰写设计报告的能力,应当规范、有条理、充分、清楚地论述设计内容和调试成果。
第2章系统总体设计方案2.1 液位控制的实现本设计中以液位控制系统的水箱作为研究对象,水箱的液位为被控制量,选择了出水阀门作为控制系统的执行机构。
本设计首先由差压传感器检测出水箱水位;水位实际值通过A/D转换器进行A/D转换,变成数字信号后,被输入计算机中;最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值传送通过D/A转换器转换成模拟信号,控制交流变频器,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。