v0 0
5 或 3
因此,所求振动式为 4
4
x
2l0 cos(
g t 3 )
2l0 4
即新g的/(平2l0衡) 位置在原来木板平衡位置下x方l0处A
x0=-l0
cos(
t
)
[例4-3]如图所示,质量为m的木板水平置于轻弹簧上端,轻
弹簧下端固定于地面。开始时木板静止,弹簧被压缩了l0; 在木板上方高h= l0处自由落下一与木板质量相同的泥块,与 木板作完全非弹性碰撞。求: (1)碰撞后木板的运动方程;
9
2
相位: (t + ) –描述振动状态
初相位 :
➢ 相位差: =( 2 t + 2 )-(1t + 1)
对两同频率的谐振动 =2 - 1 初相差
➢ 同相和反相
当 = 2k , ( k =0,1,2,…), 两
振动步调相同,称同相. 当 = (2k+1) , ( k
而应满足
即新的平衡位置在原来木板平衡位置下方l0处
[例4-3]如图所示,质量为m的木板水平置于轻弹簧上端,轻 弹簧下端固定于地面。开始时木板静止,弹簧被压缩了l0; 在木板上方高h= l0处自由落下一与木板质量相同的泥块,与 木板作完全非弹性碰撞。求: (1)碰撞后木板的运动方程; (2)从泥块与木板相碰到它们第一次回到相碰位置所用时间。
由此可知l ,板做d简t 2谐振动dt 2 l
f2
x
m
0
d2x dt 2
f1
周期为
mN1, T
f2
2
mN2 l mg
[例4-3]如图所示,质量为m的木板水平置于轻弹簧上端,轻