第十四章 核磁共振波谱法
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T 时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
第十四章核磁共振波谱法- 经典习题1.试对照结构指出图14-1上各个峰的归属。
解:δ1.2 三重峰3H-CH2-CH3δ2.0 单峰3H-CO-CH3δ4.0 四重峰2H-O-CH2-CH3δ6.8~7.6 4H-C6H4-δ9.8 单峰1H-NH-图14-1 例题1的1H-NMR谱2.由下述1H-NMR图谱,进行波谱解析,给出未知物的分子结构及自旋系统。
(1)已知化合物的分子式为C4H10O,1H-NMR谱如图14-2所示。
图14-2 C4H10O的1H-NMR谱解:u=(2+2×4-10)/2=0δ1.13 三重峰6H -CH2-CH3(2个)δ3.38 四重峰4H -O-CH2-CH3(2个)可能结构式为:CH3-CH2-O-CH2-CH3自旋系统:2个A2X3(2)已知化合物的分子式为C9H12,1H-NMR谱如图14-3所示。
图14-3 C9H12的1H-NMR谱解:u=(2+2×9-12)/2=4δ1.22 二重峰3H -CH-CH3δ2.83 七重峰1H -CH-(CH3)2δ7.09 单峰5H C6H5-可能结构式为:自旋系统:A6X,A5(3)已知化合物的分子式为C10H10Br2O,1H-NMR谱如图14-4所示。
图14-4 C10H10Br2O的1H-NMR谱解:u=(2+2×10-12)/2=5δa 2.42 单峰3H -CO-CH3δb 4.88 双峰1Hδc 5.33 双峰1Hδd 7.35 单峰5H C6H5-可能结构式为:自旋系统:A5、AB、A33.某化合物分子式为C8H12O4,NMR图谱如图14-6所示,δa=1.31(三重峰,)δb=4.19(四重峰),δc=6.71(单峰),Jab=7Hz,峰面积积分值比a:b:c=3:2:1,试推断其结构式。
图14-6 C8H12O4的氢核磁共振谱解:(1)计算不饱和度u=(2+2×8-1)/2=3(2)由积分值比计算氢分布:a:b:c=3:2:1分子式有12个H,可知分子具有对称结构为a:b:c=6H:4H:2H(3)偶合系统(ab)为一级偶合A2X3系统(二个质子的四重峰与三个质子的二重峰)(4)根据δa=1.31,δb=4.19及偶合系统可以推测有-CH2CH3存在,并均向低场移动,故为-OCH2CH3型结构。
核磁共振波谱法一、概述早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。
1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),他们也因此分享了1952年的诺贝尔物理奖。
所产生的波谱,叫核磁共振(波)谱。
通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。
NMR和红外光谱、紫外—可见光谱相同之处是微观粒子吸收电磁波后发生能级上的跃迁,但引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。
.1949年,Kight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。
而1951年Arnold等人也发现了乙醇分子由三组峰组成,共振吸收频率随不同基团而异,揭开了核磁共振与化学结构的关系。
1953年出现了世界上第一台商品化的核磁共振波谱仪。
1956年,曾在Block实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。
七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。
八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。
核磁共振波谱法基本原理核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy)是一种利用核磁共振现象进行分析的方法。
核磁共振是基于原子核的特定性质,在外加磁场作用下,原子核能够吸收具有特定频率的电磁波并发生共振现象的现象。
该方法通过检测不同原子核的共振信号来获取样品的结构和组成信息。
核磁共振波谱法基于原子核中的自旋(Spin)性质。
自旋是描述原子核内部的一种性质,可以与外加磁场相互作用。
在没有外加磁场作用下,原子核的自旋朝向是随机的。
然而,当样品置于强磁场中时,原子核的自旋会排列在不同能级上。
这些能级之间存在能量差,当这些能级之间的能量差等于外加电磁波的能量时,原子核就会发生共振吸收。
核磁共振波谱仪的基本构造包括磁场系统、射频系统、探测系统和计算机系统。
磁场系统用来产生强磁场,常见强磁场有永磁磁体、超导磁体等。
射频系统则用来产生特定频率的电磁波,以激发样品中的原子核共振吸收。
探测系统用来接收样品发出的信号,并将其转化为电信号,进一步处理和分析。
计算机系统则用来进行数据处理和结果分析。
在进行核磁共振波谱实验时,首先将样品放置于磁场中,样品中的原子核会受到磁场的作用,并分裂为不同能级。
接下来,通过调节射频系统产生特定频率的电磁波,激发样品中的原子核发生共振吸收。
这时,探测系统会接收样品发出的共振信号,并将其转化为电信号。
最后,计算机系统会对接收到的信号进行数学处理,生成核磁共振波谱图。
核磁共振波谱图是核磁共振波谱法的主要结果,可以提供关于样品的结构和组成的信息。
波谱图中的共振信号对应于不同原子核的吸收峰,其化学位移(Chemical Shift)可以帮助确定样品中的不同官能团或基团。
同时,共振信号的相对积分面积可以提供定量分析所需的信息。
总体而言,核磁共振波谱法通过利用原子核在磁场中的共振吸收现象,能够提供丰富的结构和组成信息。
它在有机化学、无机化学、生物化学等领域有着广泛的应用,成为了一种重要的分析手段。
核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等 I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
1、解释下列名词
(1)屏蔽效应和去屏蔽效应
屏蔽效应:绕核电子在外加磁场的诱导下,产生与外加磁场方向相反的感应磁场,使原子核实受磁场强度稍有降低,这种核外电子及其他因素对抗外加磁场的现象称为~。
去屏蔽效应:当次级磁场的磁力线与外磁场一致时,使得处于此空间的质子实受外磁场强度增加,这种效应为~。
(不定)
(2)自旋偶合和自旋分裂
自旋偶合是核自旋产生的核磁矩间的相互干扰,又称为自旋-自旋偶合。
自旋分裂是由自旋偶合引起共振峰分裂的现象,又称为自旋-自旋分裂。
(3)化学位移和偶合常数
由于屏蔽效应的存在,不同化学环境的氢核的共振频率(进动频率,吸收频率)不同,这种现象称为化学位移。
当自旋体系存在自旋-自旋偶合时,核磁共振谱线发生分裂。
由分裂所产生的裂距反映了相互偶合作用的强弱,称为偶合常数。
(4)化学等价核和磁等价核
在核磁共振谱中,有相同化学环境的核具有相同的化学位移,这种有相同化学位移的核称为化学等价。
分子中一组化学等价核(化学位移相同)与分子中的其他任何一个核都有相同强弱的偶合,则这组核为磁等价核。
2、略
3、为什么强照射波照射样品,会使NMR信号消失,而UV与IR吸收光谱法则不消失?
4、为什么用δ值表示峰位,而不用共振频率的绝对值表示?为什么核的共振频率与仪器的磁场强度有关,而偶合常数与磁场强度无关?
由于屏蔽常数很小,不同化学环境的氢核的共振频率相差很小,要精确测量其绝对值较困难,并且屏蔽作用引起的化学位移的大小与外磁场强度成正比,在磁场强度不同的仪器中测量的数据也不同,因此,用共振频率的相差值来表示化学位移,符合为δ。
有两种表达P286。
因为核磁矩在外磁场中产生能级分裂,高能级与低能级的能量差随着外磁场强度的增大而增大,跃迁时所吸收的能量增大。
根据ν=γ·Ho/2π可知,核磁共振频率与外磁场强度成正比。
由于原子核间的自旋偶合起源于磁核间的干扰,是通过成键电子传递的,所以偶合常数的大小只与偶合核间距离、角度、电子云密度有关,与外磁场强度无关。
5、什么是自旋偶合与自旋分裂?单取代苯的取代基为烷基时,苯环上的芳氢(5个)为单峰,为什么?两取代基为极性基团时(如卤素、—NH2、—OH等),苯环的芳氢变为多重峰,试说明原因,并推测是什么自旋系统。
自旋偶合是核自旋产生的核磁矩间的相互干扰,又称为自旋-自旋偶合。
自旋分裂是由自旋偶合引起共振峰分裂的现象,又称为自旋-自旋分裂。
P297下面。
6、峰裂距是否是偶合常数?偶合常数能提供什么结构信息?
对简单偶合而言,峰裂距即偶合常数。
偶合常数是核磁共振谱的重要参数之一,可用它研究核间关系、构型、构象及取代位置等。
7、什么是狭义与广义的n+1律?
狭义:某基团的氢与n个相邻氢偶合时,将被分裂为n+1重峰,而与该基团本身的氢
数无关。
广义:若某基团与n,n’···个氢核相邻,发生简单偶合,若偶合常数相等,则峰裂分常数为(n+n’+……)+1,若偶合常数不等,则分裂为(n+1)(n’+1)。
8、在质子共振谱中,可以看到HF质子的双峰,而只能看到HCl质子单峰。
为什么?
电四极矩。
P292最下面,P293最上面。
9、ABC与AMX系统有什么区别?
ABC:核组间化学位移相差很小。
AMX:每个核组化学位移相近,但核组间的化学位移△ν远大于他们的偶合常数。
10、氢谱和碳谱各能提供哪些信息?为什么说碳谱的灵敏度约相当于1H谱的1/5800?
氢谱主要提供质子类型及其化学环境,氢分布,核间关系。
碳谱可给出丰富的碳骨架及有关结构和分子运动的信息,如分子中含有多少个碳原子,他们各属于哪些基团,可以区别伯仲叔季碳原子等。
P301碳谱第二段。
(注意课本其他课后习题)
11、自旋弛豫P283
12、化学位移的影响因素:局部屏蔽效应、磁各向异性(烯炔问题)、氢键。
P287
13、原子核共振吸收的条件:P282。