2012年北京市17区二模试题汇编4.应用题.莹
- 格式:doc
- 大小:302.00 KB
- 文档页数:7
FEB AO 2012年北京市中考数学二模分类汇编——圆(一)与圆有关的填空选择题1.(西城3)若⊙1O 与⊙2O 内切,它们的半径分别为3和8,则以下关于这两圆的圆心距12O O 的结论正确的是AA.12O O =5B.12O O =11C.12O O >11D. 5<12O O <112.(延庆) 如图,⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,1OD =,则BAC ∠的度数是BA .55° B.60° C.65° D .70° 3.(通州7)如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =60o,则sin∠BDC 的值为( )A .12B .3C .2D .24.(丰台11)如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D , 如果1OD =,那么BAC ∠=________︒.60°5.(西城6)如图,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 长为10,3cos 5BOD ∠=, 则AB 的长是 A . 20 B. 16 C. 12 D. 86.(顺义6)如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.(怀柔5=5m ,横截面的圆心O 到污水面的距离OC =3m ,则污水面宽AB 等于AA .8mB .10mC .12mD .16m8.(密云7)如图,AB 是半⊙O 的直径,C 是⊙O 上一点,OD BC ⊥于D ,若:4:3AC B C =,10AB =cm ,则OD 的长为A .2 cmB .4 cmC .6 cmD .8 cmDO CBA-2 -9.(延庆)已知扇形的圆心角为60°,半径为6,则扇形的弧长为DA .6πB .4πC .3πD .2π10.(平谷11)如图,在⊙O 中,直径AB =6,∠CAB =40°,则阴影部分的面积是 .11.(东城区10) 一个扇形圆心角为120°,半径为1,则这个扇形的弧长为 .23π12.(石景山11)已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .13.(延庆)如图,点A 、B 、C在直径为O ⊙上,45BAC ∠=°,则图中阴影部分的面积等于____________.(结果中保留π)3π342- 14.(西城8)如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形ABCD 绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的面积(阴影部分)为A . 21π B. 31π C.41π D. 51π15.(东城12) 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON ,使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .2π-16.(密云12)如图,在边长为1的等边△ABC 中,若将两条含120︒圆心角的 AOB 、BOC 及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积比是 ______ .17.(通州8)如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( )A .132π平方厘米B .312π平方厘米C .25π平方厘米D .无法计算18.(昌平10)圆锥的母线长为3,底面半径为2,则它的侧面积为 . 19.(房山7)已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于(D ).A .15πB .14πC .13πD .12π20.(西城11)如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径等于 cm .CA-3 -(二)与圆有关的计算问题1.怀柔20. 如图,点D 在O ⊙直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°. (1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积. 20.(1)证明:连结O C .………………1分∵ CDAC =,120A C D ︒∠=, ∴ 30A D ︒∠=∠=.……………2分 ∵ OCOA =,∴ 230A ︒∠=∠=. ∴ 290O C D A C D ︒∠=∠-∠=. ∴ C D 是O ⊙的切线. ………………………………3分(2)解:∵∠A=30o , ∴ 1260A ︒∠=∠=. ∴ 2602360O B CS π⨯==扇形23π. ……………………4分 在Rt△OCD 中, tan 60CD OC =⋅︒=∴Rt 11222OCD S OC CD ∆=⨯=⨯⨯=∴ 图中阴影部分的面积为-3223π. ……………5分2.(石景山21)已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MP 的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论;(2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:21.(1)联结CO , …………………………1分 ∵DM ⊥AB ∴∠D+∠A=90°∵PC PD =∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA ∴∠OCA+∠PCD=90°∴PC ⊥OC ∴直线PC 是⊙O 的切线 ……………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q∴Rt △CQA 中∴22tanD QAC tan ==∠∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x∴22=AQ∴242==AQ AN ∴163CD ==……………… 5分 3.(门头沟20) 如图,已知直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径.点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D .(1)求证:CD 为⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长.20.(1)证明:连接OC, ∵O A=OC,∴∠OCA=∠OAC .∵CD⊥PA,∴∠CDA=90°,∴∠CAD+∠DCA=90°, ∵AC 平分∠PAE,∴∠DAC=∠CAO . ………………………1分 ∴∠DC O =∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.∴CD 为⊙O 的切线. …………………………2分(2)解:过O作O F⊥AB,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°,∴四边形OCDF 为矩形,∴OC=FD ,OF=CD.-4 -∵DC+DA=6,设AD=x ,则OF=CD=6-x , ……………………3分 ∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt△AOF 中,由勾股定理得222AF +OF =OA . 即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =(舍).∴AD=2, AF=5-2=3.∵OF⊥AB, AB=2AF=6.4.(通州20)已知:如图直线PA 交⊙O 于A ,E 两点,PA 的垂线DC 切⊙O 于点C ,过A 点作⊙O 的直径AB .(1)求证:AC 平分∠DAB .(2)若DC =4,DA =2,求⊙O 的直径. 20. 答案:(1)连结OC ∵DC 切⊙O 于C ∴OC ⊥DC又∵PA ⊥DC ∴ OC∥PA ∴∠PAC =∠OCA又 OC =OA ∴ ∠OCA =∠OAC ∴∠PAC =∠OAC ∴AC 平分∠DAB (2)作OF ⊥AE 于F ,设⊙O 的半径为R ……………..(3分)又∵PA ⊥DC OC ⊥DC ∴四边形OCDF 为矩形∴OF =CD =4 且 DF =OC =R 又 DA =2,∴ AF=DF-AD=R -2……………………………..(4分)在Rt △OAF 中,OF 2+AF 2=OA 2∴ 42+(R -2)2=R 2解得:R =5∴⊙O 的直径:2R =10 5.(海淀20)如图,AC 、BC 是⊙O 的弦, BC //AO , AO 的延长线与过点C 的射线交于点D , 且∠D =90︒-2∠A .(1)求证:直线CD 是⊙O 的切线; (2)若BC=4,1tan 2D =,求CD 和AD 的长. 20.(1)证明:连结OC .∴ ∠DOC =2∠A . ∵∠D = 90°2A -∠, ∴∠D +∠DOC =90°. ∴ ∠OCD =90°.∵ OC 是⊙O 的半径,∴ 直线CD 是⊙O 的切线. (2)解: 过点O 作OE ⊥BC 于E , 则∠OEC =90︒.∵ BC =4, ∴ CE =12BC =2. ∵ BC //AO ,∴ ∠OCE =∠DOC . ∵∠COE +∠OCE =90︒, ∠D +∠DOC =90︒, ∴ ∠COE =∠D .∵tan D =12,∴tan COE ∠=12.∵∠OEC =90︒, CE =2,∴4tan CEOE COE==∠.在Rt △OEC 中, 由勾股定理可得OC == 在Rt △ODC 中, 由1tan 2OC D CD ==,得CD =, …………4分 由勾股定理可得 10.OD =∴10.AD OA OD OC OD =+=+=…………………5分 6.(密云)19.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30. (1)求∠P 的大小; (2)若AB =6,求PA 的长.- 5 -19.(1)解:∵PA是⊙O的切线,AB为⊙O的直径,∴PA AB⊥.∴90BAP∠=-----------------1分∵∠BAC=30,∴9060PAC BAC∠=-∠=.又∵PA、PC切⊙O于点A、C,∴PA PC=--------------2分∴△PAC是等边三角形.∴60P∠=. ------------------------3分( 2 ) 如图,连结BC.∵AB是直径,∠ACB=90. --------4分在R t△ACB中,AB=6,∠BAC=30,∴cos6cos3033AC AB BAC=⋅∠==又∵△PAC是等边三角形,∴PA AC== --------------------------5分7.(西城区21)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.(1)求证:AP是⊙O的切线;(2)若OC=CP,AB=33,求CD的长.21.(1)证明:连结AO,AC.(如图5)∵BC是⊙O的直径,∴90BAC CAD∠=∠=︒.﹍﹍﹍﹍﹍1分∵E是CD的中点,∴AEDECE==.∴EACECA∠=∠.∵OA=OC,∴OCAOAC∠=∠.∵CD是⊙O的切线,∴CD⊥OC.∴90ECA OCA∠+∠=︒. ∴90EAC OAC∠+∠=︒.∴OA⊥AP.∵A是⊙O上一点,∴AP是⊙O的切线.(2) 解:由(1)知OA⊥AP.在Rt△OAP中,∵90OAP∠=︒,OC=CP=OA,即OP=2OA,∴ sin P21==OPOA.∴30P∠=︒. ∴60AOP∠=︒.∵OC=OA,∴60ACO∠=︒.在Rt△BAC中,∵90BAC∠=︒,AB=33,60ACO∠=︒,∴3tanABACACO===∠.又∵在Rt△ACD中,90CAD∠=︒,9030ACD ACO∠=︒-∠=︒,∴3cos cos30ACCDACD===∠︒﹍﹍﹍﹍5分8.(顺义)已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O位置关系,并证明你的结论;(2)若BC=2,11sin23APC∠=,求PC的长及点C到PA的距离.OCBAP- 6 -D85674321O C B AP20.解:(1)直线PC 与⊙O 相切.证明:连结OC ,∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC , ∴∠1=∠3.∴∠2=∠4. 又∵OC=OA ,OP=OP ,∴△POC ≌△POA .∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°. ∴∠PCO =90°.∴PC 与⊙O 相切.…………… 2分 (2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠.∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°.∴1cos 2sin 53∠=∠=.∵∠3=∠1 =∠2,∴1cos 33∠=.连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°.∴261cos 33BC AB ===∠.∴OA=OB=OC=3,AC ==Rt △POC 中,9sin 5OCOP ==∠.∴PC == 4分过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°. ∴∠3=∠8.∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠== 9.(延庆19)已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D , (1) 求证:∠AOD =2∠C (2) 若AD =8,tan C =34,求⊙O 的半径。
二、[教学重点] 1.了解作者留学日本的情况、与藤野先生的交往和本文的写作背景。
2.把握课文的组织结构,理解课文的思想内容。
三、[教学难点] 掌握本文通过典型事例突出人物品质的写法 五、[教学过程] 第一课时 [教学内容] 了解背景,学习词语,初读课文。
[教学环节] 一、导入新课 学过了《从百草园到三味书屋》这篇散文,我们了解到三味书屋中的老先生虽然施行的是封建书塾教育,但思想还算开明,因此,鲁迅对他“很恭敬”。
虽是“很恭敬”,但并不是很有感情。
藤野先生是鲁迅在日本仙台学医时的一位日本医专的教授,他是一位怎样的老师呢?鲁迅对他的感情又是如何呢?让我们一起走访《藤野先生》吧! 二、简介作者、藤野先生和作品的写作背景。
三、学生默读课文,疏通有关阅读障碍 要求:1.标注出难字难词。
2.注意:文章变换了几个地点? 3.划分文章的段落层次,并说说各部分的大意。
学生默读后,讨论明确: 1.需要注意的字词列举如下: (多媒体展示) 绯(fēi)红:鲜红。
会馆:旧时同乡或同业的人在京城、省会或大商埠设立的寄寓和机构。
流言:流传的毫无根据的坏话。
瞥(pīe)见:很快地看一下。
畸(jī)形:不正常的形状。
遗民:a.留下的在国外的人;b.改朝换代后仍效忠前一朝代的人;c.大乱后遗留下来的 人民。
不逊(Xùn):不客气;无礼貌;骄傲、蛮横。
美其名曰:(把不美的事物)美化它的名字叫。
四、学习课文第一部分 1.学生自由朗读第一部分内容。
2.思考:(1)请标出最能表现清国留学生丑态的词语和句子。
(2)对于这些清国留学生,“我”是持什么态度?哪些词语表明了“我”的态度? (3)从“我”的态度,可以看出作者的什么思想? 表达了作者对东京“清国留学生”的恶浊生活的憎恶、失望和不满,强有力地讽刺了这些顽固维护清王朝统治的“遗少”,强烈表达了作者对他们的极端憎恶的感情。
3.找出人物外貌、语言描写的语句,体现了人物什么特点。
一、集合(必修一)
1.(2012年朝阳二模文)设集合,则( D )
A.B.C.D.
2.(2012年丰台二模文9)已知集合A ={x|2x-x2>0},B ={x|x>1},则______.
答案:。
3.(2012年昌平二模文1)若集合,,则( B )
A.{}
B. {}
C. {}
D. {}
4.(2012年东城二模文1)若集合,且,则集合可能是( A )
A. B. C. D.
六、不等式(必修五)
1.(2012年西城二模文12)已知函数是上的偶函数,则实数
_____;不等式的解集为_____.
答案:,。
2.(2012年昌平二模文6)爬山是一种简单有趣的野外运动,有益于身心健康,但要注意安全,准备好必需物品,控制好速度.现有甲、乙两人相约爬山,若甲上山的速度为,下山的速度为(),乙上下山的速度都是(甲、乙两人中途不停歇),则甲、乙两人上下山所用的时间的关系为( A )
A. B. C. D. 不能确定
七、常用逻辑用语(选修2-1)
1.(2012年朝阳二模文3)如果命题“且”是假命题,“”也是假命题,则( C )
A.命题“或”是假命题B.命题“或”是假命题
C.命题“且”是真命题D.命题“且”是真命题
2.(2012年昌平二模文2)“” 是“垂直”的( C )
A. 充分而不必要条件 B必要而不充分条件 C. 充要条件 D.既不充分也不必要条件
3.(2012年海淀二模文2)已知命题:,. 则为( D )
A., B. ,
C. ,
D. ,
温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。
2012年北京各区县二模试题分类几何综合解析版2012年北京市中考数学二模分类汇编——几何综合与中点有关的问题1.(昌平24) 如图,D 是△ABC 中AB 边的中点,△BCE 和△ACF 都是等边三角形,M 、N 别是CE 、CF 的中点. (1)求证:△DMN 是等边三角形; (2)连接EF ,Q 是EF 中点,CP ⊥EF 于点P .求证:DP =DQ . 同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM 绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.24. 证明:(1)取AC 的中点G ,连接NG 、DG .NME F C∴DG =21BC ,DG ∥BC ;△NGC 是等边三角形.∴NG = NC CM . …………………2分 ∵∠1 + ∠2 = 180º,∴∠NGD + ∠2 = 240º.∵∠2 + ∠3 = 240º,∴∠NGD =∠3.∴△NGD≌△NCM . ……………………3分 ∴ND = NM ,∠GND =∠CNM .∴∠DNM =∠GNC = 60º.∴△DMN 是等边三角形.………………………………4分(2)连接QN 、PM .∴QN=21CE= PM . ……………………5分Rt △CPE 中,PM =EM ,∴∠4= ∠5.∵MN ∥EF ,∴∠5= ∠6,∠7=∠8.67854P Q N M E C C 321G NM E F∵NQ ∥CE ,∴∠7= ∠4.∴∠6= ∠8.∴∠QND = ∠PMD . ………………………6分∴△QND ≌△PMD .∴DQ = DP . ……………………7分2.(丰台24)在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F . (1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1图224.解:(1)DE =DF .……1分A E F PB DC E B A DF P(2)DE =DF 不发生改变. (2)分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==. ∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分 同理,524,//DM FN MD PC =∠=∠.∴四边形MDNP 为平行四边形.……5分∴67∠=∠ ∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分∴△EMD ≌△DNF . ∴DE =DF .……7分3.(海淀25.)在矩形ABCD 中, 点F 在AD 延长线上,且DF = DC , M 为AB 边上一点, N 为MD 的中点, 点E 在直线CF 上(点E 、C 不重合).(1)如图1, 若AB =BC , 点M 、A 重合, E为CF 的中点,试探究BN 与NE 的位置关系及BM CE 的值, 并证明你的结论;(2)如图2,且若AB =BC , 点M 、A 不重合,7654321N M C D B P F E ABN =NE ,你在(1)中得到的两个结论是否成立,若成立,加以证明; 若不成立, 请说明理由;(3)如图3,若点M 、A 不重合,BN =NE ,你在(1)中得到的结论两个是否成立, 请直接写出你的结论.图 1 图 2 图325. 解:(1)BN 与NE 的位置关系是BN ⊥NE ;CE BM 2 证明:如图,过点E 作EG ⊥AF 于G , 则∠EGN =90°.∵ 矩形ABCD 中, AB =BC ,∴ 矩形ABCD 为正方形.∴ AB =AD =CD , ∠A =∠ADC =∠DCB =90°.∴ EG//CD , ∠EGN =∠A , ∠CDF =90°.……………1分∵ E 为CF , F A ( M ) D N D A C E N M B F E C BF N M E C B∴ GF =DG =11.22DF CD = ∴ 1.2GE CD = ∵ N 为MD (AD )的中点,∴ AN =ND =11.22AD CD = ∴ GE =AN ,NG=ND+DG=ND+AN=AD=AB . ………2分∴ △NGE ≌△BAN .∴ ∠1=∠2.∵ ∠2+∠3=90°,∴ ∠1+∠3=90°.∴ ∠BNE =90°.∴ BN ⊥NE . ……………………………3分∵ ∠CDF =90°, CD =DF ,可得 ∠F =∠FCD =45°, 2.CF CD =. 于是122CF CE CE CE BM BA CD CD ==== …………4分(2)在(1)中得到的两个结论均成立.证明:如图,延长BN 交CD 的延长线于点G ,连结BE 、GE ,过E 作EH ⊥CE ,交CD 于点H .H B C E M∵四边形ABCD是矩形,∴AB∥CG.∴∠MBN=∠DGN,∠BMN=∠GDN.∵N为MD的中点,∴MN=DN.∴△BMN≌△GDN.∴MB=DG,BN=GN.∵BN=NE,∴BN=NE=GN.∴∠BEG=90°. (5)分∵EH⊥CE,∴∠CEH =90°.∴∠BEG=∠CEH.∴∠BEC=∠GEH.由(1)得∠DCF =45°.∴∠CHE=∠HCE =45°.∴EC=EH,∠EHG =135°.∵∠ECB=∠DCB+∠HCE =135°,∴∠ECB =∠EHG.∴△ECB≌△EHG.∴EB=EG,CB=HG.∵BN=NG,∴BN⊥NE. ……………………6分∵BM =DG= HG-HD= BC-HD =CD-2CE,∴2. ……………………7分CEBM不一定等于(3)BN⊥NE;CEBM2. ……………………8分密云25.已知菱形ABCD的边长为1,60ADC∠=o,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E 、F 分别是边DC 、CB 的中点时,过点P 任作一直线,分别交DA 边于点M ,BC 边于点G ,DC 边的延长线于点N ,请你直接写出11DM DN+的值.25.(本小题满分8分)证明:(1)如图1:分别连结OE 、OF .∵四边形ABCD 是菱形,∴AD DC CB ==,AC BD ⊥,DO BO =, 且112302ADC ∠=∠=∠=o . ∴在Rt △AOD 中,有12AO AD =. 又 E 、F 分别是边DC 、CB 的中点,∴1122EO CB DC OF ===.∴AO EO FO ==.∴点O 即为等边△AEF 的外心. ------------------------- 3分(2)①猜想:△AEF 的外心P 落在对角线DB 所在的直线上.证明:如图2:分别连结PE 、PA ,作PQ DC ⊥于Q ,PH AD⊥于H .则90PQE PHD ∠=∠=o∵60ADC ∠=o, ∴在四边形QDHP 中,120QPH ∠=o.又 ∵点P 是等边△AEF 的外心,60EFA ∠=o,∴PE PA =,2260120EPA EFA ∠=∠=⨯=oo. ∴αβ∠=∠.∴△PQE ≌△PHA (AAS ).∴PQ=PH . ∴点P 在ADC ∠的角平分线上.∵菱形ABCD 的对角线DB 平分ADC ∠, ∴ 点P 落在对角线DB 所在直线上--- 6分 ②112DM DN+=. ---------------------- 8分 旋转变换在几何证明应用延庆24. (1)如图1:在△ABC 中,AB=AC ,当∠ABD =∠ACD=60°时,猜想AB 与BD+CD 数量关系,请直接写出结果 ;(2)如图2:在△ABC 中,AB=AC ,当∠ABD =∠ACD=45°时,猜想AB 与BD+CD 数量关系并证明你的结论; (3)如图3:在△ABC 中,AB=AC ,当∠ABD =∠ACD=β(20°≤β≤70°)时,直接写出AB 与BD+CD 数量关系(用含β的式子表示)。
北京2012年中考二模试题分类汇编:代几综合题2012年北京市中考数学二模分类汇编――代几综合题图像信息+几何最值 1. (延庆)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O―A―B―C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.(1)结合以上信息及图2填空:图2中的m= ;(2)求B、C两点的坐标及图2中OF 的长;(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO 与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由。
图3 25. (1)m= …………..1分(2)∵四边形ODEF是等腰梯形∴可知四边形OABC是平行四边形……..2分由已知可得:S△AOC=8,连接AC交x轴于R点又∵A(4,2),C(n,-2) ∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8∴OR=4…………….……….3分∴OB=2RO=8,AR⊥OB ∴B(8,0) ,C(4,-2)且四边形OABC是菱形………….4分∴OF=3AO= …………..5分(3) 如图3,在OB上找一点N使ON=OG, 连接NH ………….6分∵OM 平分∠AOB ∴∠AOM=∠BOM ∵OH=OH ∴△GOH≌△NOH∴GH=NH………….………….7分∴GH+AH=AH+HN 根据垂线度最短可知,当AN是点A到OB的垂线段时,且H点是AN与OM的交点∴GH+AH 的最小值=A N=2………….8分动点+面积问题 1. (门头沟)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D 在y轴上.直线CB的表达式为,点A、D的坐标分别为(-4,0),(0,4). 动点P从A点出发,在AB边上匀速运动. 动点Q从点B 出发,在折线BCD上匀速运动,速度均为每秒1个单位长度. 当其中一个动点到达终点时,另一动点也停止运动. 设点P运动t(秒)时,△OPQ的面积为S(不能构成△OPQ的动点除外). (1)求出点C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时,S 有最大值?并求出这个最大值.25. 解:(1)把y=4代入y=- x+,得x=1. ∴C点的坐标为(1,4). ……………………………………….1分(2)当y=0时,-x+=0,∴x=4.∴点B坐标为(4,0). 过点C作CM⊥AB于M,则CM=4,BM=3. ∴BC===5. ∴sin∠ABC==. ① 0<t<4时,过Q作QN⊥OB于N,则QN=BQ•sin∠ABC=t. ∴S=OP•QN=(4-t)× t =- t2+ t(0<t<4)..........2分②当4<t≤5时,连接QO,QP,过点Q作QN⊥OB于N. 同理可得QN=t. ∴S=OP•QN=×(t-4)× t. = t2- t(4<t≤5). (3)分③当5<t≤6时,连接QO,QP. S=×OP×OD=(t-4)×4. =2t-8(5<t≤6)....................4分 S随t变化的函数关系式是 . (3)①当0<t<4时,∵- <0 当t==2时, S最大==. (5)分②当4<t≤5时, S= t2- t,对称轴为t=-=2,∵ >0∴在4<t≤5时,S随t的增大而增大. ∴当t=5时,S最大=×52-×5=2. …………………………..6分③当5<t≤6时,在S=2t-8中,∵2>0,∴S随t的增大而增大. ∴当t=6时,S最大=2×6-8=4………7分∴综合三种情况,当t=6时,S取得最大值,最大值是4.………8分动点+面积+特殊四边形问题 2.(昌平24)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4, ).(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S= 时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形, 求出点R的坐标.24.解:(1)据题意,A(0,2),B(2,2), C(2,0) .∵ 抛物线y=ax2+bx+c经过点A、B和D(4, ),∴ ∴ ∴ .…………………… 2分(2)点B关于抛物线的对称轴x=1的对称点为A.连接AD,与对称轴的交点即为M.∵ A(0,2)、 D(4,),∴ 直线AD的解析式为:.当x=1时,,∴ M (1,).………………………………… 4分(3)① AP=2t, PB=2-2t, BQ=t.在Rt△PBQ中,∠B=90°,∴ .∴ .∴ ,(0≤t≤1).②当,.∴ , >1(舍).∴ P(1,2),Q(2,).∴ PB = 1.根据分析,以点P、B、Q、R为顶点的平行四边形只能是□PQRB.∴ R (3,).此时,点R(3,)在抛物线上.……… 8分动点+直角三角形 3.(石景山)已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y= x交于点B、C(B在右、C在左).(1)求抛物线的解析式;(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2 个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:25.解:(1)点A(0,2m-7)代入y=-x2+2x+m-2,得m=5 ∴抛物线的解析式为y=-x2+2x+3 ………………………2分(2)由得,∴B(),C() B()关于抛物线对称轴的对称点为可得直线的解析式为,由,可得∴ ………………………5分(3)当在抛物线上时,可得,,当在抛物线上时,可得,,舍去负值,所以t的取值范围是.………………8分等腰+动点与图形面积 4.(平谷25)如图,抛物线与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C. (1)求抛物线的解析式; (2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M 到达原点时,点Q立刻掉头并以每秒 3 2个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥x轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式.25.解:(1)∵抛物线过点A(-2,0)和B(4,0) ∴ 解得∴ 抛物线的解析式为…………1分(2)抛物线的对称轴为令x=0,得y=4,∴ 设T点的坐标为,对称轴交x轴于点D,过C作CE⊥TD于点E 在Rt△ATD中,∵TD=h,AD=3∴ ………………………………………………………………2分在Rt△CET中,∵E ∴ET= ,CE=1 ∴ ∵AT=CT ∴ , (3)分解得 .∴ . ...............….………………………………………………………………………4分(3)当时,AM=BQ=t,∴AQ= ∵PQ⊥AQ ∴△APM∽△ACO ∴ ∴PM=2t ∴ ………………6分当时,AM=t ∴BM= .由OC=OB=4,可证BM=PM= . ∵BQ= ∴AQ= ∴ .…………..8分综上所述,抛物线与图形面积 5.(大兴25)已知抛物线y = x2 + bx ,且在x 轴的正半轴上截得的线段长为4,对称轴为直线x = c.过点A的直线绕点A (c ,0 ) 旋转,交抛物线于点B ( x ,y ),交y轴负半轴于点C,过点C且平行于x轴的直线与直线x = c交于点D,设△AOB 的面积为S1,△ABD的面积为S2. (1) 求这条抛物线的顶点的坐标;(2) 判断S1与S2的大小关系,并说明理由. 25.解:(1)∵ 抛物线y=x2+bx,在x轴的正半轴上截得的线段的长为4,∴ A(2,0),图象与x轴的另一个交点E的坐标为 (4,0),对称轴为直线x=2.∴ 抛物线为 y = x2 +b x经过点E (4,0) .∴ b= -4,∴ y = x2 -4x .∴ 顶点坐标为(2,-4).………… 2分 (2) S1与S2的大小关系是:S1 = S2 ………… 3分理由如下:设经过点A(2,0)的直线为y=kx+b (k≠0).∴ 0 =2k+b.∴ k = b.∴ y= .∴ 点B 的坐标为(x1 ,),点B 的坐标为(x2 ,).当交点为B1时,,..……………………………………… 5分当交点为B2时, = .∴ S1 = S2.综上所述,S1 = S2.……………… 8分6.(通州24)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P′使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P 点的坐标和四边形ABPC的最大面积. 24. 解:(1)将B、C两点的坐标代入得…….(1分) 解得:…………….(2分)所以二次函数的表达式为:……….(3分) (2)存在点P,使四边形POP C为菱形.设P点坐标为(x,), PP 交CO于E 若四边形POP C是菱形,则有PC=PO.连结PP 则PE⊥CO于E,…………………….(4分) ∴OE=EC= ∴ = 解得 = , = (不合题意,舍去)∴P点的坐标为(,)……………….(5分) (3)过点P作轴的平行线与BC交于点Q,与OB交于点F….(6分) 设P (x,),易得,直线BC的解析式为则Q点的坐标为(x,x-3). 当时,四边形ABPC的面积最大= 此时P点的坐标为,四边形ABPC 的面积.抛物线+图形变换+几何最值 7.(丰台25)如图,将矩形OABC置于平面直角坐标系xOy中,A(,0),C(0,2). (1) 抛物线经过点B、C,求该抛物线的解析式;(2)将矩形OABC绕原点顺时针旋转一个角度(0°< <90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标;(3)如图(2),将矩形OABC绕原点顺时针旋转一个角度(0°< <180°),将得到矩形OA’B’C’,设A’C’的中点为点E,联结CE,当°时,线段CE的长度最大,最大值为.25.解:(1)∵矩形OABC,A(,0),C(0,2),∴B(,2).∴抛物线的对称轴为x= .∴b= .……1分∴二次函数的解析式为:.……2分(2)①当顶点A落在对称轴上时,设点A的对应点为点A’,联结OA’,设对称轴x= 与x轴交于点D,∴OD= .∴OA’ = OA= .在Rt△OA’D中,根据勾股定理A’D =3.∴A’( ,-3) .……4分②当顶点落C对称轴上时(图略),设点C的对应点为点C’,联结OC’,在Rt△OC’D中,根据勾股定理C’D=1.∴C’( ,1).……6分(3) 120°,4.……8分抛物线+特殊四边形 8.(顺义25)如图,在平面直角坐标系xOy中,二次函数的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.(1)求二次函数的解析式;(2)设D为线段OC上的一点,若,求点D的坐标;(3)在(2)的条件下,若点M在抛物线上,点N在y轴上,要使以M、N、B、D为顶点的四边形是平行四边形,这样的点M、N是否存在,若存在,求出所有满足条件的点M的坐标;若不存在,说明理由.25.解:(1)将点A(-3,6),B(-1,0)代入中,得解得∴二次函数的解析式为.…………………………… 2分(2)令,得,解得,.∴点C的坐标为(3,0).∵ ,∴顶点P的坐标为(1,-2).…………………………………………… 3分过点A作AE⊥x 轴,过点P作PF⊥x轴,垂足分别为E,F.易得.,.又,∴△ACB∽△PCD.…………………… 4分∴ .∵ ,∴ .∴ .∴点D的坐标为.………… 5分(3)当BD为一边时,由于,∴点M的坐标为或…………… 7分当BD为对角线时,点M的坐标为…………… 8分 9.(海淀24)如图, 在平面直角坐标系xOy 中,抛物线与x轴负半轴交于点A, 顶点为B, 且对称轴与x轴交于点C. (1)求点B的坐标 (用含m的代数式表示);(2)D为BO中点,直线AD交y轴于E,若点E的坐标为(0, 2), 求抛物线的解析式;(3)在(2)的条件下,点M在直线BO上,且使得△AMC的周长最小,P在抛物线上, Q在直线 BC上,若以A、M、P、Q为顶点的四边形是平行四边形,求点P的坐标.备用图 24.解:(1)∵ ,∴抛物线的顶点B的坐标为. (1)分(2)令,解得, . ∵ 抛物线与x轴负半轴交于点A,∴ A (m, 0), 且m<0. ........................2分过点D作轴于F. 由 D为BO中点,DF//BC, 可得CF=FO= ∴ DF = 由抛物线的对称性得 AC = OC. ∴ AF : AO=3 : 4. ∵ DF //EO, ∴ △AFD∽△AOE. ∴ 由E (0, 2),B ,得OE=2, DF= . ∴∴ m = -6. ∴ 抛物线的解析式为 (3)分(3)依题意,得A(-6,0)、B (-3, 3)、C (-3, 0).可得直线OB 的解析式为 , 直线BC为 . 作点C关于直线BO的对称点,3),连接交BO 于M,则M即为所求. 由A(-6,0),,可得直线的解析式为 . 由解得∴ 点M的坐标为(-2,2). ……………4分由点P在抛物线上,设P (t, ). (��)当AM为所求平行四边形的一边时如右图,过M作轴于G, 过P1作于H, 则xG= xM =-2, xH= xB =-3. 由四边形AM P1Q1为平行四边形,可证△AMG≌△P1Q1H . 可得P1H= AG=4. ∴ t-(-3)=4. ∴ t=1. ∴ .………………5分如右图,同方法可得P2H=AG=4. ∴ -3- t =4. ∴ t=-7. ∴ . …………6分 (��)当AM 为所求平行四边形的对角线时, 如右图,过M作于H, 过P3作轴于G, 则xH= xB =-3,xG= =t. 由四边形AP3MQ3为平行四边形,可证△A P3G≌△MQ3H . 可得AG= MH =1. ∴ t -(-6)=1. ∴ t=-5. ∴ . …………………7分综上,点P的坐标为、、 . 抛物线+圆+特殊四边形 10.(密云24)如图,在直角坐标系中,以轴为对称轴的抛物线经过直线与轴的交点和点 ( ,0).(1)求这条抛物线所对应的二次函数的解析式;(2)将这条抛物线沿轴向右平移,使其经过坐标原点.①在题目所给的直角坐标系中,画出平移后的抛物线的示意图;②设平移后的抛物线的对称轴与直线(B是直线与轴的交点)相交于点,判断以为圆心、为半径的圆与直线的位置关系,并说明理由;(3)点是平移后的抛物线的对称轴上的点,求点的坐标,使得以、、、四点为顶点的四边形是平行四边形. 24.(本小题满分7分)(1)设,则. A(0,2).设这条抛物线所对应的二次函数的解析式为:.∵过点 ( ,0),有.解得.所求抛物线解析式为 -----2分(2)①平移后的抛物线如图所示: --------------------------3分②相切.理由:由题意和平移性质可知,平移后的抛物线的对称轴为直线.∵ 点是对称轴与直线的相交,易求得点的坐标为(,).由勾股定理,可求得.设原点O到直线AB的距离为d,则有.∵点A为(0,2),点B为(,0),...这说明,圆心O到直线AB的距离d与⊙O的半径OC相等.以为圆心、为半径的圆与直线相切. -------------------5分(3)设点的坐标为(,p).∵抛物线的对称轴与轴互相平行,即AO∥PC.只需,即可使以,,,为顶点的四边形是平行四边形.由(2)知,点的坐标为(,),..解得,.点的坐标为(,)或(,).-----------7分因特殊情况产生相似 11.(朝阳25)在平面直角坐标系中,抛物线经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动. (1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.25. 解:(1)∵抛物线经过A(-3,0),B(4,0)两点,∴ 解得∴所求抛物线的解析式为. .................................2分(2)如图,依题意知AP=t,连接DQ,由A(-3,0),B(4,0),C(0,4),可得AC=5,BC=,AB=7. ∵BD=BC,∴ . (3)分∵CD垂直平分PQ,∴QD=DP,∠CDQ= ∠CDP. ∵BD=BC,∴∠ DCB= ∠CDB. ∴∠CDQ= ∠DCB. ∴DQ∥BC. ∴△ADQ∽△ABC. ∴ . ∴ . ∴ . 解得.…………………4分∴ .…………………………5分∴线段PQ被CD垂直平分时,t的值为 .(3)设抛物线的对称轴与x轴交于点E. 点A、B关于对称轴对称,连接BQ交该对称轴于点M. 则,即. …………6分当BQ⊥AC 时,BQ最小. ………………7分此时,∠EBM= ∠ACO. ∴ . ∴ .∴ ,解得. ∴M(,). ………………………8分即在抛物线的对称轴上存在一点M(,),使得 MQ+MA的值最小.抛物线+等分面积 12.(东城区25)如图,在平面直角坐标系中,已知二次函数的图像与轴交于点,与轴交于A、B两点,点B的坐标为(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△ 的面积最大?最大面积是多少?并求出此时点P的坐标.25.解:(1)由题意,得:解得:所以,所求二次函数的解析式为:……2分顶点D的坐标为(-1,4).……3分(2)易求四边形ACDB的面积为9. 可得直线BD的解析式为y=2x+6 设直线OM与直线BD 交于点E,则△OBE的面积可以为3或6. ① 当时,易得E 点坐标(-2,-2),直线OE的解析式为y=-x. 设M 点坐标(x,-x),∴ ……4分② 当时,同理可得M点坐标.∴ M 点坐标为(-1,4)……5分(3)连接,设P点的坐标为,因为点P在抛物线上,所以,所以……6分……7分因为,所以当时,. △ 的面积有最大值……8分所以当点P的坐标为时,△ 的面积有最大值,且最大值为抛物线+几何定值 13.(房山25)如图,在平面直角坐标系中,点P 从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可以用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.25.解:解:⑴把x=0,y=0代入y=x2+bx+c,得c=0,------------------------1分再把x=t,y=0代入y=x2+bx,得t2+bt=0,∵t>0,∴b=-t;-----------------------------------------------3分⑵不变.当x=1时,y=1-t,故M(1,1-t),∵tan∠AMP=1,∴∠AMP=45°-----------------------------------------------5分⑶ <t<.-----------------------------------------------7分抛物线+相似 14.(怀柔25)如图,已知抛物线过点D(0, ),且在x 轴上截得线段AB长为6,若顶点C的横坐标为4. (1) 求二次函数的解析式; (2) 在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; (3) 在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.25.解:(1) ∵抛物线对称轴为x=4,且在x轴上截得的线段长为6,∴ A( 1 , 0 )、B( 7 , 0 ); .........1分设抛物线解析式为:y=a(x -h)2+k,∵顶点C的横坐标为4,且过点D(0, ),∴ 解得,, . ∴ 二次函数的解析式为:y= (x-4)2-,或y= x -x+ (2)分(2)∵点A、B关于直线x=4对称,∴PA=PB,∴PA+PD=PB+PD≥DB,∴当点P在线段DB上时,PA+PD取得最小值,……………3分∴DB 与对称轴的交点即为所求点P. 设直线x=4与x轴交于点M,∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO,∴△BPM∽△BDO,∴ ,∴ ,∴点P的坐标为(4,)………………………4分(3)由⑴可知,C(4, ),又∵AM=3,∴在Rt△AMC中,cot∠ACM= ,∴∠ACM=60o,∵AC=BC,∴∠ACB=120o ① 当点Q在x轴上方时,过Q作QN⊥x轴于N,如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,则∠QBN=60o,∴QN=3 ,BN=3,ON=10,此时点Q(10, ),…………………………………………………5分如果AB=AQ,由对称性可知Q(-2,)………………………6分② 当点Q 在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4, ),………………………………………7分经检验,点(10, )与(-2, )都在抛物线上,综上所述,存在这样的点Q,使△QAB∽△ABC,点Q的坐标为(10, )或(-2, )或(4, ).…………………………8分。
2012年北京市中考数学二模分类汇编——实验操作题图形的剪拼问题1.(大兴22)阅读材料1:把一个或几个图形分割后,不重叠、无缝隙的重新拼成另一个图形的过程叫做“分割——重拼”.如图1,一个梯形可以分割——重拼为一个三角形;如图2,任意两个正方形可以分割——重拼为一个正方形.(1)请你在图3中画一条直线将三角形分割成两部分,将这两部分重新拼成两个不同的四边形,并将这两个四边形分别画在图4,图5中;阅读材料2:如何把一个矩形ABCD(如图6)分割——重拼为一个正方形呢?操作如下:①画辅助图:作射线OX,在射线OX上截取OM=AB,MN=BC.以ON为直径作半圆,过点M 作MI⊥OX,与半圆交于点I;②如图6,在CD上取点F,使AF=MI,作BE⊥AF,垂足为E.把△ADF沿射线DC平移到△BCH 的位置,把△AEB沿射线AF平移到△FGH的位置,得四边形EBHG.(2EBHG是正方形.22.(1)2分 (2)证明:在辅助图中,连接∵ON 是所作半圆的直径,∴∠OIN =90°.∵M I ⊥ON , ∴∠OMI =∠IMN =90°且∠∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .………………3分 ∵OM=AB ,MN=BC ∴IM 2 = AB ·BC∵AF=IM ∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF =∠BEA =90°. ∴∠DFA =∠EAB .∴△DFA ∽△EAB . ∴AD BE =AFAB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .……………………4分∵AF=BH ∴BH =BE . 由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形. ∵∠GEB =90°,∴四边形EBHG 是正方形.………………………5分2.(怀柔22)阅读下面材料:在数学课上,李老师给同学们提出两个问题:①“谁能将下面的任意三角形分割后,再拼成一个矩形”;②“谁能将下面的任意四边形分割后,再拼成一个平行四边形”.图⑤ 图⑥图⑦图⑧ 图⑨图① 图② 图③ 图④. 经过小组同学动手合作,第3案,如图1和图2所示;请你参考小亮同学的做法,解决下列问题:(1)“请你将图3再设计一种分割方法,沿分割线剪开后所得的几块图形恰好也能拼成一个矩形”;(2)“请你设计一种方法,将图4分割后,再拼成一个矩形”.22.答案:(说明:本题分割方法不唯一)(1)…………………2分方法一、方法二、方法三、方法四、(2)……5分方法一、方法二、图形的面积问题3.(房山22)⑴阅读下面材料并完成问题:已知:直线AD与△ABC的边BC交于点D,①如图1,当BD=DC时,则S△ABD________S△ADC.(填“=”或“<”或“>”)图3图4DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S A D C S ∆ .③如图3,若AD ∥BC ,则有S ∆DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)22.①=--------------------------------------1分②21--------------------------------------2分③=--------------------------------------3分⑵BDE ∥AC 交BC 延长线于点E F 为BE 三等分点 过E 作F G ∥BD 交DC 于点E ,BC 于G 则直线AF 为所求 则直线DG 为所求 --------------------------------------5分BCADlN4.(西城区22) 阅读下列材料小华在学习中发现如下结论:如图1,点A ,A 1,A 2在直线l 上,当直线l ∥BC 时,BCABC A ABC S S S 21∆∆∆==.请你参考小华的学习经验画图(保留画图痕迹):(1)如图2,已知△ABC ,画出一个..等腰△DBC ,使其面积与△ABC 面积相等; (2)如图3,已知△ABC ,画出两个..Rt △DBC ,使其面积与△ABC 面积相等(要求:所画的两个三角形不全等...); (3)如图4,已知等腰△ABC 中,AB=AC ,画出一个..四边形ABDE ,使其面积与△ABC 面积相等,且一组对边DE=AB ,另一组对边BD ≠AE ,对角∠E =∠B .图2 图3 图422.解:(1) 如图所示,答案不唯一. 画出△D 1BC ,△D 2BC ,△D 3BC ,△D 4BC ,△D 5BC 中的一个即可.(将BC 的平行线l 画在直线BC 下方对称位置所画出的三角形亦可)﹍﹍ 2分符合要求的点,或将BC 的平行线画在直线BC 下方对称位置所画出的三角形亦可) ﹍﹍﹍﹍﹍﹍﹍﹍﹍4分(3) 如图所示(答案不唯一).﹍﹍﹍ 5分如上图所示的四边形ABDE 的画法说明:(1)在线段BC 上任取一点D (D 不为BC 的中点),连结AD ;(2)画出线段AD 的垂直平分线MN ;(3)画出点C 关于直线MN 的对称点E ,连结DE ,AE . 则四边形ABDE 即为所求.B5.(平谷22)在数学活动课上,老师请同学们在一张长为18cm ,宽为14cm 的长方形纸上剪下一个腰为12cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).小明同学按老师要求画出了如图(1)的设计方案示意图,请你画出与小明的设计方案不同的所有满足老师要求的示意图,并通过计算说明哪种情况下剪下的等腰三角形的面积最小(含小明的设计方案示意图).22.正确画出图形2分图(1)272AEF S cm ∆=;..........................................................3分图(2)2AEF S ∆=;..................................................4分 图(3)2AEF S ∆=.比较上述计算结果可知,图(3)剪下的三角形面积最小. ...............5分图形变换操作题6.(延庆22)阅读下面材料:阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
北京2012年数学中考二模试题汇编目录丰台区2012年初三统一练习石景山2012年初三统一练习顺义区2012年初三统一练习大兴区2012年初三统一练习通州区2012年初三统一练习门头沟2012年初三统一练习房山区2012年初三统一练习延庆县2012年初三统一练习密云县2012年初三统一练习海淀区2012年初三统一练习丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2-的绝对值是A.12- B.12C.2 D.2-2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002 5用科学记数法表示为A .62.510⨯B .50.2510-⨯C . 62.510-⨯D .72510-⨯ 3.如图,在△ABC 中, DE ∥BC ,如果AD =1, BD =2,那么DEBC的值为 A .12 B .13 C .14 D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14 B .12C .34D .1 5.若20x +=则 y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+ B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行 的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x xC .30528002800=-x xD .30280052800=-xx8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神二、填空题(本题共16分,每小题4分)9x 的取值范围是 .DOCBA EDCBA10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒.12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+, 2(4)14f =+,…,利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= .三、解答题(本题共30分,每小题5分)13.计算: ()︒⎪⎭⎫ ⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值.15.解分式方程:21124x x x -=--.16.如图,在△ABC 与△ABD 中, BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费.(1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:21DOCBA(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ;MFEBCDA(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于 .(2)如果AC =a ,EF =b ,那么AH 的长等于 .BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论;(2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1) 抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解析式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A’C’的中点为点E ,联结CE ,当θ= °时,线段CE 的长度最大,最大值为 .AEFPD E BAD F P北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案13.解:原式=3-1+4-422⨯……4分 =6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分. =224a a -+. ……2分2230a a --=, ∴223a a -=.…3分∴原式=224347a a -+=+=.….….5分 15.21124x x x -=-- 解:2(2)(4)1x x x +--=.……1分 22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分16.证明:∠1=∠2, ∴OA=OB .…1分在△COA 和△DOB 中 ,OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D . …………….5分 17.解: (1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分(2)P 1(0)、 P 2(0,)、P 3(0,2)、 P 4(0,-2) ……5分18.解:(1)……2分(2)当0230x ≤≤时,0.49y x =;……3分 当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分)19.解:联结BD . ∵在菱形ABCD 中,∴AD ∥BC ,AC ⊥BD .……1分 又∵EF ⊥AC , ∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于23.解:(1)由题意得△>0. ∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21.∵PQ ,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF . ∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解析式为:22y x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’,设对称轴x =3与x 轴交于点D ,∴OD =3. ∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3. ∴A ’(3,-3) . ……4分 ②当顶点落C 对称轴上时(图略),设点C 的对应点为点C ’,联结OC ’, 在Rt △OC ’D 中,根据勾股定理C ’D =1. ∴C ’(3, 1).……6分 (3) 120°,4.……8分石景山区2012年初三第二次统一练习数 学 试 卷7654321NMCD BPFEA第Ⅰ卷(共32分)一、选择题(本题共32分,每小题4分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母填在题后的括号内.1.2的算术平方根是( ) A .21B .2C .2-D .2±2.2012年2月,国务院同意发布新修订的《环境空气质量标准》增加了PM2.5监测指标.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如果1微米=0.000 001 米,那么数据0.000 002 5用科学记数法可以表示为( ) A .6105.2-⨯ B .5105.2-⨯ C .5105.2⨯- D .6105.2-⨯-3.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120︒ 的菱形,剪口与折痕所成的角α 的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 4年星级饭店客房出租率(%A .61、62B .62、62C .61.5、62D .60.5、625.如图,有6张形状、大小、质地均相同的卡片,正面分别印有北京精神——“爱国、创新、包容、厚德”的字样.背面完全相同,现将这6张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片恰好是“创新”的概率是( ) A .31 B .32 C .61 D .41 6.若一个多边形的内角和是900°,则这个多边形的边数是( )第3题图A .5B .6C .7D .87.将二次函数2x y =的图象如何平移可得到342++=x x y 的图象( )A .向右平移2个单位,向上平移一个单位B .向右平移2个单位,向下平移一个单位C .向左平移2个单位,向下平移一个单位D .向左平移2个单位,向上平移一个单位8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( ) A .6B .23C .29D .32第Ⅱ卷(共88分)二、填空题(本题共16分,每小题4分) 9.分式3-x x有意义的条件为 . 10.分解因式:=-339ab b a ______ ________. 11.已知:如图是斜边为10的一个等腰直角三角形与两个半径为5的扇形的重叠情形,其中等腰直角三角形顶角平分线与两扇形相切,则图中阴影部分面积的和是 .12.如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .三、解答题(本题共30分,每小题5分)第8题图 111210987654321第12题图13.()22145cos 314.38-⎪⎭⎫⎝⎛+︒---π.解:14.解分式方程123482---=-xxx .解:15.已知,如图,点D 在边BC 上,点E 在△ABC 外部,DE 交AC 于F ,若AD =AB ,∠1=∠2=∠3. 求证:BC=DE . 证明:16.已知:0162=-+x x ,求代数式()()()()3312122+-+--+x x x x x 的值.解:17.已知一次函数y kx b =+的图象与直线y =平行且经过点()3,2-,与x 轴、y轴分别交于 A 、 B 两点. (1)求此一次函数的解析式;(2)点C 是坐标轴上一点,若△ABC 是底角为︒30的等腰三角形,求点C 的坐标. 解:18.列方程(组)解应用题:如图是一块长、宽分别为60 m 、50 m 的矩形草坪,草坪中有宽度均为x m 的一横两纵的甬道.(1)用含x 的代数式表示草坪的总面积S ;(2)当甬道总面积为矩形总面积的4.10%时,求甬道的宽. 解:四、解答题(本题共20分,每小题5分)19.如图,梯形纸片ABCD 中,AD //BC ,∠B =30º.折叠纸片使BC 经过点A ,点B 落在点B’处,EF 是折痕,且BE =EF =4,AF ∥CD . (1)求∠BAF 的度数; (2)当梯形的上底AD 多长时,线段DF 恰为该梯形的高? 解:20.以下是根据全国 2011年国民经济和社会发展统计公报中的相关数据,绘制的统计图的一部分. 请根据以上信息,解答下列问题:(产量相关数据精确到1万吨)(1)请补全扇形统计图;(2)通过计算说明全国的粮食产量与上一年相比,增长最多的是 年; (3)2011年早稻的产量为 万吨;(4)2008-2011这三年间,比上一年增长的粮食产量的平均数为多少万吨,若按此平均数增长,请你估计2012年的粮食产量为多少万吨.(结果保留到整数位) 解:21.已知:如图,M 是⊙O 的直径AB 上任意一点,过点M 作AB 的垂线MP ,D 是MPA BD E C B 'F 6%22%%早稻夏粮秋粮2011年各类粮食占全体 粮食的百分比分组统计图的延长线上一点,联结AD 交⊙O 于点C ,且PC PD =. (1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若22tan =D ,3=OA ,过点A 作PC 的平行线AN 交⊙O 于点N .求弦AN 的长.解:22.阅读下面材料:小阳遇到这样一个问题:如图(1),O 为等边△ABC 内部一点,且3:2:1::=OC OB OA ,求AOB ∠的度数.小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60°,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把△CO A 绕点A 逆时针旋转60°,使点C 与点B 重合,得到△O AB ',连结O O '. 则△O AO '是等边三角形,故OA O O =',至此,通过旋转将线段OA 、OB 、OC 转移到同一个三角形B O O '中. (1)请你回答:︒=∠AOB . (2)参考小阳思考问题的方法,解决下列问题: 已知:如图(3),四边形ABCD 中,AB=AD ,∠DAB =60°,∠DCB =30°,AC =5,CD =4.求四边形ABCD 的面积. 解:五、解答题(本题满分22分,第23题7分,第24题7分,第25题8分) 23.已知:直线122y x =+分别与 x 轴、y 轴交于点A 、点B ,点P (a ,b )在直线AB 上,点P 关于y 轴的对称点P ′ 在反比例函数xky =图象上.(1) 当a =1时,求反比例函数xky =的解析式;DCBA图⑴ 图⑵ 图⑶OCBA(2) 设直线AB 与线段P'O 的交点为C .当P'C =2CO 时,求b 的值;(3) 过点A 作AD //y 轴交反比例函数图象于点D ,若AD =2b,求△P ’DO 的面积.解:24.在△ABC 中,AC AB =,D 是底边BC 上一点,E 是线段AD 上一点,且∠BAC CED BED ∠=∠=2.(1) 如图1,若∠︒=90BAC ,猜想DB 与DC 的数量关系为 ; (2) 如图2,若∠︒=60BAC ,猜想DB 与DC 的数量关系,并证明你的结论; (3)若∠︒=αBAC ,请直接写出DB 与DC 的数量关系.A B C D E AE B C D图1 图2备用图解:25.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式;∠=∠,(2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFE CFE 若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.解:备用图草稿纸石景山区2012初三第二次统一练习数学参考答案阅卷须知:1.一律用红钢笔或红圆珠笔批阅.2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、选择题(本题共8道小题,每小题4分,共32分)9.3≠x ; 10.()()b a b a ab 33-+; 11.225-225π; 12.10;6. 三、解答题(本题共6道小题,每小题5分,共30分)13.解:()22145cos 3--14.38-⎪⎭⎫⎝⎛+︒-π=4223122+⨯-- ……………………………4分 =322+…………………………………………………5分 14. 123482---=-xxx解:()()123228---=-+x x x x ……………………………1分 ()()()42382--+-=x x x ……………………………3分46822+---=x x x ……………………………4分∴10-=x经检验:10-=x 是原方程的根.………………………5分15.证明:∵∠1=∠2=∠3∴DAE BAC ∠=∠…………………………… 1分 又∵AFE DFC ∠=∠∴E C ∠=∠ …………………………… 2分 在△ABC 和△ADE 中⎪⎩⎪⎨⎧=∠=∠∠=∠AD AB EC DAE BAC (3)分 ∴△ABC ≌△ADE ……………………………………………………… 4分∴BC=DE . ……………………………………………………… 5分16.解:原式222922144x x x x x -++-++= …………………………………2分1062++=x x ………………………………… 3分当0162=-+x x 时,162=+x x ………………………………… 4分 原式11=. …………………………………5分17.解:(1)∵一次函数y kx b =+的图象与直线y =平行且经过点()3,2-∴⎩⎨⎧-=+-=323b k k 解得⎩⎨⎧=-=33b k∴一次函数解析式为33+-=x y …………………………………1分(2)令0=y ,则1=x ;令0=x 则3=y∴()()3,0,0,1B A∵1=OA ,3=OB …………………………2分 ∴2=AB ∴︒=∠30ABO若AC AB =,可求得点C 的坐标为()0,31C 或()3,02-C ………………………4分 若CA CB =如图︒=︒-︒=∠3030603OAC ,3330tan 3=︒=OA OC ∴⎪⎪⎭⎫ ⎝⎛33,03C …………………………………………5分 ∴()0,31C ,()3,02-C ,⎪⎪⎭⎫ ⎝⎛33,03C 18.解:(1)S = 6050⨯-(60 x + 2×50 x -2×x 2 )=3000 + 2x 2-160x .………2分(2)由题意得:-2x 2+160x =60501000104⨯⨯, ………………3分解得 x = 2 或 x = 78. …………………………………4分 又0<x <50,所以x = 2,答:甬道的宽是2米. ……………………………………5分 19. 解:(1)∵BE =EF ∴∠EFB =∠B ,由题意,△EF B '≌△BEF∴∠EFB ’ =∠EFB =∠B=30° ∴△BFA 中,︒=︒-︒-︒-︒=∠90303030180BAF ……………………………………2分 (2)联结DF ,∵AD //BC ,AF ∥CD∴四边形AFCD 是平行四边形 ……………………………………3分 ∴∠C =∠A FB =60°∴CD =AF =3230cos =︒EF ……………………………………4分 若BC DF ⊥,则360cos =︒=CD FC此时3=AD . ……………………………………5分 20.(1)72%;(2)2011;(3)3427; ……………………每空1分,共3分(4)(57121-52871)÷3≈=1417 ………………………………………4分57121+1417=58538. ………………………………………5分21.(1)联结CO , … …………………………………1分∵DM ⊥AB∴∠D+∠A=90° ∵PC PD = ∴∠D=∠PCD ∵OC=OA ∴∠A=∠OCA∴∠OCA+∠PCD=90° ∴PC ⊥OC∴直线PC 是⊙O 的切线 …………………………………2分 (2)过点A 作PC 的平行线AN 交⊙O 于点N . ∴∠NAC=∠PCD=∠D, AN ⊥OC,设垂足是Q ∴Rt △CQA 中 ∴22tanD QAC tan ==∠ ∴设CQ=x ,AQ=x 2 ∴OQ=x -3∵222AQ OQ OA +=∴222)3()2(3x x -+=解得2=x …………………………………4分 ∴22=AQ∴242==AQ AN …………………………………5分22. 解:(1)150° ………………………1分(2) 如图,将△ADC 绕点A 顺时针旋转60°,使点D 与点B 重合,………2分 得到△O AB ',连结O C '. 则△O AC '是等边三角形,可知4,5'===='DC BO CA O C ,ADC ABO ∠=∠'……………………3分在四边形ABCD 中,︒=∠-∠-︒=∠+∠270360DCB DAB ABC ADC ,)(360''ABO ABC BC O ∠+∠-︒=∠∴︒=︒-︒=90270360. ……………………4分34522=-=∴BC 6432543215432''-=⨯⨯-⨯=-=∴∆∆BCO ACO ABCD S S S 四边形.………………5分23.(1)∵点P 在直线AB 上, 1=a 时,2121+⨯=b =25………………………1分 ∴)25,1(P ,∴)25,1(-'P ,代入x k y = 得25-=k ,∴x y 25-= …………………………2分 (2)联结'PP∵点P 和点P '关于y 轴对称 ∴'PP ∥x 轴 ∴OCA C PP ∽△△'O 'DCBA∴'PP ∶=OA C P '∶CO …………3分 ∵CO C P 2'= ∴'PP =OA 2∵221+=x y 与x 轴交于点A 、点B ∴)0,4(-A ,)2,0(B 可得4=OA∴8'=PP ∴a =4∴42421=+⨯=b ………………………5分 (3)当点P 在第一象限时:∵点P 和点P '关于y 轴对称且),(b a P∴),('b a P -∵y AD ∥∴)24-(b D , ∵D P 、点点'在xk y =上 ∴b a b⨯-=⨯-24 ∴2=a∴32221=+⨯=b ∵),23,4(-D )3,2('-P∴29'=DO P S △ …………6分当点P 在第二象限时:)24-(bD -,∴b a b⨯-=-⨯-24∴2-=a∴12)2(21=+-⨯=b∵),21,4(--D )1,2('P∴23'=DO P S △ …………7分24.解:(1)DC DB 2= (2) DC DB 2=证明:过点C 作CF ∥BE 交AD 的延长线于点F , 在 AD 上取点G 使得CF CG = ∴76∠=∠=∠F7654321AEBCG D∵︒=∠=∠=∠602BAC CED BED ∴︒=∠=∠606F ,︒=∠30CED ∴41205∠=︒=∠∵︒=∠+∠=∠=∠+∠6021713 ∴23∠=∠ ∵AC AB = ∴△ABE ≌△CAG ∴AG BE AE CG ==, ∵︒=∠-∠=∠306CED GCE ∴EG CG =∴BE AG CG CF 2121=== 由△DBE ∽△DCF 得2==FCBEDC BD∴DC DB 2=(3) 结论:DC DB 2=.25.解:(1)点A (0,2m -7)代入y =-x 2+2x +m -2,得m =5∴抛物线的解析式为y =-x 2+2x +3 ………………………2分(2)由⎩⎨⎧=++-=x y x x y 2322得⎪⎩⎪⎨⎧==323y x ,⎪⎩⎪⎨⎧=-=323y x∴B (32,3),C (32,3--)B (32,3)关于抛物线对称轴1=x 的对称点为)32,32('-B可得直线C B '的解析式为32632-+=x y , 由⎩⎨⎧=-+=132632y x y ,可得⎩⎨⎧==61y x∴)6,1(F ………………………5分(3)当)2,2(t t M --在抛物线上时,可得03242=-+t t ,4131±-=t , 当)2,(t t P --在抛物线上时,可得32=t ,3±=t ,舍去负值,所以t 的取值范围是34131≤≤+-t .………………8分顺义区2012届初三第二次统一练习F图(2)F E B AO 数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.9的平方根是A .3B .-3C .3±D .132.据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为A .59.110⨯B .49.110⨯C .49110⨯D . 39.110⨯ 3.如图,下列选项中不是..正六棱柱三视图的是( )A B C D4.把2416a b b -分解因式,结果正确的是A .2(24)b a - B . (22)(22)b a a +-C .24(2)b a -D .4(2)(2)b a a +-5.北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是 A.众数是6 B.极差是8C.平均数是6D.方差是46.如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持互相垂直.在测直径时,把O 点靠在圆周上,读得刻度OE=4个单位, OF=3个单位,则圆的直径为A .7个单位B .6个单位C .5个单位D .4个单位7.从1,-2, 3,-4四个数中,随机抽取两个数相乘,积是正数的概率是A .14 B .13 C .12D .238.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是DC BA二、填空题(本题共16分,每小题4分) 9.若分式261x x --的值为0,则x 的值等于 . 10.如图,□ABCD 中,E 是边BC 上一点,AE 交BD 于F ,若2BE =,3EC =,则BFDF的值为 . 11.将方程2410x x --=化为2()x m n -=的形式,其中m ,n 是常数,则m n += . 12.如图,△ABC 中,AB =AC=2 ,若P 为BC的中点,则2AP BP PC +的值为 ; 若BC 边上有100个不同的点1P ,2P ,…,100P , 记i i i i m AP BP PC =+(1i =,2,…,100), 则12m m ++…100m +的值为 .三、解答题(本题共30分,每小题5分)13.计算:101()2sin 45(34---+︒-.14.解不等式2(2)x +≤4(1)6x -+,并把它的解集在数轴上表示出来. 15.已知:如图,E ,F 在BC 上,且AE ∥DF ,AB ∥CD ,AB =CD .求证:BF = CE .F EDCBAP iPCBAFEDCBA16.解分式方程:32322x x x -=+-.17.已知2x -3=0,求代数式5(2)(2)(4)1x x x x ---++的值.18.某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1)求y 与x 之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分) 19.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB=AB ,DE 与AB 相交于点F ,AD=2,CD=1,求AE 及DF 的长.20.已知:如图,P 是⊙O 外一点,PA 切⊙O 于点A ,AB 是⊙O 的直径,BC ∥OP 交⊙O 于点C .(1)判断直线PC 与⊙O 的位置关系,并证明你的结论; (2)若BC=2,11sin23APC ∠=,求PC 的长及点C 到PA 的距离.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级FEDC B AOCBAP学生人数为204人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比; (2)求表中a ,b 的值;(3)求该校学生平均每人读多少本课外书?22.阅读下列材料:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决.请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.如图,直线AB 经过第一象限,分别与x 轴、y 轴交于A 、B 两点,P为线段AB 上任意一点(不与A 、B 重合),过点P 分别向x 轴、y 轴作垂线,垂足分别为C 、D .设OC=x ,四边形OCPD 的面积为S .PyxB A DCO(1)若已知A (4,0),B (0,6),求S 与x 之间的函数关系式; (2)若已知A (a ,0),B (0,b ),且当x=34时,S 有最大值98,求直线AB 的解析式; (3)在(2)的条件下,在直线AB 上有一点M ,且点M 到x 轴、y 轴的距离相等,点N在过M 点的反比例函数图象上,且△OAN 是直角三角形,求点N 的坐标. 24.已知:如图,D 为线段AB 上一点(不与点A 、B 重合),CD ⊥AB ,且CD=AB ,AE ⊥AB ,BF ⊥AB ,且AE=BD ,BF=AD .(1)如图1,当点D 恰是AB 的中点时,请你猜想并证明∠ACE 与∠BCF 的数量关系; (2)如图2,当点D 不是AB 的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF 的度数(用含α的式子表示).图1 图225.如图,在平面直角坐标系xOy 中,二次函数212y x bx c =++的图象经过点A (-3,6),并与x 轴交于点B (-1,0)和点C ,顶点为P .(1)求二次函数的解析式;(2)设D 为线段OC 上的一点,若DPC BAC ∠=∠,求点D 的坐标;FED CBAFE D C B A(3)在(2)的条件下,若点M 在抛物线212y x bx c =++上,点N 在y 轴上,要使以M 、N 、B 、D 为顶点的四边形是平行四边形,这样的点M 、N 是否存在,若存在,求出所有满足条件的点M 的坐标;若不存在,说明理由.顺义区2012届初三第二次统一练习 数学学科参考答案及评分细则9.3; 10.25; 11.7; 12.4,400.三、解答题(本题共30分,每小题5分)13.解:101()2sin 45(34---+︒--4212=-⨯- …………………………………………………… 4分3=-…………………………………………………………………… 5分14.解:去括号,得 24x +≤446x -+.…………………………………………… 1分移项,得 24x x -≤464-+-.…………………………………………… 2分 合并,得 2x -≤-2 . ………………………………………… 3分 系数化为1,得 x ≥1 . ……………………………………………… 4分 不等式的解集在数轴上表示如下:……………………………………… 5分15.证明:∵AE ∥DF ,∴∠1=∠2. ………………………… 1分∵ AB ∥CD , ∴ ∠B =∠C .………………………… 2分 在△ABE 和 △DCF 中, 12,,,B C AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△DCF .…………………………………………………… 4分∴ BE =CF .∴BE -EF =CF -EF .即BF =CE .……………………………………………………………… 5分16.解:去分母,得 3(2)2(2)3(2)(2)x x x x x --+=+-.…………………… 1分去括号,得 223624312x x x x ---=-. ………………………… 2分 整理,得 88x -=-.…………………………………………………… 3分解得 1x =. ……………………………………………………………… 4分经检验,1x =是原方程的解.……………………………………………… 5分 ∴ 原方程的解是1x =.17.解:5(2)(2)(4)1x x x x ---++ 22510(28)1x x x x =--+-+ ……………………………………………… 2分 22510281x x x x =---++24129x x =-+ ………………………………………………………………… 3分 (23)(23)x x =+- …………………………………………………………… 4分 当2x -3=0时,原式(23)(23)0x x =+-=.………………………………… 5分18.解:(1)设y 与x 之间的关系式为y=kx+b .……………………………………… 1分由题意,得20084,2010 6.k b k b +=⎧⎨+=⎩ 解得1,2004.k b =⎧⎨=-⎩…………………… 3分 21F EDC BA∴y 与x 之间的关系式为y =x -2004(2008≤x ≤2012). …………… 4分(2)当x =2012时,y =2012-2004=8.∴该市2012年因“限塑令”而减少的塑料消耗量约为8万吨.……… 5分19.解:∵四边形ABCD 是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC =∠C= 90°,AB ∥DC .∴EB=AB=1. ………………………………………………………………… 1分 在Rt △ABE中,AE =2分 在Rt △DCE 中,DE == 3分∵AB ∥DC , ∴12EF EB DF BC ==. …………………………………………………………… 4分设EF x =,则2DF x =. ∵EFDF DE +=,∴2x x +=.∴3x =. ∴2DF x == 5分 20.解:(1)直线PC 与⊙O 相切.证明:连结OC , ∵BC ∥OP ,∴∠1 =∠2,∠3=∠4. ∵OB=OC ,∴∠1=∠3.∴∠2=∠4.又∵OC=OA ,OP=OP ,∴△POC ≌△POA . ……………………………………………… 1分∴∠PCO =∠PAO .∵PA 切⊙O 于点A ,∴∠PAO =90°.∴∠PCO =90°. ∴PC 与⊙O 相切. ……………………………………………… 2分(2)解:∵△POC ≌△POA ,∴∠5=∠6=12APC ∠. ∴11sin 5sin 23APC ∠=∠=. ∵∠PCO =90°,∴∠2+∠5=90°. ∴1cos 2sin 53∠=∠=. ∵∠3=∠1 =∠2,∴1cos 33∠=. 4321O C B A P图3M P C B A D 85674321O C B A P 连结AC ,∵AB 是⊙O 的直径,∴∠ACB =90°. ∴261cos 33BC AB ===∠.………………………………………… 3分 ∴OA=OB=OC=3,AC ==.∴在Rt △POC 中,9sin 5OC OP ==∠.∴PC ==.…………………………………… 4分 过点C 作CD ⊥PA 于D ,∵∠ACB =∠PAO =90°,∴∠3+∠7 =90°,∠7+∠8 =90°.∴∠3=∠8. ∴1cos 8cos 33∠=∠=. 在Rt △CAD中,1cos 83AD AC =∠==∴163CD ==.……………………………………… 5分 21.解:(1)∵1-28%-38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.……… 1分(2)∵1440.062400÷=,∴24000.25600a =⨯=, ……………………………………………… 2分 84024000.35b =÷=. ……………………………………………… 3分(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为20434%600÷=. ……………………………… 4分 ∴该校学生平均每人读课外书:24006004÷=.答:该校学生平均每人读4本课外书. ………………………………… 5分22.解:图2中∠APB 的度数为 135° .……………… 1分(1)如图3,以PA 、PB 、PC 的长度为三边长的一个三角形是 △APM .(含画图)………… 2分(2)以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于60°、65°、55° .……………… 5分 23.解:(1)设直线AB 的解析式为y kx b =+,由A (4,0),B (0,6),得40,6.k b b +=⎧⎨=⎩ 解得3,26.k b ⎧=-⎪⎨⎪=⎩ ∴直线AB 的解析式为362y x =-+.……………………………… 1分 ∵OC=x ,∴3(,6)2P x x -+. ∴3(6)2S x x =-+. 即2362S x x =-+(0< x <4). …………………………………… 2分 (2)设直线AB 的解析式为y mx n =+,∵OC=x ,∴(,)P x mx n +.∴2S mx nx =+.∵当x=34时,S 有最大值98, ∴3,24939.1648n m m n ⎧-=⎪⎪⎨⎪+=⎪⎩ 解得2,3.m n =-⎧⎨=⎩∴直线AB 的解析式为23y x =-+.………………………………… 3分∴A (32,0),B (0,3). 即32a =,3b =.……………………………………………………… 5分 (3)设点M 的坐标为(M x ,M y ), 由点M 在(2)中的直线AB 上,∴23M M y x =-+.∵点M 到x 轴、y 轴的距离相等,∴M M x y =或M M x y =-.当M M x y =时,M 点的坐标为(1,1).过M 点的反比例函数的解析式为1y x =. ∵点N 在1y x=的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为32,23⎛⎫⎪⎝⎭.……………………………………………… 6分 当M M x y =-时,M 点的坐标为(3,-3),B DC F E A 过M 点的反比例函数的解析式为9y x =-. ∵点N 在9y x=-的图象上,OA 在x 轴上,且△OAN 是直角三角形, ∴点N 的坐标为3,62⎛⎫- ⎪⎝⎭.……………………………………………… 7分 综上,点N 的坐标为32,23⎛⎫⎪⎝⎭或3,62⎛⎫- ⎪⎝⎭. 24.解:(1)猜想:∠ACE=∠BCF .证明:∵D 是AB 中点,∴AD=BD ,又∵AE=BD ,BF=AD ,∴AE=BF .∵CD ⊥AB ,AD=BD ,∴CA=CB .∴∠1 =∠2. ∵AE ⊥AB ,BF ⊥AB ,∴∠3 =∠4=90°.∴∠1+∠3 =∠2+∠4.即∠CAE=∠CBF .∴△CAE ≌△CBF .∴∠ACE=∠BCF .……………………………………………… 2分(2)∠ACE=∠BCF 仍然成立.证明:连结BE 、AF .∵CD ⊥AB ,AE ⊥AB ,∴∠CDB=∠BAE=90°.又∵BD = AE ,CD = AB ,△CDB ≌△BAE .……………… 3分 ∴CB=BE ,∠BCD=∠EBA .在Rt △CDB 中,∵∠CDB =90°, ∴∠BCD+∠CBD =90°.∴∠EBA+∠CBD =90°. 即∠CBE =90°.∴△BCE 是等腰直角三角形.∴∠BCE=45°. ……………………………………………… 4分 同理可证:△ACF 是等腰直角三角形.∴∠ACF=45°. ……………………………………………… 5分 ∴∠ACF=∠BCE .∴∠ACF -∠ECF =∠BCE -∠ECF .即∠ACE=∠BCF .……………………………………………… 6分(3)∠ECF 的度数为90°-α.……………………………………………… 7分4321F E D C B A25.解:(1)将点A (-3,6),B (-1,0)代入212y x bx c =++中,得 936,210.2b c b c ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得 1,3.2b c =-⎧⎪⎨=-⎪⎩ ∴二次函数的解析式为21322y x x =--.…………………………… 2分 (2)令0y =,得213022x x --=,解得 11x =-,23x =. ∴点C 的坐标为(3,0). ∵22131(1)2222y x x x =--=--, ∴顶点P 的坐标为(1,-2).…………………………………………… 3分 过点A 作AE ⊥x 轴,过点P 作PF ⊥x 轴,垂足分别为E ,F .易得 45ACB PCD ∠=∠=︒.AC ==,PC ==.又DPC BAC ∠=∠,∴△ACB ∽△PCD .…………………… 4分 ∴BC AC CD PC=. ∵3(1)4BC =--=, ∴43BC PC CD AC ==. ∴45333OD OC CD =-=-=. ∴点D 的坐标为5(,0)3.……………………………………………… 5分 (3)当BD 为一边时,由于83BD =, ∴点M 的坐标为885(,)318-或811(,)318-. ………………………… 7分 当BD 为对角线时,点M 的坐标为235(,)318-. …………………… 8分大兴区2011~2012学年度第二学期模拟试卷(二)初三数学参考答案及评分标准第Ⅰ卷 (机读卷 共32分)一、选择题(共8道小题,每小题4分,共32分)第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分)三、解答题(本题共30分,每小题5分)13.解:原式=412222441-⨯+--……………………4分 =2421-………………………………5分 14.解:方程的两边同乘)4(+x x ,得x x 54=+……………………2分解得:1=x ……………………3分检验:把1=x 代入)4(+x x 05≠= ……………………4分∴原方程的解为:1=x . ……………………5分15.证明:(1)BE CF =,∴BE EF +CF EF =+,BF CE =即.……………………………1分∠ABC=90°,DC ⊥BC∴∠ABC=∠DCE=90°………………3分在ABF △和DCE △中,⎪⎩⎪⎨⎧=∠=∠=CE BF DCE ABC DC ABABF DCE ∴△≌△.…………………………5分16.解:原式=2244(441)3x x x x x ---++………………………………………………2分=22444413x x x x x --+-+ (3)分=31x - (4)分 当13x =-时,原式=312x -=-.………………5分 17.解:(1)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴ 2(1)2n =-⨯-=.∴ 点A 的坐标为12-(,).………………1分 ∵ 点A 在反比例函数k y x=的图象上, ∴ 2k =-. ∴反比例函数的解析式为2y x =-. ………………3分 (2)点P 的坐标为(2,0)(0,4)-或.………………5分18.解:设第一批购进水果x 千克,则第二批购进水果2.5x 千克,…………………………1分依据题意得:,12005.2550=-xx ……………………………………3分 解得x=20,经检验x=20是原方程的解,且符合题意……………………………4分答:第一批购进水果20千克;…………………………5分四、解答题(本题共20分,每小题5分)19.解:过A 作BC AD ⊥交BC 于D ,则︒=∠30BAD ,︒=∠45CAD∵BC AD ⊥∴︒=∠90ADB ,︒=∠90ADC∵︒=∠30BAD ,︒=∠90ADB ,6001060=⨯=AB ∴3006002121=⨯==AB BD ………………………………………………………2分 DAB AB AD ∠=cos ︒⨯=30cos 6003300=……………………………………3分∵︒=∠90ADC ,︒=∠45CAD ,3300=AD∴3300==AD CD …………………………………………………………………4分∵BD CD BC += ∴3003300+=BC …………………………………………………………………5分 答:甲乙两人之间的距离是)3003300(+米20.解:(1)50.9;…………………………….…………………………………………….2分(2)①……………………………………………………………………………….5分21. 解:(1)连接OD .∵OA=OD∴∠OAD =∠ODA .∵AD 平分∠BAC∴∠OAD =∠CAD ,∴∠ODA =∠CAD .∴OD ∥AC .………………………………………………1分∵DE ⊥AC ,∴∠DEA =∠FDO=90°∴EF ⊥OD .∴EF 是⊙O 的切线. ……………………………………2分(2)设BF 为x .∵OD ∥AE ,∴△ODF ∽△AEF . ……………………………………3分∴OD OF AE AF =,即2234x x +=+. 解得 x =2∴BF 的长为2. ……………………………………5分 22.(1)分割正确,且画出的相应图形正确……………………………………………………2分(2)证明:在辅助图中,连接OI 、NI .∵ON 是所作半圆的直径,∴∠OIN =90°.∵MI ⊥ON ,∴∠OMI =∠IMN =90°且∠OIM =∠INM .∴△OIM ∽△INM .∴OM IM =IM NM .即IM 2=OM ·NM .…………………………………………………3分 ∵OM=AB ,MN=BC∴IM 2 = AB ·BC∵AF=IM∴AF 2=AB ·BC=AB ·AD .∵四边形ABCD 是矩形,BE ⊥AF ,∴DC ∥AB ,∠ADF =∠BEA =90°.∴∠DFA =∠EAB .∴△DFA ∽△EAB .∴AD BE =AF AB .即AF ·BE =AB ·AD=AF 2.∴AF =BE .………………………………………………………………………4分∵AF=BH∴BH =BE .由操作方法知BE ∥GH ,BE =GH .∴四边形EBHG 是平行四边形.∵∠GEB =90°,∴四边形EBHG 是正方形.……………………………………………………5分 图⑤ 图⑥ 图⑦图⑧ 图⑨ 图① 图② 图③ 图④。
0 北京市2012年中考二模试题汇编一综合实验题【东城】32.(6分下面三个实验采用的是对比实验方法进行的有关探究实验三(1用实验一所示装置进行二氧化性质的探究。
当长颈漏斗中的稀盐酸与锥形瓶中的大理石接触后 ,有大量气泡产生,该反应的 化学方程式是;C 中观察到的现象是。
(2用实验二进行石灰石性质的探究。
用两支坩埚钳分别夹持大小相同的石灰石固体 d 、e ,向E 中酒精灯的火焰通 氧气,受热相同时间后冷却,将固体d 、e 固体分别放入盛有酚酞溶液的烧杯中,前者 溶液不变色,后者溶液变为红色。
则向酒精灯火焰通氧气的目的是。
通过上述实验对比分析,可得出的结论是 潮at 的祁试址实验一实验二 干燥刑干嫌的闭试St水—(3用实验三所示装置进行活性炭吸附能力的实验探究。
实验开始时,在常温常压条件下,烧瓶1内为氮气,烧瓶2内为相同体积的氯气,将相同质量的活性炭装入两支烧瓶后,F侧导管中的液面与烧杯内水的液面基本一致,G 侧导管中的液面高于烧杯内水的液面。
当将两只烧瓶放入冰水混合物中,观察到两侧导管中液面都有所上升,且G侧上升的高度比F侧明显。
通过该对比实验可以得出的结论是。
答案:(1CaC0 3 + 2HCI = CaCI 2 + H 20 + CO 2T干燥的试纸不变色,湿润的试纸变色(2提高酒精灯火焰的温度石灰石在加热时不能分解,在高温时能分解(3活性炭对不同气体的吸附能力不同、活性炭对气体的吸附能力随温度降低而增强(2分【西城】32.(5分某小组同学用下图所示的装置进行了两组兴趣实验(a、b管的体积相等,夹持装置已略去。
图1a b K白磷红磷铜铜a b图2 K 1 2 1 2【资料】(1白磷的着火点为40C ,红磷的着火点为240C(22NaOH + MgCI 2 = Mg(0H2 J + 2NaCI(1如图1所示进行实验。
关闭K ,向烧杯中注入一定量的90C的热水至图中虚线处一段时间后,观察到a管中的现象是。
选择、填空压轴题选择压轴题C怀柔8.如图,矩形ABCD 的边AB=5cm ,BC=4cm ,动点P 从A 点出发,在 折线AD —DC —CB 上以每秒1cm 的速度向点B 作匀速运动,设△APB 的面积为S (cm 2),点P 的运动时间为t (s ),则S 与t 之间的函数关系图象是B朝阳8.如图,在平面直角坐标系xOy 中,P 是反比例函数xy 1= (x > 0)图象上的一个动点,点A 在x 轴上,且PO =PA , AB 是PAO △中OP 边上的高.设m OA =,n AB =,则 下列图象中,能表示n 与m 的函数关系的图象大致是 A B C DA密云8.如图,Rt△ABC 中,∠C =90°,AC =3,BC =4,P 是斜边AB-2 -上一动点(不与点A 、B 重合),PQ ⊥AB 交△ABC 的直角边于 点Q ,设AP 为x ,△APQ 的面积为y ,则下列图象中,能表示y 关于x 的函数关系的图象大致是C海淀8.如图,在梯形ABCD 中,AD //BC ,∠ABC =60°,AB = DC =2, AD =1, R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合, 点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列 图象中,能表示y 与x 的函数关系的图象大致是A B C D C大兴8.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△CMN 的面积为y ,则y 关于x 的函数图象大致形状是A东城8. 如右图,正方形ABCD 的顶点A ,B ,顶点C D 、位于第一象限,直线:(0l x t t =≤≤将正FE R P B C DA方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面 积为S ,则S 关于t 的函数图象大致是C8.丰台如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神A平谷8.如图是一个长方体,AB =3,BC =5,AF =6,要在长方体上系一根绳子连结AG ,绳子与DE 交于点P ,当所用绳子的长最短时,AP 的长为A .10B .8 D .254D门头沟8. 如图,已知MN 是圆柱底面直径,NP 是圆柱的高.在圆柱的侧面上, 过点M 、P 嵌有一圈路径最短的金属丝.现将圆柱侧面沿NP 剪开,所得的侧面展开图是 AA. B. C. D.昌平8.下右图能折叠成的长方体是PNMP /N /PN M P /N /P NM P /N /P N M M /P /N/PNM- 4 -D房山8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A BB石景山8.已知正方形纸片的边长为18,若将它按下图所示方法折成一个正方体纸盒,则纸盒的边(棱)长是( B ) A .6B .23C .29D .32顺义8.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是第8题图 A B C DDC BAA西城8.如图,在矩形ABCD 中,3=AB ,BC=1. 现将矩形绕点C 顺时针旋转90°得到矩形A B CD ''',则AD 边扫过的 面积(阴影部分)为A . 21π B. 31π C.41π D. 51πC通州8.如图所示,已知大正方形的边长为10厘米,小正方形的边长为7厘米,则阴影部分面积为( ) A .132π平方厘米B .312π平方厘米C .25π平方厘米D .无法计算C12. (延庆)用长为1cm 的n 根火柴可以拼成如图(1)所示的x 个边长都为1cm 的菱形,还可以拼成如图(2)所示的2y 个边长都为1cm 的菱形,那么用含x 的代数式表示y ,得到______________________.3155y x =- 填空压轴题12.(石景山)如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(2-3n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳12-13=⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳42-23=⨯步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为 ;第2012次电子跳蚤能跳到的圆圈内所标的数字为 .图(1)图(2)………111210987654321第12题图- 6 -10;6.丰台12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n = (n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅= . 21n+;5151 门头沟12. 一组按规律排列的式子:22b a ,432b a -,843b a ,1654b a -,…,其中第6个式子是 ,第n 个式子是 (n 为正整数).12. 6476b a -,n n n n b a 2)1(11++- 顺义12.如图,△ABC 中,AB =AC=2 ,若P 为BC的中点,则2AP BP PC +的值为 ; 若BC 边上有100个不同的点1P ,2P ,…,100P ,记i i i im AP BP PC =+(1i =,2,…,100), 则12m m ++…100m +的值为 .12.4,400.大兴12. 已知:如图, 互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有 个平行四边形, ……,第n 个图形中一共有平行四边形的个数为 个.19,n 2+n-1海淀12.小东玩一种“挪珠子”游戏,根据挪动珠子的难度不同而得分不同,规定每次挪动珠子的颗数与所得分数的对应关系如下表所示:P iPCBA按表中规律,当所得分数为71分时,则挪动的珠子数为 颗; 当挪动n 颗 珠子时(n 为大于1的整数), 所得分数为 (用含n 的代数式表示). 8; 21n n +-西城12.如图,在平面直角坐标系xOy 中,点1A ,2A ,3A ,…都在y 轴上,对应的纵坐标分别为1,2,3,….直线1l ,2l ,3l ,…分别经过点1A ,2A ,3A,…,且都平行于x轴.以点O 为圆心,半径为2的圆与直线1l 在第一象限 交于点1B ,以点O 为圆心,半径为3的圆与直线2l 在第 一象限交于点2B ,…,依此规律得到一系列点n B (n 为正整数),则点1B 的坐标为 ,点n B 的坐标为 .)n朝阳12.如图,在平面直角坐标系xOy 中,A 1是以O 为圆心,2为半径的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;A 2是以原点O 为圆心,3为半径的圆与过点(0,-2)且平行于x 轴的直线l 2的一个交点;A 3是以原点O 为圆心,4为半径的圆与过点(0,3)且平行于x 轴的直线l 3的一个交点;A 4是以原点O 为圆心,5为半径的圆与过点(0,-4)且平行于x 轴的直线l 4的一个交点;……,且点1A 、2A 、3A 、4A 、…都在y 轴右侧,按照这样的规律进行下去,点A 6的坐标为 ,点A n 的坐标为 (用含n 的式子表示,n 是正整数).12.(13,6-),(12+n ,n n ⋅-+1)1()东城12. 如图,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以圆心O 为顶点作 ∠MON , 使∠MON =90°,OM 、ON 分别与⊙O 交于点E 、F ,与正方形ABCD 的边交于点G 、H , 则由OE 、OF 、EF ⌒及正方形ABCD 的边围成的图形(阴影部分)的面积S= .2π--8 -BAC DA 1A 2密云12.如图,在边长为1的等边△A B C 中,若将两条含120︒圆心角的 AOB 、BOC 及边AC 所围成的阴影部分的面积记为S ,则S 与△ABC 面积的比是 .13或1:3 房山12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.、(6,4);(13,1)通州12.如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012, 得∠A 2012,则∠A 2012= .怀柔12.已知21(123...)(1)n a n n ==+,,,,我们又定义112(1)b a =-,2122(1)(1)b a a =--,……,122(1)(1)...(1)n n b a a a =---,则通过计算b 1,b 2 ……,则b = ,然后推测出b =__ ____ (用含字母n 代数式表示) .平谷12.如图,在Rt △ABC 中,∠C =90°,AC =BC ,点D 是 AC 上一点,点E 是CB 延长线上一点,且AD =BE ,连结 DE 交AB 于点F .(1)若AC =6,AD =4,则BEF ADF S S ∆∆-= ; (2)若AD =3,AC >3,则BEF ADF S S ∆∆-= .2012 2α8;29(每空2分) 昌平12.如图的方格纸中,每个小方格都是边长为1的正方形,A 、B 两点是方格纸中的两个格点,在4×5的方格纸中,找出格点C ,使△ABC 的面积为 1个平方单位,则满足条件的格点C 的个数是 . 6。
2012年北京地区二模卷精选题1.在平整地面上有一层厚度均匀的积雪,小明用力向下踩,形成了一个下凹的脚印,如图所示.脚印下的雪由于受外力挤压可近似看成冰层,利用冰的密度,只要测量下列哪组物理量,就可以估测出积雪的密度( )A .积雪的厚度和脚印的深度B .积雪的厚度和脚印的面积C .冰层的厚度和脚印的面积D .脚印的深度和脚印的面积2.目前,制造中国自己航母的呼声越来越高,如图所示是某位网友提供的中国航母的设想图.一艘航母的舰载机飞离航母后,则有( )A .航母将上浮,所受浮力减小B .航母将下沉,所受浮力增大C .航母将下沉,所受浮力减小D .航母始终漂浮,所受浮力不变3. 兔子和乌龟比赛跑步,起初兔子以恒定的速度飞快地向前奔跑了一段路程,当它看见乌龟在后面慢慢的爬行时,便骄傲的在路边睡起了大觉,兔子醒来后又匀速向终点飞奔而去,却发现乌龟早已在终点守候多时了。
图中的四个选项,能正确描述兔子运动情况的有( )A B C D4.如图所示,小华将弹簧测力计一端固定,另一端钩住长方体木块A ,木块下面是一长木板, 实验时拉着长木板沿水平地面向左运动,读出弹簧测力计示数即可测出木块A 所受摩擦力大小.在木板运动的过程中,以下说法正确的是 ( ) A .木块A 受到的是静摩擦力 B .木块A 相对于地面是运动的C .拉动速度变大时,弹簧测力计示数变大D .木块A 所受摩擦力的方向向左5.在探究“凸透镜成像规律”的实验中,当烛焰、透镜及光屏的相对 位置如图所示时,恰能在光屏上得到一个清晰的像。
下列哪种光学器材的成像原理与其相同( ) A .放大镜 B .照相机 C .投影仪 D .近视镜6.甲、乙两位同学进行百米赛跑,假如把他们的运动近似看作匀速直线运动,他们同时从起跑线起跑,经过一段时间后他们的位置如图①所示,在图②中分别作出的在这段时间内两人运动路程s 、速度v 与时间t 的关系图像,正确的是( )第1题图 第2题图第4题图第5题图7.取一片金属箔做成中空的小船,它可以漂浮在水面。
2012年北京市17区二模试题汇编
应用题
一、方程与方程组应用题
1.(12丰台二模7)小张每天骑自行车或步行上学,他上学的路程为2 800米,骑自行车的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x 米/分.根据题意,下面列出的方程正确的是
A .
30428002800=-x
x B .302800
42800=-x x
C .30528002800=-x x
D .30280052800=-x
x
2.(12平谷二模18)夏季里某一天,离供电局30千米远的郊区发生供电故障,抢修队接到通知后,立即前去抢修.维修工骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.
3.(12通州二模18)某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间.现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,求应有多少人去生产成衣?
4.(12怀柔二模18)北京时间5月19日晚21点55分,2012年国际田联钻石联赛上海站比赛结束了最终赛事,男子110米栏的争夺中,中国选手刘翔以12秒97获得冠军!创造今年世界最好成绩!在场观看110米栏比赛的人数比在芝加哥观看NBA 季后赛雷霆与湖人比赛的人数的2倍还多2000人,据统计两场比赛大约共有38000人到达现场观看比赛,求观看110米栏比赛和NBA 比赛的观众各有多少人?
5.(12密云二模18)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就
会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?
6.(12昌平二模18)李明同学喜欢自行车和长跑两项运动,在某次训练中,他骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5000米,用时15分钟.求自行车路段和长跑路段的长度.
7.(12东城二模17)小明家有一块长8m、宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,请你
帮小明求出图中的x值.
8.(12石景山二模)如图是一块长、宽分别为60 m、50 m的矩形草坪,草坪中有宽度均为x
m的一横两纵的甬道.
(1)用含x的代数式表示草坪的总面积S ;
(2)当甬道总面积为矩形总面积的4.
10%时,求甬道的宽.
解:
9.(门头沟18)某中学库存960套旧桌凳,修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务.经协商后得知:甲小组单独修理这批桌凳比乙小组多用20天;乙小组每天修的桌凳套数是甲小组的1.5倍.求甲、乙两个木工小组每天各修桌凳多少套?
10.(12海淀二模19) 某街道办事处需印制主题为“做文明有礼的北京人,垃圾减量垃圾分类从我做起”的宣传单. 街道办事处附近甲、乙两家图文社印制此种宣传单收费标准如下:甲图文社收费s(元)与印制数t(张)的函数关系如下表:
印制t(张) 100 200 400 1000 …
收费s(元) 11 22 44 110 …
乙图文社的收费方式为:印制2 000张以内(含2 000张),按每张0.13元收费;超过2 000张,均按每张0.09元收费.
(1)根据表中给出的对应规律,写出甲图文社收费s(元)与印制数t(张)的函数关系式;(2)由于马上要用宣传单,街道办事处同时在甲、乙两家图文社共印制了1 500张宣传单,印制费共179元,问街道办事处在甲、乙两家图文社各印制了多少张宣传单?
(3)若在下周的宣传活动中,街道办事处还需要加印5 000张宣传单,在甲、乙两家图文社中选择图文社更省钱.
11.(12大兴二模18)某小型超市购进了两批相同品种的水果,第一批用了200元,第二批用了550元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.求第一批购进水果多少千克?
12.(12燕山二模17)某石化工程公司第一工程队承包了铺设一段输油管道的工程,原计划用9天时间完成;实际施工时,每天比原计划平均多铺设50米,结果只用了7天就完成了全部任务. 求实际施工时,平均每天铺设多少米?这段输油管道有多长?
二、函数应用
1.(12门头沟二模11)一商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元. 该商场为促销决定:买1支毛笔就赠送1本书法练习本. 某校书法兴趣小组打算购买这种毛笔10支,这种练习本x (10 x )本, 则付款金额y (元)与练习本个数x (本)之间的函数关系式是 .
2.(延庆)小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,
他的爸爸以96m/min 速度从邮局沿同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为s 1 m ,小明爸爸与家之间的距离为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间的函数关系的图象。
(1)求s 2与t 之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?
这时他们距离家还有多远?
3.(12丰台二模18)为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户
每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过的部分按每千瓦时0.79元收费. (1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:
4月份总用电量/千瓦
时
电费/元 小刚 200 小丽
300
E
s(m) A O D C B t(min) 2400 10 12 F
(2)设一户家庭某月用电量为x千瓦时,写出该户此月应缴电费y(元)与用电量x(千瓦时)之间的函数关系式.
4.(12顺义二模18)某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分
析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随着时间x(年)逐年成直线上升,y与x之间的关系如图所示.
(1)求y与x之间的关系式;
(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?
三、几何的应用
1.(12大兴二模19)甲、乙两人同时从某地A出发,甲
以60米/分钟的速度沿北偏东30°方向行走,乙沿北偏西45°方向行走,10分钟后甲到达
B点,乙正好到达甲的正西方向的C点,此时甲、乙两人之间的
距离是多少米?
2.(12西城二模19)如图,某天然气公司的主输气管道途经A小区,继续沿A小区的北偏
东60︒方向往前铺设,测绘员在A处测得另一个需要安装天然气的M小区位于北偏东30︒方向,测绘员从A处出发,沿主输气管道步行2000米到达C处,此时测得M小区位于北偏西60︒方向.现要在主输气管道AC上选择一个支管道连接点N,使从N处到M小区铺设的管道最短.
(1)问:MN与AC满足什么位置关系时,从N到M小区铺设的管道最短?
(2)求∠AMC的度数和AN的长.
3.(12朝阳二模21)如图,港口B 在港口A 的东北方向,上午9时,一艘轮船从港口A 出
发,以16海里/时的速度向正东方向航行,同时一艘快艇从港口B 出发也向正东方向航行.上午11时轮船到达C 处,同时快艇到达D 处,测得D 处在C 处的北偏东60°的方向上,且C 、D 两地相距80海里,求快艇每小时航行多少海里?(结果精确到0.1海里
/时,参考数据:414.12≈,732.13≈,
236.25≈)
4.(12房山二模17)如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.139,cos 8°≈0.990,tan 8°≈0.141)
C A
B
D
5.(12通州二模19)已知相邻的两根电线杆AB 与CD 高度相同,且相距BC =50m .小王为测量电线杆的高度,在两根电线杆之间某一处E 架起测角仪,如图所示,分别测得两根电线杆顶端的仰角为45°、23°,已知测角仪EF 高1.5m ,请你帮他算出电线杆的高度.(精确到0.1m ,参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.43) 显示解析
东60°
45°
北C D
B
A。