水力学实验报告册
- 格式:pdf
- 大小:326.47 KB
- 文档页数:24
水力学实验报告学院:班级:姓名:学号:第三组同学:姓名: 学号:姓名: 学号:姓名: 学号:2015、12、251 平面静水总压力实验1、1实验目的1、掌握解析法及压力图法,测定矩形平面上的静水总压力。
2、验证平面静水压力理论。
1、2实验原理作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:A p P c =,方向垂直指向受压面。
对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω与以宽度b 所构成的压强分布体的体积。
b P Ω=若压强分布图为三角形分布、如图3-2,则He b gH P 31212==ρ式中:e -为三角形压强分布图的形心距底部的距离。
若压强分布图为梯形分布,如图3-3,则2121212321H H H H a e ab H H g P ++)+(⋅==ρ式中:e -为梯形压强分布图的形心距梯形底边的距离。
图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)本实验设备原理如图3-4,由力矩平衡原理。
图1-3 静水总压力实验设备图10L P L G ⋅=⋅其中:e L L -=1求出平面静水总压力1L GL P =1、3实验设备在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。
容器上部放置一与扇形体相连的平衡杆,如图3-5所示。
??3-5 ??????图 1-4 静水总压力仪 1、4实验步骤1、熟悉仪器,测记有关常数。
2、用底脚螺丝调平,使水准泡居中。
3、调整平衡锤使平衡杆处于水平状态。
4、打开进水阀门K 1,待水流上升到一定高度后关闭。
5、在天平盘上放置适量砝码。
若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。
6、测记砝码质量及水位的刻度数。
7、重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。
一、实训目的通过本次水力实训,使学生了解水力学的理论知识和实际应用,掌握水力学的实验方法,培养学生的实际操作能力、分析问题和解决问题的能力,提高学生的综合素质。
二、实训时间2021年10月15日至2021年10月19日三、实训地点XX大学水利学院水力学实验室四、实训内容1. 水流基本性质实验2. 水流流动阻力实验3. 水流能量转化实验4. 水力计算及水工建筑物设计实验五、实训过程1. 水流基本性质实验(1)实验目的:了解水流的基本性质,掌握流速、流量、水位等基本概念。
(2)实验步骤:①准备实验器材,包括水槽、量筒、秒表、流速仪等;②在实验室内搭建好实验装置,确保实验环境安全;③打开水槽进水阀门,调整水流量,观察水流现象;④使用量筒测量流量,使用秒表测量流速,记录数据;⑤关闭水槽进水阀门,整理实验器材。
(3)实验结果分析:根据实验数据,计算出流速、流量、水位等基本参数,分析水流的基本性质。
2. 水流流动阻力实验(1)实验目的:研究水流在管道中的流动阻力,掌握摩擦系数、雷诺数等参数对流动阻力的影响。
(2)实验步骤:①准备实验器材,包括管道、阀门、流量计、压力表等;②搭建实验装置,确保实验环境安全;③调整水流量,测量管道进出口的压力差,记录数据;④改变管道直径、长度、粗糙度等参数,重复实验;⑤整理实验器材。
(3)实验结果分析:根据实验数据,分析摩擦系数、雷诺数等参数对流动阻力的影响,得出流动阻力与流速、管道参数之间的关系。
3. 水流能量转化实验(1)实验目的:研究水流能量转化的规律,掌握动能、势能、位能等基本概念。
(2)实验步骤:①准备实验器材,包括水轮机、测速仪、测力计等;②搭建实验装置,确保实验环境安全;③调整水流量,测量水轮机的转速和输出功率,记录数据;④改变水轮机转速,重复实验;⑤整理实验器材。
(3)实验结果分析:根据实验数据,分析水流能量转化的规律,得出水流动能、势能、位能之间的关系。
4. 水力计算及水工建筑物设计实验(1)实验目的:掌握水力计算方法,学会水工建筑物设计的基本原理。
水力学实验报告系别:工程技术学院专业:2010级水利水电工程2班指导教师:陈艳霞姓名:吕伟学号:10150300442012.6.58.9、有一梯形断面的排水渠道,长度l=5800m,底坡i=0.0003,糙率n=0.025,底宽b=10m,边坡系数m=1.5,渠道末端设置一水闸,当过闸流量Q=40m³/s时,闸前水深2h=4.0m,试用分段法计算渠道中水深1h=3.0m处离水闸的距离。
解:(1)、判别水面曲线类型由均匀流公式可得:3202135χn i A Q =³≈1.741由临界水深公式可得:()[]m h mh b h mh b B A g aQCC120030032≈⇒++==因c h h >0,则渠道底坡为缓坡,又因渠末水深c h h h >>=020.4, 水面位于缓坡的1M 区,所以渠道中发生1M 型壅水水面曲线。
(2)、水面曲线计算已知渠道闸门前水深h 2=4.0m ,以该断面为控制断面,假设上游一系列水深h 为3.9m, 3.8m, 3.7m ,3.6m,3.5m, 3.4m, 3.3m, 3.2m, 3.1m, 3m 应用公式可得各段相应的流段长度Δs,再求和可得总流段长度S 。
(3)、用Excel 计算:由excel计算可得:渠道水深1h=3.0m处离水闸的距离为S=5637.517m。
9.8、为了灌溉需要,在某河修建溢流坝一座。
溢流坝采用堰顶上游为三圆弧段的WES实用堰剖面。
单孔边墩为圆弧形,坝的设计洪水流量为100m³/s。
相应的上、下游设计洪水位分别为50.7m和48.1m,坝址处上下游河床高程均为38.5m,坝前河道过水断面面积为524m²。
根据灌水水位要求,已确定坝顶高程为48.0m,求坝的溢流宽度。
解:已知溢流坝堰顶上游为三圆弧段的WES型实用堰剖面,由题述条件可得:H=50.7-48=2.7m , A=524 m ², Q=100m ³/s , V=Q /A ≈0.191 , H O =H +a ×V ²/2g=2.70191m , a=a 1=48-38.5=9.5m ,(1)、判断出流形式:037.07019.21.00≈=H h s , 516.370191.295.01≈=H a ,查图9.9可知,泄流时为自由出流,则ζ=1.0。
水力学实验报告学院:班级:姓名:学号:第三组同学:姓名:学号:姓名:学号:姓名:学号:平面静水总压力实验实验目的1.掌握解析法及压力图法,测定矩形平面上的静水总压力。
2.验证平面静水压力理论。
实验原理作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:A p P c =,方向垂直指向受压面。
对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω和以宽度b 所构成的压强分布体的体积。
b P Ω=若压强分布图为三角形分布、如图3-2,则He b gH P 31212==ρ式中:e -为三角形压强分布图的形心距底部的距离。
若压强分布图为梯形分布,如图3-3,则2121212321H H H H a e ab H H g P ++)+(⋅==ρ式中:e -为梯形压强分布图的形心距梯形底边的距离。
图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)本实验设备原理如图3-4,由力矩平衡原理。
图1-3 静水总压力实验设备图10L P L G ⋅=⋅其中:e L L -=1求出平面静水总压力1L GL P =实验设备在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。
容器上部放置一与扇形体相连的平衡杆,如图3-5所示。
3-5 ??????图 1-4 静水总压力仪 实验步骤1.熟悉仪器,测记有关常数。
2.用底脚螺丝调平,使水准泡居中。
3.调整平衡锤使平衡杆处于水平状态。
4.打开进水阀门K 1,待水流上升到一定高度后关闭。
5.在天平盘上放置适量砝码。
若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。
6.测记砝码质量及水位的刻度数。
7.重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。
8.打开放水阀门K 2,将水排净,并将砝码放入盒中,实验结束。
水力学实验报告学院:班级:姓名:学号:第三组同学:姓名:学号:姓名:学号:姓名:学号:2015.12.251 平面静水总压力实验1.1实验目的1.掌握解析法及压力图法,测定矩形平面上的静水总压力。
2.验证平面静水压力理论。
1.2实验原理作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:A p P c =,方向垂直指向受压面。
对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω和以宽度b 所构成的压强分布体的体积。
b P Ω=若压强分布图为三角形分布、如图3-2,则He b gH P 31212==ρ式中:e -为三角形压强分布图的形心距底部的距离。
若压强分布图为梯形分布,如图3-3,则2121212321H H H H a e ab H H g P ++)+(⋅==ρ式中:e -为梯形压强分布图的形心距梯形底边的距离。
图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)本实验设备原理如图3-4,由力矩平衡原理。
图1-3 静水总压力实验设备图10L P L G ⋅=⋅其中:e L L -=1求出平面静水总压力1L GL P =1.3实验设备在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。
容器上部放置一与扇形体相连的平衡杆,如图3-5所示。
??3-5 ??????图 1-4 静水总压力仪 1.4实验步骤1.熟悉仪器,测记有关常数。
2.用底脚螺丝调平,使水准泡居中。
3.调整平衡锤使平衡杆处于水平状态。
4.打开进水阀门K 1,待水流上升到一定高度后关闭。
5.在天平盘上放置适量砝码。
若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。
6.测记砝码质量及水位的刻度数。
7.重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。
河海大学文天学院水力学实验报告系专业班姓名同组者姓名§1 静水压强实验§2 平面静水总压力实验§3 能量方程实验§4 动量方程实验§5 毕托管实验§6 文德里实验§7 雷诺实验§8 沿程阻力系数实验§9局部阻力系数实验§10电拟实验§11堰流实验§1 静水压强实验一、 实验目的二、 实验要求三、 计算公式四、 实验及计算值1、实验工作平台编号:2、有关常数A 点高程A ∇ cm 。
B点高程B ∇ cm 。
3、量测记录表格项目测压管液面高程读数1∇(cm) 2∇(cm)3∇(cm)4∇ (cm)5∇ (cm)6∇(cm)p p >12 3 0p p <12 34、计算表格项目测压管液面高程差12∇-∇(cm)34∇-∇ (cm)56∇-∇ (cm)A ∇-∇5 (cm)B ∇-∇3(cm)p p >1 2 3 0p p < 12 3项目,A B 点静水压强值油密度)(560∇-∇=g p ρ)(N/cm 2AA gh p ρ=')N/cm (2 AA p p p '+=0)N/cm (2BB gh p ρ=')N/cm (2BB p p p '+=0)N/cm (2gp oil )(120∇-∇=ρ)g/cm (3p p >12 3 0p p <12 3五、成果分析及小结§2 平面静水总压力实验一、实验目的二、实验要求三、计算公式四、实验及计算值1、实验工作平台编号:2、有关常数(1)天平臂距离L= cm。
(2)扇形体垂直距离L= cm。
(3)扇形体宽度b= cm。
(4)扇形体平面高度 cm。
3、量测记录表格压强分布形式测次水位读数H(cm)砝码质量m(g)三角形分布1 2 3梯形分布1 2 34、计算表格压强分布形式测次作用点距底部距离作用点距支点垂直距离实测力矩实测静水压力理论静水压力相对值e eLL-=10mgLM=实P理P理实PPy= cm cm cm-N N N三角形分布1 2 3梯形分布1 2 3五、成果分析及小结§3 能量方程实验一、 实验目的二、 实验要求三、 实验及计算值1、实验工作平台编号:2、量测记录表格项目测压管液面高程读数(cm )1∇2∇3∇4∇5∇6∇7∇8∇9∇10∇1 2项目 毕托管液面高程读数(cm )1∇2∇3∇4∇5∇6∇7∇8∇9∇10∇1 2项目急变流断面液面高程读数(cm )渐急变流断面液面高程读数(cm )ABC11∇12∇13∇14∇15∇16∇17∇18∇ 19∇12四、绘制测压管水头线及总水头线五、成果分析及小结§4 动量方程实验一、实验目的二、实验要求三、计算公式四、实验及计算值1、实验工作平台编号:2、有关常数1)喷嘴直径d= cm。
第1篇一、实验目的1. 观察液体流动时的层流和湍流现象,区分两种不同流态的特征。
2. 搞清两种流态产生的条件,分析圆管流态转化的规律,加深对雷诺数的理解。
3. 测定颜色水在管中的不同状态下的雷诺数及沿程水头损失。
4. 绘制沿程水头损失和断面平均流速的关系曲线,验证不同流态下沿程水头损失的规律是不同的。
5. 进一步掌握层流、湍流两种流态的运动学特性与动力学特性。
6. 通过对颜色水在管中的不同状态的分析,加深对管流不同流态的了解。
7. 学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二、实验原理液体在管道中流动时,存在着两种根本不同的流动状态:层流和湍流。
当液体流速较小时,惯性力较小,粘滞力对质点起控制作用,使各流层的液体质点互不混杂,液流呈层流运动。
当液体流速逐渐增大,质点惯性力也逐渐增大,粘滞力对质点的控制逐渐减弱,当流速达到一定程度时,各流层的液体形成涡体并能脱离原流层,液流质点即互相混杂,液流呈湍流运动。
雷诺数(Re)是衡量液体流动状态的无量纲参数,其表达式为:\[ Re = \frac{\rho v D}{\mu} \]其中,ρ为液体密度,v为液体平均流速,D为管道直径,μ为液体动力粘度。
根据雷诺数的不同范围,可以将液体的流动状态分为以下三种:1. 层流(Re < 2000):液体流动稳定,流体质点平行于管道轴线运动,速度分布均匀。
2. 湍流(Re > 4000):液体流动不稳定,流体质点作无规则运动,速度分布不均匀。
3. 过渡流(2000 < Re < 4000):液体流动介于层流和湍流之间,流动状态不稳定。
三、实验装置实验装置主要由以下部分组成:1. 实验台:用于放置实验器材。
2. 可控硅无级调速器:用于调节水的流速。
3. 恒压水箱:用于提供稳定的水源。
4. 实验管道:用于液体流动。
5. 实验流量调节阀:用于调节实验流量。
6. 有色水水管:用于观察液体流动状态。
《水力学实验》静水压强实验报告指导老师:何建京参加者:静水压强试验仪型号:H0-02实验仪器编号:试验台:水力学实验室13桌水电院08级水工一班一.实验概述1. 实验目的①掌握解析法及压力图法,测定矩形平面上的静水总压力。
②验证平面静水总压力理论。
2. 实验原理作用在任意形状平面上的静水总压力P等于该平面形心处的压强pc与平面面积A的乘积:P=PcA方向垂直指向受压面。
对于上下边与水面平行的矩形平面上的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P的大小等于压强分布图的面积Ω和以宽度b所构成的压强分布体的体积。
P=Ωb若压强分布图为三角形分布,如图,则P=1/2ρgH2be=1/3H式中:e-为三角形压强分布图的形心距底部的距离.若压强分布图为梯形分布,如图,则P=1/2ρg(H1+H2)abe=a/3·(2H1+H2)/ (H1+H2)式中:e-为梯形压强分布图的形心距梯形底边的距离3. 实验步骤1熟悉仪器,测记有关常数.2用底脚螺丝调平,使水泡居中.3调整平衡锤使平衡杆处于水平状态.4打开进水阀门K1,待水流上升到一定高度后关闭.5在天平盘上放置适量砝码.若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡.6测记砝码质量及水位的刻度数.7重复步骤4~6,水位读数在100mm以下做4次,以上4次.,将水排净,并将砝码放入盒中.实验结束.8打开放水阀门K24. 注意事项1 在调整平衡杆时,进水或放水速度要慢.2 测度数据时,一定要等平衡杆稳定后再读.二.实验装置及实验数据1.有关常数:(1)天平臂距离L0=27.5cm(2)扇形体垂直距离L=20cm (3)扇形体宽度b=7.5cm 2.量测记录表格三.实验成果分析:对于平面静水总压力,用一般的方法很难测出。
现在使用杠杆原理来间接求出作用在物体表面上的压力。
这个实验装置的设计十分精巧,其中前壁与后壁由于对称所以产生的静水总压力可以抵消,在左侧弧形的部分由于其静水压力作用方向经过杠杆转动轴心,所以其产生的力矩为0。
水力学实验报告范文1.实验目的本实验旨在研究水流在管道内的流动特性,探究不同条件下的水力学性质,掌握水流的实验方法和技巧。
2.实验原理水力学是研究液体(水)在管道内的流动特性和相关规律的学科。
在管道内,水流速度、流量、压力等参数都会对流动产生影响。
本实验主要通过改变供水高度、管道入口形式和管道直径等条件,来观察对水流的影响。
3.实验设备和材料(1)水泵:用于提供供水。
(2)流量计:用于测量水流量。
(3)压力表:用于测量管道的压力。
(4)管道:可以更改形状和直径的管道。
(5)供水箱:用于储存供水。
(6)标尺:用于测量水位。
4.实验步骤(1)调整供水高度:首先将供水箱中的水位调整到一定高度,然后打开水泵,记录下水位差和相应的流量。
每次调整供水高度后都要记录数据。
(2)改变管道入口形式:保持供水高度恒定,更换不同形式的管道入口,如突变口、圆形截面等,并记录水位差和流量。
(3)改变管道直径:保持供水高度和管道入口形式恒定,更换不同直径的管道,并记录水位差和流量。
(4)对实验数据进行处理和分析。
5.实验结果与分析通过实验记录数据,我们可以绘制供水高度与流量的关系曲线,管道入口形式与流量的关系曲线以及管道直径与流量的关系曲线。
通过实验数据的分析,我们可以得出以下结论:(1)供水高度与流量呈线性关系,供水高度越大,流量越大。
(2)管道入口形式对流量的影响较小,不同形式的管道入口对流量的变化不大。
(3)管道直径与流量呈正相关关系,管道直径越大,流量越大。
6.实验误差和改进方案在实验中可能存在的误差包括仪器误差、操作误差和环境误差。
为减小误差,我们可以采取以下改进方案:(1)提高仪器的精度和灵敏度,使用更准确的流量计和压力表。
(2)操作时注意仪器的使用方法和操作规范,避免人为操作误差。
(3)实验环境要保持稳定,尽量避免外界干扰。
7.实验结论本实验通过调整供水高度、改变管道入口形式和管道直径等条件,研究了水流在管道内的流动特性。
水力学实验报告册答案水力学实验报告册答案引言:水力学是研究水在各种情况下的运动规律和相互作用的学科。
通过实验研究水的运动规律和性质,可以更好地理解和应用水力学原理。
本实验报告将对水力学实验中的一些问题进行解答,包括实验原理、数据处理和结果分析等。
实验原理:本实验主要涉及到水流的流量测量和水流速度的测量。
流量是指单位时间内通过管道或河道的水量,通常以立方米每秒(m³/s)为单位。
水流速度是指水流通过某一点的速度,通常以米每秒(m/s)为单位。
测量水流量和水流速度是水力学实验中最基本的内容。
数据处理:在实验中,我们使用了流量计和流速计进行测量。
流量计是一种测量流体流量的仪器,可以通过测量流体通过管道的压力差来计算流量。
流速计则是一种测量流体流速的仪器,可以通过测量流体通过管道的时间和距离来计算流速。
在进行实验时,我们首先使用流量计测量了水流的流量,并记录了相应的数据。
然后,我们使用流速计在不同位置测量了水流的速度,并记录了相应的数据。
最后,我们根据测得的数据进行了数据处理和结果分析。
结果分析:通过对实验数据的处理和分析,我们得出了以下结论:1. 流量与管道直径成正比:在实验中,我们发现当管道直径增大时,流量也随之增大。
这是因为管道直径的增大会增加管道的截面积,从而增加了水流通过的空间,使得流量增大。
2. 流速与管道截面积成反比:在实验中,我们发现当管道截面积增大时,流速却随之减小。
这是因为管道截面积的增大会使得水流通过的空间增大,从而使得水流速度减小。
3. 流速与管道长度成反比:在实验中,我们发现当管道长度增大时,流速却随之减小。
这是因为管道长度的增大会增加水流通过的距离,从而使得水流速度减小。
结论:通过本次实验,我们进一步认识了水力学的基本原理和实验方法。
我们了解到流量与管道直径成正比,流速与管道截面积和管道长度成反比。
这些结论对于水力学的研究和应用具有重要的意义。
总结:水力学实验是一种重要的实践教学方法,通过实验可以更好地理解和应用水力学原理。