当前位置:文档之家› 工业余热回收、工业余热利用

工业余热回收、工业余热利用

工业余热回收、余热利用

余热概念:所谓工业余热(又称废热)是指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。这种热量若不加以回收利用,立即排放到大气和江河中,不仅所谓工业余热(又称废热)是指工业生浪费能源,而且还会污染环境。

以钢铁工业为例:

钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境、节约能源的对策之一。电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的烟尘量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。随着电炉技术迅速、全面的发展,其烟气余热回收利用及除尘技术也得到了发展。

热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98%以上,这是普通热交换器无法比拟的。

热管余热回收装置体积小,只是普通热交换器的1/3。

其工作原理如右图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。

?1、安全可靠性高

常规的换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有泄露,则将造成停产损失。热管余热回收器则是二次间壁换热,即热流要通过热管的蒸发段管壁和冷凝段管壁才能传到泠流体。

?2、热管余热回收器传热效率高,节能效果显著。

?3、热管余热回收器具有良好的防腐蚀能力

热管管壁的温度可以调节,可以通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀,保证设备的长期运行。由于避开烟气露点,使灰尘不易粘结于肋片和管壁上。同时热管在导热时会产生自振动,使灰不易粘附在管壁和翅片上,因而不会堵灰。

?4、安装及结构布置灵活

热管余热回收器的安装无需改变原工艺系统,结构设计和位置布置非常灵活,可适应各种复杂的场合。

?5、使用寿命长:使用寿命在10年以上,单根热管可拆卸更换,维护简单成本低。

?6、投资回收期短:一般在六个月至一年就可回收全部投资。

?1、在化工及石油化工工业中的应用:

小合成氨上、下行煤气余热回收、中合成氨上、下行煤气余热回收、合成氨吹风气燃烧的余热回收、合成氨一段转化炉烟气余热回收、30万吨/年合成氨二段转化炉余热回收。

?2、在石油化工中的应用:

2.1烃类热解炉中的余热回收;

2.2乙苯脱氢反应器中的余热回收;

2.3环已醇脱氢化学反应器中的余热回收;

2.4催化、裂化再生取热器中的余热回收;

2.5其它各种加热炉中的余热回收;

?3、在建材工业中的应用:

3.1在高岭土喷雾干燥热风炉中的余热回收;

3.2玻璃窑炉中的余热回收;

3.3水泥窑炉中的余热回收;

3.4各种陶瓷倒燃炉及遂道窑中的余热回收;

?4、在冶金工业中的应用:

4.1轧钢连续加热炉和均热炉中的余热回收;(参见下面系统示意图)

4.2坯件加热炉中的余热回收;

4.3线材退火炉中的余热回收;

4.4烧结机中的余热回收;以一台180M2的烧结机为例,可回收蒸汽量达10-22T/h;

?5、在硫酸工业中的应用:

5.1在硫酸生产沸腾焙烧炉沸腾层内的余热回收;一个年产10万吨硫酸的工厂可回收5.5

万吨蒸汽;

5.2从沸腾中出来的SO2高温炉气中回收余热;一个年产10万吨硫酸的工厂可回收10.5万

吨蒸汽,可发电价值约600万元;

?6、在盐酸、硝酸炉的应用:基本同(5);

◆1、一般说来,综合利用余热最好;其次是直接利用;第三是间接利用(产生蒸汽用来发电)。

◆2、余热蒸汽的合理利用顺序是:动力供热联合使用;发电供热联合使用;生产工艺使用;生活使用;冷凝发电用。

◆3、余热热水的合理利用顺序是:供生产工艺常年使用;返回锅炉及发电使用;生活用。

◆4、余热空气的合理利用顺序是:生产用;暖通空调用;动力用;发电用。

(完整版)钢铁行业余热回收

烧结线余热 烧结生产线有两部分余热,一是冷却机产生的热风,二是烧结机尾的高温烟气。用余热锅炉将这两部分余热来产生蒸汽,再通过汽轮机发电。据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电300kW,折合标煤120kg/h。 转炉余热 转炉汽化冷却烟道间歇产生的蒸汽,通过蓄能器变为连续的饱和蒸汽,采用我公司的专利——机内除湿再热的多级冲动式汽轮机发电。每炼1t钢,可产生80kg 饱和蒸汽,每吨饱和蒸汽大约可发电150kWh,折合标煤60kg。 转炉煤气经过汽化冷却烟道冷却后温度仍高达800~900℃,采用我公司的干法煤气显热回收技术,通过下降管烟道、急冷换热器回收显热生产蒸汽,经蓄能器调节后发电。 电炉余热 电炉冶炼过程中产生200~1000℃的高温含尘废气,采用余热锅炉将其回收,电炉烟气属于周期波动热源,因此余热锅炉产生的蒸汽需要经过蓄能器调节后方可进入汽轮机发电。 加热炉余热 加热炉有两处余热可以利用:一处是炉内支撑梁的汽化冷却系统,另一处是烟道高温烟气。根据炉型不同,加热炉的烟气量在7000~300000Nm3/h,若用来发电,以烟气量10万Nm3,烟气温度400℃计算,发电量约2000kWh,折合标煤0.8t;汽化冷却系统可生产 0.4~1.0Mpa的饱和蒸汽,每吨蒸汽(0.5Mpa)可发电120kWh,折合标煤48kg。 高炉冲渣水 用高速水流冲击炉渣使之充分急冷、粒化的过程中,会产生大量的冲渣热水。每吨铁排出约0.3t渣,每吨渣可产生80~95℃,5~10t的冲渣水,将这部分热水减压产生低压蒸汽,再进入饱和蒸汽凝汽式汽轮机发电。每吨90℃热水可发电 1.5kWh,折标煤0.6kg,80℃热水可发电1kWh,折标煤0.4kg。

工业余热回收、工业余热利用

工业余热回收、余热利用 余热概念:所谓工业余热(又称废热)是指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。这种热量若不加以回收利用,立即排放到大气和江河中,不仅所谓工业余热(又称废热)是指工业生浪费能源,而且还会污染环境。

以钢铁工业为例: 钢铁工业是环境污染、能源消耗大户,烟气除尘、余热回收利用是钢铁工业保护环境、节约能源的对策之一。电炉在生产过程中产生大量含尘、CO的高温烟气,平均每吨钢产生的烟尘量为18-20kg,随烟气带走的热量约150M .严重浪费能源、污染环境。随着电炉技术迅速、全面的发展,其烟气余热回收利用及除尘技术也得到了发展。

热管是余热回收装置的主要热传导元件,与普通的热交换器有着本质的不同。热管余热回收装置的换热效率可达98%以上,这是普通热交换器无法比拟的。 热管余热回收装置体积小,只是普通热交换器的1/3。 其工作原理如右图所示:左边为烟气通道,右边为清洁空气(水或其它介质)通道,中间有隔板分开互不干扰。高温烟气由左边通道排放,排放时高温烟气冲刷热管,当烟气温度>30℃时,热管被激活便自动将热量传导至右边,这时热管左边吸热,高温烟气流经热管后温度下降,热量被热管吸收并传导至右边。常温清洁空气(水或其它介质)在鼓风机作用下,沿右边通道反方向流动冲刷热管,这时热管右边放热,将清洁空气(水或其它介质)加热,空气流经热管后温度升高。

?1、安全可靠性高 常规的换热设备一般都是间壁换热,冷热流体分别在器壁的两侧流过,如管壁或器壁有泄露,则将造成停产损失。热管余热回收器则是二次间壁换热,即热流要通过热管的蒸发段管壁和冷凝段管壁才能传到泠流体。 ?2、热管余热回收器传热效率高,节能效果显著。 ?3、热管余热回收器具有良好的防腐蚀能力 热管管壁的温度可以调节,可以通过适当的热流变换把热管管壁温度调整在低温流体的露点之上,从而可防止露点腐蚀,保证设备的长期运行。由于避开烟气露点,使灰尘不易粘结于肋片和管壁上。同时热管在导热时会产生自振动,使灰不易粘附在管壁和翅片上,因而不会堵灰。

工业余热利用现状

工业余热利用现状集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

我国工业余热利用现状 摘要:工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 关键词:工业余热;低温余热利用技术;节能减排 0引言 工业部门余热资源总量极为丰富,“十二五”期间可以开发利用的潜力超过1亿吨标准煤。“十二五”是我国节能减排承前启后的关键时期,国务院和有关部委已就节能减排工作作出全面的决策部署,明确提出单位GDP能耗降低16%左右、单位GDP二氧化碳排放降低17%左右、规模以上工业增加值能耗降低21%左右等多项节能减排目标。工业部门能源消费约占全国能源消费的70%。 目前余热利用最多的国家是美国,它的利用率达到60%,欧洲的达到50%,我国30%。就余热利用来看,我国还有很大的利用空间。中、高温余热发电已经形成了比较完备的产业,而低温余热发电则刚刚开始。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。“十二五”时期,综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达亿吨标准煤。 2010年末,余热资源开发利用总量折合为8791万吨标准煤。其中,余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为亿吨标准煤、9300万吨标准煤、3454万吨标准煤,占这7个工业行业余热资源总量的比重分别为%、%、%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,“十二五”时期,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

热电厂循环水余热利用方案

******技术发展有限公司 ******热电厂循环水利用方案 (溴化锂吸收式热泵) 联系人: 手机: 联系电话: 传真: 信箱: 2013年8月18日

目录 1 项目简介 (3) 1.1 吸收式热泵方案 (3) 1.2 吸收式热泵供暖工艺流程设计 (3) 1.3 蒸汽型吸收式热泵主机选型(31.7℃→25℃) (4) 1.4 节能运行计算 (4) 1.5 初投资与回报期计算 (5) 2 热泵机组简介 (6) 2.1 吸收式热泵供暖机组 (6) 2.2 溴化锂吸收式热泵采暖技术特点 (7) 2.3 标志性案例介绍 (7)

1 项目简介 ********热电厂,采暖季有温度为26.3~19.6℃的循环冷却水2800m3/h,需要通过降低汽轮机组凝汽器真空或提高汽轮机背压,使得冷却循环水的温度提升到到31.7℃,然后利用溴化锂吸收式热泵机组提取凝汽器冷却循环水中的热量,将循环冷却水温度降低到25℃,可以制备供水温度为74.7/55℃热网水2400 m3/h,对建筑物进行供暖,供暖期为152天。提高汽轮机背压大约2KPa左右,汽轮机的轴向推力几乎不变,对发电量影响不大。 1.1 吸收式热泵方案 采用蒸汽型吸收式热泵机组,通过0.49MPa的饱和蒸汽作为驱动热源,在冬季采暖期,将2800m3/h的循环冷却水从31.7℃降低到25℃,可以从循环冷却水中提取21.82MW的热量用于建筑物采暖。 1.2 吸收式热泵供暖工艺流程设计 使用吸收式热泵加热,供暖系统流程原理图如下: 由上图可以看出,实际应用流程非常简单,只是把工艺循环水引到热泵机房,把原来通过冷却塔排放到环境中的冷凝废热,通过溴化锂吸收式热泵机组将热量传递给供暖回水。此系统改造不影响循环水原系统的稳定性,节省大量的蒸汽,同时带来了大量的经济效益。

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

各行业余热回收可利用的环节

余热是指能利用而未被利用的热能。我国能源利用率低,工业装备相对落后。如化工、石油化工、建材、轻纺、冶金、动力、造纸、电子电器等行业。在生产中大量的热能直接排空,既浪费能源有污染环境。余热回收就是将浪费的热能回收利用。是提高能源利用率,降低生产成本,保护环境最直接、经济的手段之一。工业燃油、燃气锅炉设计制造时为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度不低于180-220摄氏度,造成部分热能排空;浪费。热管换热器可将烟灰中越50%的热能回收,回收的热能根据用户的需求加热水、空气或其他介质。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得改造投资一年内回收,经济效益显著。余热回收应用范围:包括高温废气余热、冷却介质余热、废气废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废液余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热占约余热总资源的60%。 1、化工及石油化工行业中的应用:(1)小合成氨上、下煤气余热回收(2)中合成氨上、下行煤气余热回收(3)合成氨吹风气燃烧的余热回收(4)合成氨一段炉烟气余热回收(5)30万吨/年合成氨二段转化炉的余热回收(5) 聚酯化纤酯化工艺余热制冷技术 (6)炭黑生产过程余热利用和尾气发电(供热)技术(7)合成氨节能改造综合技术(8)大中型硫酸生产装置低位热能回收技术2、在硫酸工业中的应用:(1)在硫酸生产沸腾焙烧炉沸腾层内的余热回收;一年产10万吨硫酸的工厂可回收5.5万吨蒸汽;(2)从沸腾中出来 SO高温炉气中回收余热;一个年产10万吨硫酸的工厂可回收10.5万吨蒸汽,可发电价的 2 值约600万元;3、在盐酸、硝酸炉的应用:基本同2; 4、在石油化工中的应用:(1)烃类热解路中的余热回收;(工作温度约750~900摄氏度)(2)乙苯脱氢反应器中的余热回收:(3)水泥窑炉中的余热回收:(4)各种陶瓷倒燃炉及隧道窑中的余热回收; 5、在冶金工业中的应用:(1)扎钢连续加热和均热炉中的余热回收;(2)坯件加热炉中的余热回收;(3)线材退火炉中的余热回收;(4)烧结机中的余热回收:已一台180M2的烧结机

浅谈热电厂余热回收利用

浅谈热电厂余热回收利用 发表时间:2014-12-15T09:51:33.980Z 来源:《工程管理前沿》2014年第12期供稿作者:杜庆军 [导读] 火电厂余热的综合利用技术的推广和应用,不仅可以获得良好的经济和环境效益,同时能够提高火电厂的节能减排能力 杜庆军 东南大学建筑设计研究院有限公司江苏南京 210096 摘要:面对能源和水资源紧缺、环境日益恶化以及因原煤价格上涨而引起的发电亏损现状,作为能耗和排放大户的火力发电厂,如何合理地利用烟气余热,成为火电厂提高机组效率、减少煤耗而达到节能降耗的主要举措之一。基于此,文章介绍了通过加大对锅炉连排水和烟气余热进行综合利用的节能技术,并通过应用实例对该节能技术的经济、环保效益进行了分析。 关键词:火电厂;烟气;余热;综合利用;节能 1 火电厂低温余热利用技术 1.1 汽水系统余热利用技术 目前在锅炉汽水系统的余热回收利用上主要有两个方面:一是将连排水直接引入到加热器中用于加热锅炉给水,这种方式为常规的余热利用方式,利用效率较低;二是利用火电厂锅炉连排水中剩余的高品位热能进行做功,再驱动发电机生产电能,输出的水汽混合物再送至热水站,用于生产供居民使用的热水或供暖,这种方式能够使余热得到充分回收利用。这里的发电装置是利用连排水余热加热螺杆膨胀动力机,再通过联轴器带动发电机发电的热能利用系统。螺杆膨胀动力机构造及工作原理如图1所示: 做功完后排出的高温水汽混合物首先进入机内阴阳螺杆齿槽A,使螺杆发生转动,随着螺杆的转动,齿槽A逐渐旋转至B、C、D位置,在此过程中由螺杆封闭的容积逐渐增大,热水得以降压、降温而膨胀做功,最后从后端齿槽E排出,而做功产生的旋转动力由阳螺杆通过联轴器输出给发电机,带动发电机发电。 1.2 锅炉排烟系统的余热利用技术 我国正在运行的火电厂中,锅炉排烟温度一般都在125℃~150℃之间,排烟温度偏高而导致的热能损失已经成为火电厂面临的困境之一。而目前对这部分余热的回收大多采用的是在排烟系统中安装烟气冷却器,通过空气或水等导热介质将余热传输至锅炉给水系统或进气系统,对助燃空气、冷凝水进行加热而达到节能的目的。但是由于烟气冷却之后会使烟气中的部分SO2等酸性腐蚀性气体结露而对管壁等造成腐蚀,因而在实际应用中仍有很多问题需要解决。经过该冷却器的高温烟气和其内部翅片管束中的冷水进行热置换,使水得到加热。该冷却器主要分为高低温设置于除尘器的前后,具体布置如图2所示。这种将冷却器按照高、低温段分开布置,并将高温段布置在除尘器之前,将低温段布置在除尘器之后的方式,能够通过布置于除尘器之前的高温段冷却器将烟气温度降至120℃左右,从而提高其后面除尘器的效率,使其除尘效果更好、能耗更低,并且对使用布袋式除尘器的装置而言,由于进入的烟气温度降低可以延长其使用寿命;而位于除尘器之后的冷却器则可以对烟气进行深度冷却,并将余热充分利用。 1.锅炉; 2.暖风机; 3.空气预热器; 4.烟气冷却器; 5.静电除尘器; 6.烟气冷却器; 7.脱硫塔; 8.耐酸泵; 9.湿烟囱 图2 分高低温布置在除尘器前后的冷却器示意图 采用这种冷却器布置策略的余热回收装置主要使用于以下三种情况:一是除尘器采用布袋式除尘器而对烟气温度较敏感的新建工程中;二是除尘器进气温度在130℃~150℃之间或更高,而且增压风机有400Pa上下裕量的改造工程中;三是烟气温度在130℃上下,在除尘器后方安装高低温一体型冷却器空间不够,且增压风机有400Pa上下裕量的改造工程中。 2 余热利用技术应用实例分析 2.1 汽水系统的余热利用实例 以某火电厂2×200MW机组为例,其额定蒸发量为670t/h,2台锅炉的设计连排流量为12t/h,实际运行流量为8~10t/h。对其采用螺杆膨胀动力发电装置改造之后,初期运行一台锅炉,并利用汽包排污阀来控制连排流量,使其达到装置设计要求,这样发电装置发电功率达到200kW。通过运行测试确定该装置的投入未对汽轮机发电机组造成不良影响,且机组运行安全可靠,实现了无人值守。应用效果得到验证后对另一台锅炉开展改造,投运后2台锅炉正常运行时,发电装置发电功率可达300kW的满负荷额定容量运行。 应用效果分析:在2台锅炉正常运行情况下按发电功率为300kW计算,刨去发电装置自损耗1.1kW,按锅炉全年运行6500h,上网电价按0.35元/(kW·h)的情况下,采用该系统可以增加发电量(300-1.1)×6500=194.285万度,可获收益68.0万元,而且同时还向社会提供了大量的热水。这样按机组的发电煤耗率为3209/(kW·h)计算,年可节省标煤621.71t。若按每吨煤燃烧要排放CO21.98t计算,每年可以

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用 组成:系统的初期设备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%,几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪

费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的 疑难和低效问题总是让人觉得很复杂和无从下 手。其实对压缩空气系统进行正确的能源审计 就可以为用户的整个压缩空气系统提供全面的 解决方案。对压缩空气系统设备其进行动态管理,使压缩空气系统组件 充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低 10%—50%的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出: ?到“十一五”期末(2010年),万元GDP能耗比“十五”期末降低20% 左右,平均年节能率为4.4%。 ?重点行业主要产品单位能耗总体达到或接近本世纪初国际先进水平。 ?压缩机作为制造行业的能耗大户,受到越来越多的关注,节能潜力巨大。 ?压缩机在工矿企业的平均耗能占整个企业的约30%,部分行业的压缩机 耗电量占总耗电量的比例高达70% ?从投资成本结构分析,压缩机的节能重心在能耗上,针对于电机驱动类 型的压缩机,能耗可以近似等于电耗。 平均全球各地区平均使用空压机负荷的百分比

我国工业余热利用现状分析

我国工业余热利用现状分析 工业发展带来了巨大的污染,工业余热的利用是节能减排的重要环节。本文主要介绍了工业余热的资源特点,概述了工业余热的利用方式,中国目前低温工业余热技术,以及分析了工业余热利用中存在的问题。总结出目前应该大力发展利用低温余热技术。 1.工业余热资源特点 工业消耗的能源部门品种包括原煤、洗煤、焦炭、油品、天然气、热力、电力等。工业余热资源特点主要有:多形态、分散性、行业分布不均、资源品质较大差异等特点。 对钢铁、水泥、玻璃、合成氨、烧碱、电石、硫酸行业余热资源的调查分析结果显示,上述工业行业余热资源量丰富,约占这7个工业行业能源消费总量的1/3。综合考虑行业现状与发展趋势,这7个工业行业余热资源总量高达3.4亿吨标准煤。 余热资源开发利用量超过1000万吨标准煤的有钢铁、合成氨、硫酸、水泥4个行业,分别为3560万吨标准煤、2450万吨标准煤、1244万吨标准煤、1124万吨标准煤。 从余热资源的行业分布来看,上述7个工业行业中,钢铁、水泥、合成氨行业的余热资源量位居前三,分别为1.71亿吨标准煤、9300万吨标准煤、3454 万吨标准煤,占这7个工业行业余热资源总量的比重分别为50.3%、27.3%、10.2%;硫酸、电石、烧碱、玻璃余热资源总量则较少,分别为1940万吨标准煤、1408万吨标准煤、495万吨标准煤、311万吨标准煤,合计占7个工业行业余热资源总量的122%。 从工业余热资源的地区分布来看,上述7个工业行业余热资源可开发利用潜力居前六位的地区是河北、江苏、山东、辽宁、山西、河南,分别为1507万吨标准煤、680万吨标准煤、664万吨标准煤、530万吨标准煤、419万吨标准煤、361万吨标准煤。 从余热资源的来源来看,可分为高温烟气和冷却介质等六类,其中高温烟气余热和冷却介质余热占比最高,分别占50%和20%,而其他来源分别是废水、废

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

工业余热的现状与利用

工业余热现状与利用 姚** 北京科技大学机械学院,100083 摘要:工业余热指工业生产中各种热能装置所排出的气体、液体和固体物质所载有的热量。余热属于二次能源,是燃料燃烧过程所发出的热量在完成某一工艺过程后所剩余的热量。我国能源利用率相比发达国家较低,至少50%的工业耗能以各种形式的余热被直接废弃。工业余热节能潜力巨大,近年来已经成为我国节能减排工作的重要组成部分。 关键字:工业余热节能减排热管 0引言 当前,我国能源利用仍然存在着利用效率低、经济效益差,生态环境压力大的主要问题。节能减排、降低能耗、提高能源综合利用率作为能源发展战略规划的重要内容,是解决我国能源问题的根本途径,处于优先发展的地位。 实现节能减排、提高能源利用率的目标主要依靠工业领域。处在工业化中后期阶段的中国,工业是主要的耗能领域,也是污染物的主要排放源。我国工业领域能源消耗量约占全国能源消耗总量的70%,主要工业产品单位能耗平均比国际先进水平高出30%左右。除了生产工艺相对落后、产业结构不合理的因素外,工业余热利用率低,能源没有得到充分综合利用是造成能耗高的重要原因。 我国能源利用率仅为33%左右,比发达国家低约10%。至少50%的工业耗能以各种形式的余热被直接废弃。因此从另一角度看,我国工业余热资源丰富,广泛存在于工业各行业生产过程中,余热资源约占其燃料消耗总量的17%~67%,其中可回收率达60%,余热利用率提升空间大,节能潜力巨大。工业余热回收利用又被认为是一种“新能源”,近年来成为推进我国节能减排工作的重要内容。[1] 1工业余热资源 工业余热来源于各种工业炉窑热能动力装置、热能利用设备、余热利用装置和各种有反应热产生的化工过程等。目前,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。合理充分利用工业余热可以降低单位产品能耗,取得可观的经济效益。 工业余热按其能量形态可以分为三大类,即可燃性余热、载热性余热和有压性余热。 1)可燃性余热 可燃性余热是指能用工艺装置排放出来的、具有化学热值和物理显热,还可作燃料利用的可燃物,即排放的可燃废气、废液、废料等,如放散的高炉气、焦炉气、转炉气、油田伴生气、炼油气、矿井瓦斯、炭黑尾气、纸浆黑液、甘蔗渣、木屑、可燃垃圾等。 2)载热性余热 常见的大多数余热是载热性余热,它包括排出的废气和产品、物料、废物、工质等所带走的高温热以及化学反应热等,如锅炉与窑炉的烟道气,燃气轮机、内燃机等动力机械的排气,焦炭、钢铁铸件、水泥、炉渣的高温显热,凝结水、冷却水、放散热风等带走的显热,以及排放的废气潜热等。 3)有压性余热 有压性余热通常又叫余压(能),它是指排气排水等有压液体的能量。另外,因为工业余热的温度是衡量其质量(品位)的重要标尺,而其温度的高低亦影响了余热回收利用的方式,所以余热也通常按温度高低分为:高温余热,T≥650℃;中温余热,230 ℃≤T<650℃;低温余热,T<230℃。 余热资源来源广泛、温度范围广、存在形式多样.从利用角度看,余热资源一般具有以下共同点:由于工艺生产过程中存在周期性、间断性或生产波动,导致余热量不稳定;余热介质性质恶劣,如烟气中含尘量大或含有腐蚀性物质;余热利用装置受场地等固有条件限制。 2工业余热利用现状 2.1工业余热利用总体现状 我国能源利用率仅为33%左右,比发达国家低

工业余热回收利用途径与技术

工业余热回收利用途径与技术 余热资源普遍存在,特别在钢铁、化工、石油、建材、轻工和食品等行业的生产过程中,都存在丰富的余热资源,所以充分利用余热资源是企业节能的主要内容之一。 余热利用的潜力很大,在当前节约能源中占重要地位。余热资源按其来源不同可划分为六类:1高温烟气的余热2高温产品和炉渣的余热3冷却介质的余热4可燃废气、废液和废料的余热5废汽、废水余热6化学反应余热余热资源按其温度划分可分为三类: 7高温余热(温度高于500℃的余热资源)8中温余热(温度在200-500℃的余热资源)低温余热(温度 低于200℃的烟 气及低于100℃ 的液体) 行业余热资源来源占燃料消耗量的比例治金轧钢加热炉、均热炉、平炉、转炉高炉、焙烧窑等33%以上化工化学反应热,如造气、变换气、合成气等的物理显热;可燃化学热,如炭黑尾气、电石气等的燃料热15%以上建材高温烟气、窑顶冷却、高温产品等约40%玻搪玻璃熔窑、搪瓷窑、坩埚窑等约20%造纸烘缸、蒸锅、废气、黑液等约15%纺织烘干机、浆纱机、蒸煮锅等约15%机械煅造加热炉、冲天炉、热处理炉及汽锤排汽等约15% 、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

水泥工业余热回收

水泥工业余热回收 简介: 在水泥生产中,回转窑、冷却机、悬浮预热器、烘干机等都是重要的热工设备。在保证满足工艺条件要求的基础上,提高这些热工设备的热效率是水泥生产节能降耗的关键。根据近年来工业应用开发的实践,热管技术在以下几方面已获得了较为成功的应用。 窑尾冷却机的余热利用: 水泥生产回转窑尾冷却机低温段排出的废气温度一般为200~300℃,这部分余热的品位较低,它的最好用途是产生低压蒸汽,作为生活用水,冬天用来取暖和浴室用水;夏天可作为溴化锂制冷机的热源制取冷气供生产车间及生活区降温,或作为其他工段余热锅炉的换热器加热锅炉给水。某厂φ3.5m×145 m 的水泥回转窑后配1.37 m ×30.48 m 炉篦振动式冷却机,废气排量为(标准状态)51673m3/h,废气温度约为240℃,在烟道中安装热管热水器一台,加热生活用水,具体参数如表一。 表一热管换热器参数 项目 废气水 设计值设计值实测值 流量(标准状态)(m3/h)51673 5.25 8.4 进口温度/℃210 6 28 出口温度/℃180 50 85 热管根数/根598 蒸发段面积/m245.13 冷凝段面积/m221.26 回收热量/kw 320 557 投资回收期/年<1

小水泥窑尾废气余热利用: 许多小水泥厂的烧成回转窑窑尾排出的废气温度在450~600℃左右,由于产量较小,废气量也比较少,一般均将回收的余热产生压力为0.3~0.8MPa的低压蒸汽供生产工艺或者说生活使用,其流程如图所示。从干法中空回转窑尾排出的废气经过旋风除尘后进入热管蒸汽发生器,废气温度从600℃左右降至200℃以下,入布袋收尘系统,经引风机排入烟囱。 其优点是: 将高温废气降至200℃以下,可直接进入布袋收尘器; 每吨熟料可回收0.4~0.5吨的低压蒸汽; 结构紧凑压力降小,一般小于500Pa; 不易积灰,管壁温度可调整在烟气露点以上,可以达到自清灰目

火力发电厂烟气余热利用的分析与应用

火力发电厂烟气余热利用的分析与应用 随着我国经济与科技的发展,对资源的需求越来越大,而由于我国资源一直处于供不应求的状态,使得我国国民越来越重视对资源的有效利用,研发出了很多节能减排的科技手段。火力发电厂是我国非常重要的发电来源,在传统的火力发电当中,其损耗的能源非常多,远大于其转化的电能,在发电过程中大量资源被浪费,与我国节约能源的政策完全不符。如何改变以往的火力发电模式,将多余的烟气余热加以有效利用成为了行业内讨论的重点话题。本文就如何确保煙气余热的有效利用做了简要分析,并详细介绍了烟气余热利用系统的一些理论,望能给业内人士提供一些参考和建议。 标签:火力发电厂;烟气余热;能源利用 所谓火力发电厂其主要发电手段就是将可以燃烧的物体进行燃烧加工,让其转化为可供人们使用的电能。在其发电过程中仪器设备和操作工艺严重影响了能源的转化效率。我国大部分火力发电厂仍然使用的是传统的锅炉发电设备,这类设备在使用中并不能有效的保证能源的高效率转化,如在锅炉的排烟过程中,能源就会被大量的浪费。因此改良发电设备,研究更有利于转化的技术和器材与如何利用这些多余的能源已经成为当前行业内研究的重要方向,为了达到节约用能的目的,业内人士必须不断深入研究,来确保有更好的方式被运用到实际火力发电当中。 一、烟气余热利用条件分析 将火力发电中的烟气余热高效利用是有一定条件的,如果不能满足烟气余热利用的条件,那么就很难保证烟气余热能够被有效收集,也会降低电能的转化率。当前要想达到烟气余热的有效利用,一般需要满足以下条件: (一)确保设备的防腐蚀性 在锅炉设备排出的烟气当中,其存在很多具有腐蚀性的酸性气体,这些酸性气体在排出过程中会导致发电厂很多设备被腐蚀,不仅影响发电厂的发电效率,还影响烟气的排出率,导致大部分烟气在排出过程中就被损耗,故火力发电厂必须采取一定措施来保证设备的防腐蚀性。首先发电厂的工作人员应该先对发现酸性气体的位置进行标记,记录好出现问题的设备,然后再使用热水再循环工艺来解决仪器表面的问题,防止仪器在高温情况下和酸性气体发生腐蚀反应。此外工作人员还可以安装低温省煤器,通过仪器降温来达到防腐的目的,一般可将低温省煤气安装在烟气的出口和入口处,在两处进行烟气温度的处理,大大降低了最终的烟气温度,在某些情况下低温省煤气还可被安装在烧煤设备上,工作人员可以根据设备的反应迅速对烟气的温度进行控制,在防止设备腐蚀的同时,还能有效地提高能源的转化效率,也同时提高了烟气的排出率[1]。 (二)保证设备的干燥和整洁

离心压缩机余热回收工程技术方案

离心压缩机余热回收工程技术方案 编制单位: 编制日期:

目录 一、项目概况 (1) 二、项目建设的必要性 (1) 三、项目建设内容 (2) (一)项目设计原则 (2) (二)建设内容 (3) (三)工艺流程简述 (4) (四)产品特点............... 错误!未定义书签。 四、热工计算 (6) (一)基本参数 (6) (二)设计计算书 (6) (三)主要设备 (7) 五、经济效益分析 (10)

一、项目概况 有限公司现有三台空压机常年运行,空压机采用离心式两级压缩工艺,提供总容量为800Nm3/min,0.35MPa的压缩空气供生产使用,根据工艺和设备的要求,二级入口风温不可高于65℃。空压机压缩空气二级出口温度为夏季140℃,现生产工艺是将风温降到60℃以下。 有四台三级离心压缩空压机,提供总容量为730Nm3/min,0.75MPa的压缩空气供生产使用,根据工艺和设备的要求,二、三级入口风温不可高于65℃,空压机压缩空气三级出口温度夏季为140℃,现在的运行方式是将三级出口风温降到60℃以下外供。 二、项目建设的必要性 国民经济和社会发展第“十二五”规划纲要提出:“面对日趋强化的资源环境约束,必须增强危机意识,树立绿色、低碳发展理念,以节能减排为重点,健全激励和约束机制,加快构建资源节约、环境友好的生产方式和消费模式,增强可持续发展能力。” “十二五”期间的节能指标为:单位GDP能耗降低率为17%。在能源费用日趋增高的今天,节能降耗也是企业降低运行成本,提高经济效益的一个有效途径。 本项目中,空压机作为压缩空气的生产设备,在制取压缩空气的过程中,不可避免的要产生大量热量,受生产工艺的制约,

相关主题
文本预览
相关文档 最新文档