水声换能器及基阵 - 绪论
- 格式:pptx
- 大小:27.94 MB
- 文档页数:4
水声学underwater acoustics简史水声换能器和参量阵水声换能器水声换能器的进展水声参量阵声波在海洋中的传播和声场数值预报传播损失水下声道理论方法深海中的声传播浅海中的声传播声场数值预报水声场的背景干扰噪声海洋中的混响信号场的起伏和散射海面波浪引起的声起伏湍流引起的声起伏内波引起的声起伏目标反射和舰船辐射噪声水下目标反射舰船辐射噪声水声信号处理-声学的一个分支学科。
它主要研究声波在水下的产生、传播和接收,用以解决与水下目标探测和信息传输过程有关的声学问题。
声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。
简史1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。
1912年“巨人”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
美国的R.A.费森登设计制造了电动式水声换能器(500~1000Hz),1914年就能探测到2海里远的冰山。
1918年,P.朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。
同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷,主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅海底地层剖面仪,水声释放器以及水声遥测、控制器等。
水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。
海洋论坛▏水声换能器研究进展一、引言声波是迄今为止人类所掌握的唯一能在海洋中远距离传递信息与传播能量的载体,水声技术也因此成为水下通讯导航、水产渔业、海洋资源、海洋地质地貌、军事武器等领域的重要手段。
水声换能器的使命即是在一定频带内按规定的信号形式激发产生声波和不失真地感知与接收水中声波信号,由此换能器也被人们形象地喻为声纳系统的“耳目”。
随着水声技术应用领域的不断拓展与延伸,在海洋资源探测开发的技术竞争、军事对抗及全面感知地球的迫切需求背景下,水声换能器技术的飞速发展成为声纳技术发展的重要前提,新材料技术、精细加工技术、基础工艺技术以及数值计算分析技术等为换能器技术的快速发展提供了物质基础和技术条件。
其中有关新材料、新机理、新结构换能器的发展情况曾在相关综述文章中分别描述过,本文就笔者所掌握的资料和有限的理解水平简要地综述几种典型结构类型换能器近些年的发展状况,主要包括:弯张换能器、圆柱面辐射型换能器、纵向换能器等等。
二、弯张换能器设计研究的新思想及技术动态弯张换能器分为许多类型,其中IV 型弯张换能器是由纵向振子驱动椭圆形外壳做弯曲振动的一类换能器结构形式,常被用于低频大功率发射声源或设计低频主动声纳,如美国海军的拖曳式低频主动声纳(SURTASS-LFA),采用18只大功率IV型弯张换能器组成垂直发射阵,工作频带100~500Hz,声源级220~235dB。
单只换能器用两台S11-48型功率放大器驱动,输出电压1600V,最大声源级215dB。
关于IV型弯张换能器设计改进主要体现在对驱动振子的优化和宽带设计上,有关文献设计了一种长轴加长型结构(图1),以新型弛豫铁电单晶铌镁酸铅—钛酸铅(PMNT)材料叠堆为驱动元件,这种结构思想使换能器在保持频率低、响应高等优点的同时,显著拓宽了工作带宽。
图1 长轴加长型宽带弯张换能器鱼唇式弯张换能器是我们近些年研究的一种新结构弯张换能器,采用变高度椭圆壳体,这样的壳体兼有振幅放大和高度加权放大的“双重放大”作用,采用T erfenol-D超磁致伸缩材料驱动和溢流腔结构,?3dB带通Q值小于3,采用了溢流腔填充顺性材料可获得较大的工作深度,该型换能器目前已经得到广泛应用,谐振频率可以从100Hz覆盖到1.8kHz,单只换能器谐振频率下声源级在190dB以上,图2给出其中两例换能器实物照片,系列换能器中几何尺寸最小的为长轴80mm,最大的长轴大于1m。
一、1-3-2型复合材料矩形线列换能器阵(1) 矩形线列换能器阵结构利用1-3-2型复合材料阵元组成的矩形线列换能器阵结构见图1,该线列阵由四片矩形1-3-2复合材料阵元构成,阵元沿直线紧密排列。
四个1-3-2型复合材料阵元的外形尺寸、内部结构完全相同,均为25mm×25mm×5mm的矩形薄片,内部结构的每个周期中陶瓷柱截面为0.84mm×0.84mm,环氧树脂宽为0.43mm,陶瓷基底厚为0.5mm。
1-3-2型复合材料矩形线列换能器阵的其它辅助部件包括换能器外壳、背衬、解耦材料、聚氨酯、电极引线和电缆等。
其中外壳材料选用金属黄铜,形状为上部敞口的长方体空盒,外形尺寸为114mm×33mm×15mm,四面侧壁厚度为2mm,底座厚6mm,其中开有83mm×4mm×3mm 的走线槽。
另外,底座中心还有一直径3mm的通孔,用于同轴电缆穿过。
外壳的作用主要是定位阵元,承受压力和抗腐蚀等。
设计中采用硬质泡沫塑料作为换能器的背衬和边条,背衬和边条厚度均为2mm,复合材料阵元通过环氧粘接剂粘在背衬上,背衬具有反声、绝缘的作用;每个阵元四周由硬质泡沫边条将阵元之问、阵元与外壳之间隔离,目的是解耦和绝缘。
另外,背衬和边条还起到定位复合材料阵元的作用。
换能器阵元上表面,即换能器辐射面被覆有2mm厚的聚氨酯匹配层,用于防水、透声。
图1矩形线列换能器阵结构(2) 矩形平面阵结构图2矩形平面阵结构(a)整体结构(b) 剖面结构(c) 外壳结构(3) 圆柱形换能器(b)图3圆柱形换能器参考附件中李莉的毕业论文112-128页二、平面水听器及双激励加匹配层换能器(非压电复合材料)参考杭州应用声学所三、tonpliz型水声换能器(非压电复合材料)参考西北工业大学四、低旁瓣水声换能器参考中国海洋大学五、侧扫声纳系统结构图参考中科院声学所。
水声换能器基础知识地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。
而声纳这一水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。
声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播,遇到目标后反射回来再进行接收,转变为电信号供收听或观察,由此来判断被测物体的方位和距离。
在这个水下电声信号的转换过程中,关键设备就是水声换能器或是换能器阵。
1. 水声换能器的应用目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。
这里仅介绍几种在水下探测方面的应用:(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。
根据测深深度的不同,测深换能器的频率和功率也相差甚远。
以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。
对这类换能器的要求是波束稳定、主波束尖锐。
(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。
一般工作频率在100kHz~500kHz。
(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。
拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。
水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。
2. 水声换能器的分类换能器按照不同的机电能量转换原理可以分为电动式、电磁式、磁致伸缩式、静电式、压电式和电致伸缩式等。
水声换能器基础知识地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。
而声纳这一水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。
声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播,遇到目标后反射回来再进行接收,转变为电信号供收听或观察,由此来判断被测物体的方位和距离。
在这个水下电声信号的转换过程中,关键设备就是水声换能器或是换能器阵。
1. 水声换能器的应用目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。
这里仅介绍几种在水下探测方面的应用:(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。
根据测深深度的不同,测深换能器的频率和功率也相差甚远。
以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。
对这类换能器的要求是波束稳定、主波束尖锐。
(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。
一般工作频率在100kHz~500kHz。
(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。
拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。
水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。
2. 水声换能器的分类换能器按照不同的机电能量转换原理可以分为电动式、电磁式、磁致伸缩式、静电式、压电式和电致伸缩式等。
一、1-3-2型复合材料矩形线列换能器阵(1) 矩形线列换能器阵结构利用1-3-2型复合材料阵元组成的矩形线列换能器阵结构见图1,该线列阵由四片矩形1-3-2复合材料阵元构成,阵元沿直线紧密排列。
四个1-3-2型复合材料阵元的外形尺寸、内部结构完全相同,均为25mm×25mm×5mm的矩形薄片,内部结构的每个周期中陶瓷柱截面为0.84mm×0.84mm,环氧树脂宽为0.43mm,陶瓷基底厚为0.5mm。
1-3-2型复合材料矩形线列换能器阵的其它辅助部件包括换能器外壳、背衬、解耦材料、聚氨酯、电极引线和电缆等。
其中外壳材料选用金属黄铜,形状为上部敞口的长方体空盒,外形尺寸为114mm×33mm×15mm,四面侧壁厚度为2mm,底座厚6mm,其中开有83mm×4mm×3mm 的走线槽。
另外,底座中心还有一直径3mm的通孔,用于同轴电缆穿过。
外壳的作用主要是定位阵元,承受压力和抗腐蚀等。
设计中采用硬质泡沫塑料作为换能器的背衬和边条,背衬和边条厚度均为2mm,复合材料阵元通过环氧粘接剂粘在背衬上,背衬具有反声、绝缘的作用;每个阵元四周由硬质泡沫边条将阵元之问、阵元与外壳之间隔离,目的是解耦和绝缘。
另外,背衬和边条还起到定位复合材料阵元的作用。
换能器阵元上表面,即换能器辐射面被覆有2mm厚的聚氨酯匹配层,用于防水、透声。
图1矩形线列换能器阵结构(2) 矩形平面阵结构图2矩形平面阵结构(a)整体结构(b) 剖面结构(c) 外壳结构(3) 圆柱形换能器(b)图3圆柱形换能器参考附件中李莉的毕业论文112-128页二、平面水听器及双激励加匹配层换能器(非压电复合材料)参考杭州应用声学所三、tonpliz型水声换能器(非压电复合材料)参考西北工业大学四、低旁瓣水声换能器参考中国海洋大学五、侧扫声纳系统结构图参考中科院声学所。
第一章绪论声波在水中的传播性能最好:在海水中,光波和无线电波的传播衰减都非常大,传播距离有限;声波在水中的传播性能好得多:利用深海声道效应,人们可以在5000公里以外,清晰地接收到几磅TNT炸药爆炸时所辐射的声信号(1公斤=2.2磅)。
1.1 水声学发展简史✧水声学的迅速发展:始于第二次世界大战初期✧声纳起源:1490年,意大利列昂纳多•芬奇在摘记中写道:“如果使船停航,将长管的一端插入水中,而将管的开口放在耳旁,则能听到远处的航船。
”——它是人类利用水声探测水下目标的最早记载,这种原始“声纳”一直到第一次世界大战还广为采用。
✧水声的第一次定量测量:1827年,瑞士物理学家D.Colladon和法国数学家C.Sturm合作,在日内瓦测量了声速,测得的声速值为1435米/秒,与现代测量值十分接近。
✧水声换能进展:1840年,焦耳发现了磁致伸缩效应,1880年皮埃尔•居里发现了压电效应;在此基础上,后人支撑和发展了水声压电换能器和磁滞伸缩换能器,实现水中电能和声能之间的转换。
✧水声第一个回声定位方案:1912年,英国“泰坦尼克号”和冰山相撞海难事件发生后不久,英国人L.F.Richardson提出水下回声定位方案,他本人未能实现这一方案。
✧军用声纳发展(第一次世界大战):第一次世界大战后期,反潜成为一个主要研究方向;法国物理学家ngeven和俄国电气工程师C.Chilowsky采用电容发射器和碳粒接收器作了水下目标的探测实验,1916年接收到海底回波和200米以外的一块装甲板的回波;1917年Langeven研究成功了石英-钢夹心换能器,并利用了真空管放大器,首次将电子学应用于水声技术;1918年,成功地探测到1500米以外的水下潜艇的反射声。
他首次实现了利用回声探测水下目标。
✧第一次世界大战后:水声技持续发展,1925年研制用于传播导航的水声设备——回声测深仪。
✧第二次世界大战:进一步推动水声技术的发展,取得很多成果:主、被动声纳,水声制导鱼雷,音响水雷和扫描声纳等。
水声换能器与换能器阵技术研究水声换能器与换能器阵技术作为水下声波信号处理的关键技术,在海洋探测、水下通信、军事应用等领域具有广泛的应用价值。
本文将详细阐述水声换能器与换能器阵技术的研究现状、应用前景、技术原理及实验设计,以期为相关领域的研究提供参考与借鉴。
水声换能器与换能器阵技术研究涉及多个学科领域,包括声学、物理学、电子工程等。
目前,研究者们已经提出了多种水声换能器设计与实现的方法,如压电陶瓷换能器、磁致伸缩换能器、电致伸缩换能器等。
同时,为了提高声波信号的接收与发送效率,研究者们还研发了多种换能器阵列,如线性阵列、平面阵列、球面阵列等。
水声换能器与换能器阵技术的应用前景主要体现在以下几个方面:潜艇声呐系统:潜艇声呐系统是水下声波信号处理的重要应用之一,通过使用水声换能器和换能器阵技术,可提高潜艇的探测能力、定位精度和通信效率。
海洋探测:海洋探测是水声换能器与换能器阵技术的另一重要应用领域,如海底地形地貌探测、海洋资源开发等。
深海钻探:深海钻探过程中,水声换能器和换能器阵技术可用于传递控制信号和收集钻探数据,提高深海钻探的安全性和效率。
水声换能器与换能器阵技术的发展前景广阔,但仍面临诸多挑战。
未来研究方向可包括:高性能水声换能器的设计和制作,以提高声波信号的发送和接收效率。
低成本、大规模的换能器阵列制造技术的研究,以降低应用成本,促进普及化。
复杂水声环境下的信号处理算法研究,以提高水声信号的抗干扰能力和通信可靠性。
水声换能器与换能器阵列的优化配置与协同工作,以实现更高效的声波信号处理。
水声换能器与换能器阵技术的原理主要是基于声波的传播规律和换能器的物理特性。
声波作为一种机械波,传播时需要介质。
在水下环境中,声波主要通过水介质传播,其传播速度受到水温、盐度、压力等多种因素的影响。
水声换能器的主要功能是将电信号转换为声波信号进行传播,或者将声波信号转换为电信号进行接收。
其工作原理主要基于压电效应、磁致伸缩效应、电致伸缩效应等物理效应。
工程水声基础概论参考书:1.顾金海、叶学千编,水声学基础,国防工业出版社2.刘伯胜、雷家煜编,水声学原理,哈尔滨工程大学出版社,19893.R.J.尤立克著,洪申译,水声原理,哈尔滨工程大学出版社,1989第一章绪论众所周知,在人们迄今所熟知的各种能量形式中,在水中以声波的传播性能为最好。
在混浊、含盐的海水中,无论是光波还是无线电波,它们的传播衰减都非常大,因而在海水中的传播距离十分有限,远不能满足人类的海洋活动,如水下目标探测、通讯、导航等方面的需要。
相比之下,声波在海水中的传播性能就好得多,例如,利用深海声信道效应,人们甚至远在五千公里以外,也能清晰地收到几磅TNT炸药爆炸时所辐射地声信号。
正是由于上述原因,使得水声技术在人类地海洋活动中得到了广泛的应用,而且随着人类对海洋需求的日益增加,水声技术的应用也必将更加广泛。
由于我们所研究的信号为水声信号,我们一定要了解水声信号的特点,才能用合适的信号处理方法,所以是一门重要的专业基础课。
1.1 水声学发展简史对水下声的最早记载是1490年意大利列昂纳多.芬奇作出的。
他写道:“如船停航,将长管一端插入水中,可将管的开口放在耳旁,能听到远处航船。
”距今五百多年。
1827年由瑞士物理学家科拉顿(D.Colladon)和德国数学家斯特姆(C.Sturm)合作,在日内瓦湖中用敲击大钟进行了人类第一次测量声在水中传播速度的实验。
1840年焦耳发现了磁致伸缩效应,1880年皮埃尔.居里发现了压电效应,在此基础上发展了水声压电换能器和磁致伸缩换能器,能在水中把电能转换成声能发射到水中去,而当换能器表面接收到声能后又会转换为电能,经放大后处理。
1912年,英国四万吨级邮轮和冰山相撞,1500余人遇难。
这一事实告诉人们:海上航船必须安装导航、定位设备。
英国人L.F.Richardson第一次提出水下回声定位方案。
第一次世界大战后期,德国潜艇给协约国海上交通造成的威胁,进一步促进了军用声纳的发展。
水声学underwater acoustics简史水声换能器和参量阵水声换能器水声换能器的进展水声参量阵声波在海洋中的传播和声场数值预报传播损失水下声道理论方法深海中的声传播浅海中的声传播声场数值预报水声场的背景干扰噪声海洋中的混响信号场的起伏和散射海面波浪引起的声起伏湍流引起的声起伏内波引起的声起伏目标反射和舰船辐射噪声水下目标反射舰船辐射噪声水声信号处理-声学的一个分支学科。
它主要研究声波在水下的产生、传播和接收,用以解决与水下目标探测和信息传输过程有关的声学问题。
声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。
简史1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。
1912年“巨人”号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
美国的R.A.费森登设计制造了电动式水声换能器(500~1000Hz),1914年就能探测到2海里远的冰山。
1918年,P.朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。
同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷,主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅海底地层剖面仪,水声释放器以及水声遥测、控制器等。
水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。