第二章常用压电陶瓷发射换能器
- 格式:pptx
- 大小:25.69 MB
- 文档页数:10
能够发射或接收声波,并完成声波所携带的信息和能量与电的信息和能量转换的装置,称为电声换能器,简称换能器。
SL-声源级,反映发射换能器辐射声功率大小。
提高声源级,即提高辐射信号的强度,相应也提高回声信号强度,增加接收信号的信噪比,从而增加声呐的作用距离。
PZT4(发射型):低机械损耗和介电损耗,大的交流退极化场、介电常数、机电耦合系数、压电常数,适合强电场、大振幅激励,用作发射。
PZT5(接收型):高耦合系数、压电应变常数,优异的时间稳定性。
PZT8(大功率发射型):高抗张强度和稳定性,高机械Q值,适合大振幅激励。
自发形变,在压电陶瓷的晶格结构中,晶胞的大小形状与温度相关t>Tc(居里温度),立方晶胞t<Tc,c边增大,a,b边缩小,四角晶胞(菱方晶胞)由于这种变化是温度变化时,晶胞自发产生的,因此称自发形变。
由于压电陶瓷具有钙钛矿结构ABO3t>Tc(居里温度),立方晶胞中正负离子的对称中心重合,不呈电性;t<Tc,晶格变为四角晶胞,晶胞中正负离子的对称中心不再重合,产生电矩。
自发极化在居里温度Tc以下,晶胞发生自发形变的同时,又自发产生电矩,电矩的方向是沿着边长增大的方向,就是自发极化。
四角晶胞:电矩方向是c轴方向;菱方晶胞:电矩方向是菱方体的对角线方向。
极化强度:单位体积内电矩的矢量和。
压电陶瓷内部包含许多电畴,极化方向杂乱无章,沿空间各方向均匀分布。
因此电矩的矢量和为0,即极化强度为0。
这种状态,被称为去极化状态压电效应1.正向压电效应——压电陶瓷在受到外力作用时,除发生形变和内部产生应力外,还会产生极化强度和电位移,而且产生的极化强度和电位移与应变和应力成正比。
2.反向压电效应——压电陶瓷在受到电场作用时,除产生极化强度和电位移外,还会发生形变和内部产生应力,而且产生的应变和应力与极化强度和电位移成正比。
压电陶瓷的电位移在量值上等于电极面上自由电荷的面密度带宽在换能器的发射响应曲线上,低于最大响应3dB的两个频率差定义为换能器的-3dB频带宽度,简称带宽.指向性换能器或基阵的发射响应或接收灵敏度的幅值随方位角的变化而变化的一种特性.发射响应换能器或基阵在指定方向上,距其等效声中心1米远处所产生的球面波自由场声压与其输入端电学量之比声源级在声场中指定方向上,距其等效声中心1米远处所产生的球面波自由场声压对应平面行波的声强级辐射声功率描述发射器在单位时间内向水中介质中辐射能量多少的物理量机电耦合系数是在理想状态下定义的,在理想状态下未转换的能量不是损耗掉,而是以弹性方式或介电方式储存起来.有效机电耦合系数等效电路法换能器看为做机械振动的弹性体,依据波动理论可以得到他的机械振动方程;根据电路的规律可以得到电路状态方程;根据压电方程和机电类比可以建立换能器的机电等效图,换能器的工作特性和参数就可以通过机电等效图求得复合棒换能器主要结构特点1为了得到大的前后盖板振速比,前盖板采用轻金属(硬铝,硬镁合金)后盖板重金属(钢,黄铜)2前盖板设计成喇叭形_降低Q值3压电片数目为偶数,相邻两片极化方向相反,并联连接4金属节板位于振动的节点上,用于固定换能器5用金属螺杆施加预应力,可以增加功率极限接收灵敏度1畸变系数当接受器放入声场后声波会在接收器表面发生衍射,实际作用在接收器表面的声压Pr与入射波声压Pf(自由场声压)的关系Pr=rPf (r畸变系数)2种类自由场电压(电流)灵敏度声压灵敏的电压(电流) 3自由场电压灵敏度换能器输出端的开路电压eoc与放入换能器前置换能器处的自由场声压Pf的比值Me=eoc/Pf自噪声压电陶瓷在一定温度下内部分子的热运动产生的噪声(宽频噪声)自噪声的大小决定了水听器能够测量的有用信号的最小值.等效噪声声压设有一正弦波入射到水听器上,输出电压的有效值等于水听器上自噪声在1Hz 带宽上的均方根电压值,则入射声压的有效值称为等效噪声声压.指向性的技术指标主瓣指向性图中,中间波束具有最大声压,也称主波束旁瓣主波束两侧的波束称为旁瓣或次波束全开角主瓣幅度降为零所夹的开角波束宽度主瓣幅度降至0.707所夹的开角最大旁瓣级个数少使功率集中在主瓣,提高作用距离,便于判定目标方位.幅度小接收时,可以减少从旁瓣接收到的干扰信号和噪声指向性因数在声轴上,某一远场处的声强与同距离各方向的平均声强之比. 由于指向性因数是反映辐射能量集中程度的又称聚集系数物理意义一个有指向性的发射器,在主波束方向上,其远场中某距离处的声强比同等功率下无指向性发射器在同一点处产生的声强大Rθ倍指向性指数DI=10logRθ乘积定理具有指向性的基元组成的基阵,其指向性函数是基元本身的指向性函数与点源组成基阵的指向性函数的乘积应用要求使用乘积定理时基阵的指向性函数参考方向必须与阵中各基元的参考方向一致.。
压电陶瓷及其测量原理近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。
由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。
同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。
(一)压电陶瓷的主要性能及参数(1)压电效应与压电陶瓷在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。
这两种正、逆压电效应统称为压电效应。
晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。
在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。
(2)压电陶瓷的主要参数1 、介质损耗介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。
在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。
介质损耗是异相分量与同相分量的比值,如图1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为tan 1CR其中3为交变电场的角频率, R为损耗电阻,C为介质电容。
s R1C1 s L1图1交流电路中电压-电流矢量图(有损耗时)2、机械品质因数机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。
机械品质因数越大,能量的损耗越小。
产生能量损耗的原因在于材料的内部摩擦。
机械品质因数Q m的定义为:谐振时振子储存的机械能 cQm谐振时振子每周所损失的机械能2兀机械品质因数可根据等效电路计算而得式中R1为等效电阻(Q), s为串联谐振角频率(Hz ), C1为振子谐振时的等效电容(F),L1为振子谐振时的等效电感。
压电陶瓷超声波换能器与试件的距离是超声波检测中一个十分重要的参数。
合适的距离可以保证超声波的传播和检测效果,因此对于超声波检测领域的研究人员和实际应用工作者来说,对压电陶瓷超声波换能器与试件的距离进行深入了解和研究至关重要。
1. 压电陶瓷超声波换能器的原理压电陶瓷超声波换能器是一种能够将电能转换为机械能的装置。
当施加电压在压电陶瓷上时,它会产生压电效应,从而产生机械振动。
这种振动会通过与试件的接触面传播到试件中,并在试件内部产生超声波。
另当超声波通过试件传播时,它会与试件中的缺陷或界面反射,再由压电陶瓷超声波换能器接收到并转换为电信号。
压电陶瓷超声波换能器在超声波检测中起着至关重要的作用。
2. 合适的距离对检测效果的影响合适的压电陶瓷超声波换能器与试件的距离对超声波检测的影响不可忽视。
较小的距离会增加超声波的传播损耗,导致传播距离有限,甚至超声波无法完全进入试件内部。
这会造成试件内部的缺陷或界面无法得到有效检测,对检测结果的准确性和可靠性造成威胁。
较大的距离会使得超声波能量降低,导致接收信号的幅度下降,信噪比变差,从而影响检测结果的清晰度和可靠性。
合适的距离可以保证超声波的有效传播,从而确保检测的准确性和可靠性。
3. 确定合适距离的方法确定合适的压电陶瓷超声波换能器与试件的距离是超声波检测中的一个关键问题。
一般来说,可以通过以下几种方法来确定合适的距离。
可以通过实验的方式进行优化。
在实验中可以逐渐调整距离,观察检测结果的变化,从而确定最佳距离。
可以通过数值模拟的方式进行分析。
利用声学理论和有限元分析等方法,可以对超声波在试件中的传播进行模拟分析,从而得出最佳距离的估计。
可以通过经验和专家知识进行判断。
在实际工作中,经验丰富的研究人员和工程师可以通过自己的经验和专业知识来判断合适的距离,然后进行实际检测。
4. 结语压电陶瓷超声波换能器与试件的距禂对超声波检测的影响是一个复杂而重要的问题。
合适的距离可以保证超声波的有效传播和检测效果,因此对于超声波检测领域的研究人员和实际应用工作者来说,对压电陶瓷超声波换能器与试件的距禂进行深入了解和研究至关重要。
超声声速测定声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。
特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。
例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。
“声速的测量”是一个综合性声学实验。
实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。
通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。
(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。
(3)数据处理方法:求声波波长的逐差法。
(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。
【实验目的】1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。
2.了解压电换能器的功能。
3.学习用逐差法处理数据。
【实验仪器】SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等【实验原理】频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。
在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。
根据声波各参量之间的关系可知f ⋅=λυ,其中υ为波速, λ为波长,f 为频率。
图4-5-1共振法测量声速实验装置在实验中,可以通过测定声波的波长λ和频率f 求声速。
声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。
图4-5-2? 相位比较法测量声速实验装置1.相位比较法实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。
压电陶瓷换能器的阻抗匹配设计1回顾一下阻抗的基本概念在直流电路里欧姆定律规定了器件的电阻等于器件两段的电压与流过器件的电流之比其中R的单位是欧姆V的单位是伏特I的单位是安培在交流电路里电阻的定义被扩展加入了随时间变化而变化的电压电流的相位关系阻抗Z代表交流等效电阻而且同样是电压与电流的比值在这里电压V(t)与电流I(t)都是时间的函数与电阻一样阻抗同样用欧姆作为单位不同之处是阻抗用复数来表示任意一个复数都可以用A+jB这样的形式来表示一个复数包含两个部分实部A和虚部jB根据定义1j−=这意味着j的平方的结果是12换能器等效电路在狭窄的谐振频率范围内压电陶瓷换能器的模型可以用以下等效电路来表示串连电感L和电容C是换能器固有的跟串连谐振频率有关这个串连谐振频率可以用等效电感L和电容C来表示在谐振频率下串连等效电容C的容抗X C 完全抵消掉串连等效电感的的感抗X L 从而换能器阻抗|Z|达到极小值R 在f r 附近换能器相当于一个效率达到极值的发射体并联等效电容C 0与L,C一起产生了另外一个谐振频率并联谐振频率f a 对于压电陶瓷换能器并联谐振频率通常比串连谐振频率高几KHz f a 可用下面的等式表示在这个并联谐振频率里换能器的阻抗达到最大值在这个频率附近换能器可以等效为一个效率最高的接收器值得注意的是总体并联等效电容包括整个系统中的传输电缆连接器回波检测电路以及发射电路的等效电容所以常常需要尝试改变并联谐振频率同样值得注意的是总体并联等效电容相当于一个交流负载不但减小接收信号的振幅而且需要发射电路提供更大的电流这个总体并联电容产生的影响在给定的频率范围内可以通过选取一个合适的串连电感或者并联电感来降低外部等效并联电容对换能器的串连谐振频率没有影响3 品质因数换能器的品质因数Q是一个衡量换能器储存能量特性与耗散能量特性之间的关系的量Q用谐振时储存在换能器里的能量来表示Q还可以用以下等式来描述Q还可以用换能器在谐振频率附近的频率响应来描述其中f是换能器的-3dB带宽中心频率f r 就是串连谐振频率从等式可看出换能器在固定的串连谐振频率下Q值越大其带宽就越小4 换能器两端的等效阻抗 通常需要得到在特定频率下换能器两段呈现的特性为了这个目的我们的等效电路可以更进一步简化在一个特定频率下除了谐振频率C和L之中会有一个起到主要作用因而换能器两端将呈现出容性或者感性这两种情况可以用下图表示其中Rs串连等效电阻Xs串连等效电抗注意Rs和Xs是跟频率密切相关的串连模型不便于计算调谐匹配电路因而我们通常把串联等效电路Figure3和Figure4转换为等同的并联等效电路Figure5和Figure6Rp和Xp的值由Rs和Xs经过下面的公式转换得到跟Rs和Xs一样Rp和Xp的值跟频率密切相关假设Xp是容性那么相应的并联等效电容的值是即使Xp是感性上面的等式依然适用只是此时计算出来的Cp是负值换能器的频率特性可以用以下单位来方便地描述阻抗值和阻抗角|Z|和不管是串连等效电阻和串连等效感抗Rs jXs并联等效电阻和并联等效容抗Rc jXc还是导纳和电纳G jB5测定换能器谐振电阻以下的步骤可以测量出换能器在谐振时的大致等效电阻R谐振时R Rs Rp尽管不是十分完美在实际应用中通过这个测量步骤可以获得足够高精度的结果注意以下事项a在这个测量中换能器工作在不平衡状态一端接地b如果在给定频率下换能器两端的电压幅值不足够高那么测量得到的结果更接近于|Z|而不是R当然了测量到的结果不包含相位特性感性或容性所需设备a正弦信号发生器b可变电阻或者50到5000欧姆的固定电阻c示波器d欧姆表测量步骤1按照Figure7连接好电路将电阻大约设置为1000欧姆如果是水声应用还需要把换能器浸入水中2调整正弦信号发生器的输出频率直到从示波器上看到的波形的幅值达到最小谐振时换能器等效阻抗达到最小值此时的频率就是谐振频率并且应该落在换能器的标称工作频率附近的几KHz范围内3断开换能器的一端并且把可调电阻调节为0欧姆测量开路时的信号电压4重新连接好换能器调节可调电阻直到测量到的信号电压变为开路时的信号电压的一半为止5小心取下可变电阻用欧姆表测量它的电阻6换能器在选定频率下的等效电阻就是可变电阻的阻值加上正弦信号发生器的输出电阻即内阻6压电陶瓷换能器的匹配设计在本章里将简单介绍压电陶瓷换能器与电源的大致匹配设计最佳的匹配将实现最大的发射功率并且得到最强的回波在普通应用环境里给一个换能器例如一个水深探测器馈送能量是相当简单的事情当然了如果懂得基本原理只要稍微作一些改动就可以使其适应特别的环境像大部分电抗负载一样压电陶瓷换能器可以呈现为一个串连等效电阻和电容这两个值都和频率有关根据经典转换理论串连电路可以转换为一个完全等效的并联电路如下图所示然而不幸的是转换后的参数同样跟频率密切相关解决这些参数中由频率带来的变数的方法是让其工作在所要求的频率下废话例如在水声接收应用里这个频率就是最佳接收频率在这个准确的频率下压电陶瓷换能器的等效电阻和等效电容可以用测量得到或者直接由换能器的制造厂商提供最简单的匹配方法是用一个合适大小的电感并联在换能器两端使其与换能器的并联等效电容发生谐振从而换能器呈现出的阻抗大小接近于并联电阻Rp如果合成负载的阻抗太高以至于不能直接跟电源匹配则可以把电感换成变压器以实现高阻抗到低阻抗的变换具体实现过程和经典的RF调谐匹配一样首先电感的品质因数Q值必须是合适大小的通常是57如果Q值过低可以增加一个电容C并且减小电感量直到换能器重新变成阻性I负载在这里为了跟电源得到匹配需要增加一组低阻抗的初级线圈初级线圈和次级线圈的匝数比就是初级阻抗和次级阻抗的平方根之比尽管如此提高匝数比是受到限制的对于普通的用铁氧体磁棒和铁氧体外壳缠绕的电感而言匝数比最大大约可以达到221想要达到更大的匝数比则需要换成环形磁芯这是因为环形磁芯的磁耦合系数要比其它现有类型的磁芯大就磁耦合系数而言罐形磁芯的性能介于环形磁芯和棒状磁芯之间在前面关于调谐匹配的讨论中前提都假设电感线圈是无损耗的至少相对于换能器的等效电阻而言是可以忽略不计的要检验这其中是否有问题必须试制计算出来的线圈的样品并通过测量获得它的参数如果拥有一台阻抗分析仪可以在线圈山串连一个经过计算得到的电容然后调整频率使支路的端口电流与端口电压同相位L和C谐振此时阻抗分析仪能直接显示等效电阻值如果没有阻抗分析仪可以用下图所示的方法来测量线圈的分布电阻Rp先调整频率使检测到的相位差为0L和C谐振此时测量到的电压幅值应达到最大值分别将频率调低和调高测量出比最大响应小3dB对应的两个频率值此时其中F L 是较低的频率F H 是较高的频率线圈的等效电阻为线圈的线圈的等效电阻应该被看作并联在换能器等效电阻上如下图所示此时匹配线圈与匹配电容必须根据最新测量到的结果进行重新计算同样地现在有效的输出功率需要重新考虑若线圈的等效电阻与换能器的等效电阻相等则只有一半的能量被换能器发射出去所以应该使线圈的等效电阻相对于换能器的等效电阻而言尽可能大如果线圈已经设计好并且已经安装到电路板上可以通过在线圈上并联一个与换能器并联等效电容大小相同的电容的方法来测量线圈的等效电阻然后改变并联在电感线圈上的负载电阻R L 并计算电源输出功率当工作在换能器的谐振频率时随着R L 的变化应该得到较宽的峰值功率响应如果得不到那么应该调整匝数比或者Q值这种调谐匹配方法的优点是a 所用的器件少成本低b 电缆的阻抗最高因为损耗最小c 如果要延长电缆只需要简单添加一些固定电容器另一个也许值得考虑的方法是利用换能器的串连等效值实现调谐在这个方案里需要在换能器上串连一个电感以抵消换能器串连等效模型中的容抗电感等效电阻将串连在换能器上这个方案的缺点是需要增加另外一个电感因为总串连电阻还是比半导体电源的输出电阻大的多而且负载电流需要流过电感等效电阻使损耗增加效率降低7具体设计例子假设有一个换能器需要工作在最佳接收状态工作频率是196.0KHz并且串连等效Rs和Xs已经测量得到151j239 C3398pF由于谐振时Xc XL 电感的感抗为334.4欧姆计算这个情况下的Q值计算出来的Q值太低所以必须添加电容让我们将带负载下的Q值设为6来计算现在C的数值是所以要添加的电容是C9204-24286776pF为了与晶体管电源匹配经过计算初级线圈阻抗为3.6欧姆匝数比为这个值过小以至于可能需要用到带棒状磁芯的可调线圈如果一个71.6微亨的线圈需要55匝那么初级线圈将需要4.5匝初级线圈应该尽可能紧密地缠绕在次级线圈上以得到最大的耦合系数Use the start of the secondary coil as the high impedance end.8传入换能器的功率如果已知换能器的并联等效电阻则功率可以用下面的等式直接计算E is RMS voltsR is the parallel resistance of t当然了可以通过用示波器观测电压峰峰值的方法测量负载上的电压如果传输信号是正弦波必须除以2.83转换为RMS电压如果在计算里没有用到并联等效电阻那么可能会用到串连等效电阻但是这样做会有一点棘手9 在接收模式下的调谐匹配系统需要考虑的问题 一旦发射电路的调谐匹配工作完成还需要针对接收电路考虑些什么问题呢如果接收部分电路的输入阻抗很高并且有很大的裕量那么就可以直接通过发射调谐匹配电路取得信号如果接收电路输入阻抗裕量不够大甚至过小那么就必须采用另外的方法才能充分发挥出换能器应有的性能来同样需要采取一些措施来防止发射电压对接收电路造成破坏如果变压器的耦合系数较大那么一个较小的Q 值是比较适合的逐步减小添加的电容的容量并增加次级的电感量以维持谐振保持初级电感量不变在极端情况下甚至不用外加电容光靠换能器自身的固有电容就可以实现谐振这样将需要更高的匝数比并且在耦合系数高的情况下还能增加输出电压需要注意的是当Q值小于或等于7时等式X L =X C 将不再成立在这样的条件下只有当有关于低Q值调谐匹配方面的应用笔记出现后才能细心地一步步地根据经验将系统调试成功10 平衡与不平衡 驱动换能器的方法是由回波探测器设计师们发明的不平衡系统往往使得电信号测量更简单和容易一个不平衡的配置需要一个容量更高的电容并联在换能器上平衡系统通常需要在输出变压器上增加第三个绕组以馈送不平衡信号给接收器当屏蔽层的泄漏都相同时平衡传输线的噪声要比不平衡传输线小Airmar 通常用带屏蔽层的双绞线连接压电陶瓷元件换能器的连接根据需要可以选用平衡传输线或者不平衡传输线11注这是为了方便自己计算有选择翻译的意译很不严谨读者最好自己看原文^_^原文出处Airmar 公司 原文标题Ultrasonic Air-Ranging Transducers and Application Notes 购买探头的时候带的。
压电陶瓷及其测量原理近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。
由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。
同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。
(一)压电陶瓷的主要性能及参数(1)压电效应与压电陶瓷在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。
这两种正、逆压电效应统称为压电效应。
晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。
在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。
(2)压电陶瓷的主要参数1、介质损耗介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。
在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。
介质损耗是异相分量与同相分量的比值,如图1 所示,C I为同相分量,R I为异相分量,C I与总电流I 的夹角为 ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。
图 1 交流电路中电压-电流矢量图(有损耗时)2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。
机械品质因数越大,能量的损耗越小。
产生能量损耗的原因在于材料的内部摩擦。
机械品质因数m Q 的定义为:π2的机械能谐振时振子每周所损失能谐振时振子储存的机械⨯=m Q机械品质因数可根据等效电路计算而得 11111R L C R Q s s m ωω==式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。