水热合成法修改雷鸣
- 格式:ppt
- 大小:1.42 MB
- 文档页数:15
㊀第47卷第8期㊀㊀㊀㊀㊀㊀㊀㊀㊀人㊀工㊀晶㊀体㊀学㊀报㊀㊀㊀㊀㊀㊀㊀Vol.47㊀No.8㊀2018年8月㊀㊀㊀㊀㊀㊀㊀㊀JOURNALOFSYNTHETICCRYSTALS㊀㊀㊀㊀㊀㊀㊀Augustꎬ2018水热法合成NaYF4ʒYb3+ ̄Er3+及其上转换发光性质王㊀伟ꎬ朱红波(克拉玛依职业技术学院ꎬ克拉玛依㊀833699)摘要:采用水热法合成了不同浓度Yb3+和Er3+共掺NaYF4上转换发光材料ꎮ利用X ̄射线粉末衍射技术鉴定了物相的纯度ꎬ结果表明ꎬ样品的XRD与NaYF4(JCPDS28 ̄1192)标准卡片一致ꎬ均为纯相ꎬ结晶度高ꎮ在扫描电镜的辅助下ꎬ对样品的形貌进行了表征分析ꎬ其微观形貌呈六方棱柱状ꎬ柱长7μm左右ꎬ直径3μm左右ꎬ且尺寸分布均匀ꎮ在此基础上ꎬ利用荧光分光光度计(激发光源为980nm激光器)对样品的发光性能进行了测试ꎬ在980nm激光器的激发下ꎬ得到了发射峰位分别位于525nm㊁550nm㊁660nm组成的上转换光谱ꎬ可指认为Er3+的2H11/2ꎬ4S3/2ң4I15/2(绿光)和4F9/2ң4I15/2(红光)跃迁ꎮ进一步讨论了样品发光强度和泵浦源功率之间的关系ꎬ发现绿光和红光发射均为双光子过程ꎮ关键词:NaYF4ꎻYb3+ ̄Er3+共掺ꎻ上转换ꎻ双光子中图分类号:TB321㊀㊀文献标识码:A㊀㊀文章编号:1000 ̄985X(2018)08 ̄1742 ̄05㊀㊀作者简介:王㊀伟(1984 ̄)ꎬ女ꎬ安徽省人ꎬ硕士ꎬ讲师ꎮHydrothermalSynthesisofNaYF4ʒYb3+ ̄Er3+andItsUp ̄conversionLuminescencePropertiesWANGWeiꎬZHUHong ̄bo(KaramayVocationalandTechnicalCollegeꎬKaramay833699ꎬChina)Abstract:DifferentconcentrationsofYb3+/Er3+co ̄dopedNaYF4samplesweresynthesizedbyhydrothermalmethod.ThecrystalstructureofsampleswascharacterizedbyX ̄raypowderdiffractionꎬtheresultsofanalysisindicatedthatallofthemareconsistentwiththestandardcardofNaYF4(JCPDS28 ̄1192)ꎬwhichmeansthatthesamplesarepurephasewithhighdegreeofcrystallization.Thesurfacemorphologyofsampleswasstudiedbyscanningelectronmicroscopyꎬwhichpresenthexagonalprismwiththelength(7μm)andthewidth(3μm)ꎬandthesizeisuniformlydistributed.Basedontheseꎬup ̄conversionluminescencepropertiesofsampleswascharacterizedbyHitachiF ̄4600fluorescencespectrometerwith980nmlasersourceꎬtheup ̄conversionspectrumofthesamplesiscomposedof525nmꎬ550nmand660nmemissionpeaksꎬwhichoriginatedfrom2H11/2ꎬ4S3/2ң4I15/2(greenemission)and4F9/2ң4I15/2(redemission)transitionofEr3+.Meanwhileꎬtherelationshipofluminescenceintensityandtheexcitationlightpowerwasdiscussedandindicatedthatbothofthemaretwo ̄photonprocess.Keywords:NaYF4ꎻYb3+ ̄Er3+co ̄dopedꎻup ̄conversionꎻtwo ̄photon1㊀引㊀㊀言常见的发光现象都是吸收高能量光子发射低能量光子ꎬ即发光材料吸收高能量的短波辐射ꎬ发射低能量第8期王㊀伟等:水热法合成NaYF4ʒYb3+ ̄Er3+及其上转换发光性质1743㊀的长波辐射ꎬ服从Stokes规则ꎬ这类发光现象称为下转换发光ꎮ上转换发光是一种反Stokes现象ꎬ它与下转换发光是完全相反的过程ꎬ即通过多光子机制将能量低的长波辐射转变为能量高的短波辐射[1]ꎮ众所周知ꎬ下转换发光材料能够充分利用辐射源中短波段的光[2 ̄4]ꎬ但是对于辐射源中长波段的光利用率较低ꎮ而上转化发光材料能够弥补下转换发光材料在这方面的缺陷ꎬ从而能够达到提高材料的转换效率的目的ꎬ因此上转换发光材料的研究受到人们的广泛关注ꎮ上转换发光材料可将长波段的红外光转化为短波段的可见光ꎬ其在生物成像㊁太阳能电池㊁食品检测㊁夜光纺织品[5 ̄8]等领域具有潜在的应用优势ꎮ目前制备的上转换发光材料都存在发光效率较低的缺点ꎬ为此寻找高效㊁稳定的上转换发光材料ꎬ可通过寻找新材料基质或进行稀土离子调控等[9]方法来实现ꎮ稀土离子具有丰富的电子能级ꎬ其可产生多种辐射吸收和荧光光谱信息ꎬ其中Er3+的能级特点ꎬ使其不仅能够较强地吸收红外区域一定波长的光ꎬ而且绿光辐射猝灭浓度较高ꎮ因此ꎬEr3+可以作为重要的激活剂ꎬ实现材料的上转换发光ꎮYb3+能级与泵浦源波长匹配性较高㊁激发态寿命长ꎬ其作为敏化剂可与Er3+很好配合ꎬ提高Er3+上转换效率[10 ̄12]ꎮ卤化物基质NaYF4具有声子能量低㊁折射指数高㊁掺杂稀土离子的浓度较大㊁光学均匀性较高[13 ̄14]等优点ꎬ被用来作为上转换发光材料的基质[15]ꎮ本研究利用水热法制备了NaYF4ʒYb3+ ̄Er3+上转换发光材料ꎬ根据前期实验结果ꎬ确定了Yb3+和Er3+掺杂浓度分别为0.180Yb3+ ̄0.020Er3+㊁0.200Yb3+ ̄0.025Er3+ꎬ从结构㊁形貌及发光性能的角度对所制备样品进行了定性及定量分析ꎮ2㊀实㊀㊀验按照原料配比NaFʒRE=4ʒ1ꎬNaFʒNH4F=1ʒ1称量ꎬ将稀土氧化物Y2O3㊁Yb2O3㊁Er2O3溶于浓HNO3中ꎬ配成一定浓度的稀土硝酸盐溶液ꎬ按化学计量比称取NaF和NH4Fꎬ溶解于去离子水中ꎬ缓慢加入上述稀土硝酸盐溶液ꎬ搅拌30min使之混合均匀ꎮ将混合液转入高压反应釜中ꎬ混合液占容器容积的80%左右ꎬ密封后置于220ħ烘箱保温36hꎮ反应结束后ꎬ自然冷却至室温ꎮ产物经离心㊁洗涤㊁干燥ꎬ制得NaYF4ʒYb3+ ̄Er3+粉末ꎮ采用日本理学株式会社生产的RigakuD/Max ̄3C型X ̄射线粉末衍射仪对样品进行物相分析ꎮ测试条件为:CuKα辐射(λ=1.54056Å)ꎬ电压为40kVꎬ电流为30mAꎬ扫描速度为8ʎ/minꎬ步长为0.02ʎꎮ采用荷兰FEI公司生产的FEIQuanta200型扫描电子显微镜观察样品的形貌以及微观结构ꎮ采用日本日立公司生产的HitachiF ̄4600荧光分光光度计对样品的上转换光谱进行测试ꎮ测试条件为:激发光源为980nm激光器ꎬ波长范围为450~700nmꎬ扫描速度为240nm/sꎮ图1㊀沿[001]方向NaYF4的晶体结构示意图Fig.1㊀CrystalstructureofNaYF4inthedirectionof[001]图2㊀NaYF4ʒYb3+ ̄Er3+的XRD图谱Fig.2㊀XRDpatternsofthesamplesNaYF4ʒYb3+ ̄Er3+3㊀结果与讨论六方相NaYF4晶体相对于其立方相结构对称性低ꎬNaYF4晶体生长过程为各向异性ꎬ以热力学稳定相存1744㊀人工晶体学报㊀㊀㊀㊀㊀㊀第47卷在ꎮ如图1所示ꎬ沿c轴ꎬ可以看到在NaYF4的晶体结构中ꎬF-有序排列ꎬ能够提供两种对称性较低的阳离子格位ꎬ一种是被1/2Na+和1/2Y3+占据ꎬ另外一种被Na+单独占据ꎬ导致多面体扭曲ꎬ从而使得结构保持稳定ꎮ在镧系元素中ꎬ离子半径较大的轻镧系元素表现出更高的电子云扭曲趋势ꎬ离子半径越大ꎬ越容易形成六方相晶体结构ꎮ因此ꎬNaYF4倾向于形成六方相晶体结构ꎮ通过文献调查[16]ꎬ发现相对于立方相ꎬ六方相NaYF4有助于提高材料的上转换效率ꎮ影响材料发光效率的因素除了与晶体的物相有关ꎬ还和材料物相的纯度有关ꎮ一般来说ꎬ样品中杂质含量较高ꎬ会引起激活剂Er3+的无辐射交叉驰豫现象ꎬ造成样品的上转换发光强度降低ꎮ为此ꎬ利用X ̄射线粉末衍射仪对所制备样品的物相进行了分析ꎮ图2为样品NaYF4ʒYb3+ ̄Er3+的X ̄射线衍射谱图ꎬ由图可见ꎬ样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+和NaYF4ʒ0.200Yb3+ ̄0.025Er3+的衍射数据均与六方相NaYF4标准卡片(JCPDS28 ̄1192)一致ꎬ表明所得样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+和NaYF4ʒ0.200Yb3+ ̄0.025Er3+物相均为纯相ꎬ其空间群为P ̄3ꎬ晶胞参数a=b=0.596nmꎬc=0.351nmꎬα=β=90ʎꎬγ=120ʎꎮ由于Yb3+(0.87Å)与Y3+(0.90Å)的离子半径相近ꎬ在其它合成条件不变的情况下ꎬYb3+掺杂倾向于占据基质中Y3+晶格位置ꎬ并不会改变基质NaYF4的晶相ꎮ图3㊀NaYF4ʒYb3+ ̄Er3+的扫描电镜图(a)NaYF4ʒ0.180Yb3+ ̄0.020Er3+ꎻ(b)NaYF4ʒ0.200Yb3+ ̄0.025Er3+Fig.3㊀SEMimagesofthesamples(a)NaYF4ʒ0.180Yb3+ ̄0.020Er3+ꎻ(b)NaYF4ʒ0.200Yb3+ ̄0.025Er3+近期ꎬ赁敦敏团队[17]研究了反应介质乙醇和水的比例ꎬ以及不同醇类介质对NaYF4ʒYb3+ ̄Er3+体系晶相和上转换发光强度的影响ꎬ进一步证实了发光材料的上转换发光效率受材料的晶体类型和晶体形貌的影响ꎮ晶体结晶形貌越完整ꎬ晶胞生长越完整ꎬ无辐射弛豫现象出现的几率就越低ꎬ同时也可以减少其能量的损耗ꎬ从而提高发光材料上转换效率ꎮ利用扫描电子显微镜表征了所制备NaYF4ʒYb3+ ̄Er3+样品的形貌特征ꎬ其结果如图3所示ꎮ由图可见ꎬ水热法合成的样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+和NaYF4ʒ0.200Yb3+ ̄0.025Er3+形貌相似ꎬ均呈长7μm左右ꎬ直径3μm左右的六方棱柱状ꎬ且尺寸分布均匀ꎮ样品的直径不均匀可能是由于纳米粒在自组装形成六方棱柱的过程中沉积不均匀而造成的ꎮ分析结果表明ꎬ所制备样品的形貌完整ꎬ晶体为微米级尺寸ꎬ样品的制备条件一致时ꎬ微量调节稀土离子的掺杂浓度对样品的形貌没有直接影响ꎮ图4㊀(a)NaYF4ʒYb3+ ̄Er3+的上转换光谱图ꎻ(b)NaYF4ʒYb3+ ̄Er3+的色坐标图Fig.4㊀(a)Up ̄conversionspectraofNaYF4ʒYb3+ ̄Er3+ꎻ(b)CIEdiagramofNaYF4ʒYb3+ ̄Er3+在980nm波长激光泵浦源激发下ꎬ样品NaYF4ʒYb3+ ̄Er3+的上转换光谱如图4(a)所示ꎮ由图可见ꎬ样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+和NaYF4ʒ0.200Yb3+ ̄0.025Er3+的上转换光谱由位于525nm和550nm处第8期王㊀伟等:水热法合成NaYF4ʒYb3+ ̄Er3+及其上转换发光性质1745㊀的绿光发射和位于660nm处的红光发射组成ꎬ分别对应于Er3+的2H11/2ꎬ4S3/2ң4I15/2和4F9/2ң4I15/2跃迁ꎮ样品NaYF4ʒ0.200Yb3+ ̄0.025Er3+的绿光辐射略高于样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+的绿光辐射ꎬ而两者的红光辐射强度相近ꎬ这是由于掺杂稀土离子Yb3+与Er3+浓度不同而引起的ꎮ图4(b)是对应样品光谱的色坐标图ꎮ由图可见ꎬ样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+和NaYF4ʒ0.200Yb3+ ̄0.025Er3+的色坐标均位于绿光区内ꎮ图5㊀Yb3+和Er3+的能级图及上转换发光过程Fig.5㊀EnergyleveldiagramsofYb3+andEr3+inNaYF4andtheluminescenceprocess所制备样品NaYF4ʒYb3+ ̄Er3+的发光过程可能是交叉驰豫和能量传递机制ꎮ如图5所示ꎬ样品NaYF4ʒYb3+ ̄Er3+在980nm泵浦源的激发下ꎬ掺杂在NaYF4晶格中的Yb3+吸收980nm红外光光子能量ꎬ从基态的2F7/2能级跃迁至激发态的2F5/2能级ꎬ产生2F7/2ң2F5/2跃迁ꎮ处于激发态的Yb3+能量高且不稳定ꎬ会释放能量从激发态2F5/2能级返回基态2F7/2能级ꎮ因为Yb3+和Er3+能级差匹配较好ꎬYb3+跃迁回基态能级时所释放的能量通过能量传递机制被邻近的Er3+所吸收ꎬ吸收了能量的Er3+从基态的4I15/2能级跃迁至中间态的4I11/2能级ꎮ由于Er3+的中间态能级4I11/2寿命时间较长ꎬ从而使处于4I11/2能级上的Er3+能够继续吸收一个处于激发态的Yb3+传递的能量ꎬ进一步受激跃迁到4F7/2(Er3+)更高激发态能级ꎬ产生4I11/2ң4F7/2(Er3+)跃迁ꎮ处于4F7/2能级的Er3+不稳定ꎬ无辐射弛豫到2H11/2和4S3/2能级ꎬ进而分别向基态4I15/2跃迁发射出波长依次为525nm(2H11/2ң4I15/2)和550nm(4S3/2ң4I15/2)的绿光ꎮ处于4S3/2能级上的一部分Er3+进一步无辐射弛豫到4F9/2能级ꎬEr3+再通过辐射跃迁的方式从4F9/2能级返回基态4I15/2而发射660nm(4F9/2ң4I15/2)的红色上转换发光ꎮ显然ꎬ无论是绿色上转换发光还是红色上转换发光ꎬ其发射过程均属于双光子过程ꎮ图6㊀NaYF4ʒYb3+ ̄Er3+上转换红绿光强度随泵浦源功率变化曲线(a)NaYF4ʒ0.180Yb3+ ̄0.020Er3+ꎻ(b)NaYF4ʒ0.200Yb3+ ̄0.025Er3+Fig.6㊀Dependenceofup ̄conversionemissionintensityof(a)NaYF4ʒ0.180Yb3+ ̄0.020Er3+ꎻ(b)NaYF4ʒ0.200Yb3+ ̄0.025Er3+onpumplaserpower为了进一步验证样品的上转换发光为双光子过程ꎬ研究了样品NaYF4ʒYb3+ ̄Er3+发光强度与泵浦源功率之间的关系[18]ꎮ图6是样品NaYF4ʒYb3+ ̄Er3+的上转换红绿光强度随泵浦源功率变化曲线ꎬ拟合n值分别为:样品NaYF4ʒ0.180Yb3+ ̄0.020Er3+的绿光n=1.85㊁红光n=1.74ꎻNaYF4ʒ0.200Yb3+ ̄0.025Er3+的绿光n=1.88㊁红光n=1.72ꎮ两种样品绿光和红光n值均近似等于2ꎬ进一步证实了样品的绿光和红光上转换发射均为双光子过程ꎮ1746㊀人工晶体学报㊀㊀㊀㊀㊀㊀第47卷4㊀结㊀㊀论采用水热法合成了NaYF4ʒYb3+ ̄Er3+上转换发光材料ꎬ利用X ̄射线粉末衍射仪和扫描电镜分别表征了样品的结构特点和形貌信息ꎬ样品晶体结构均为六方相ꎬ其形貌为分布均匀的六方棱柱状ꎻ研究了样品的上转换发光性能ꎬ简要分析了样品在980nm波长激光泵浦源下的上转换发光过程ꎬ进一步讨论了样品发光强度和泵浦源功率之间的关系ꎮ分析结果表明ꎬ合成样品具有较优异的发光性能ꎬ在生产领域具有潜在的应用前景ꎮ参㊀考㊀文㊀献[1]郭㊀聪ꎬ张海明ꎬ张晶晶ꎬ等.纳米Ag颗粒掺杂方式对NaYF4ʒYb3+/Er3+上转换发光材料发光性能的影响[J].人工晶体学报ꎬ2016ꎬ45(2):460 ̄464.[2]LiuYFꎬLiuPꎬWangLꎬetal.ATwo ̄stepSolid ̄stateReactiontoSynthesizetheYellowPersistentGd3Al2Ga3O12ʒCe(3+)PhosphorwithanEnhancedOpticalPerformanceforAC ̄LEDs.[J].ChemicalCommunicationsꎬ2017ꎬ53(53):10636 ̄10639.[3]LiuYꎬSilverJꎬXieRJꎬetal.AnExcellentCyan ̄emittingOrthosilicatePhosphorforNUV ̄pumpedWhiteLEDApplication[J].JournalofMaterialsChemistryCꎬ2017ꎬ5(2):12365 ̄12377.[4]LiuYꎬZhangJꎬZhangCꎬetal.Ba9Lu2Si6O24ʒCe3+:AnEfficientGreenPhosphorwithHighThermalandRadiationStabilityforSolid ̄StateLighting[J].AdvancedOpticalMaterialsꎬ2015ꎬ3(8):1096 ̄1101.[5]华修德ꎬ尤红杰ꎬ杨家川ꎬ等.基于上转换荧光标记的氯噻啉免疫层析方法研究[J].分析化学ꎬ2018ꎬ46(3):413 ̄421.[6]王㊀松ꎬ程晓红ꎬ梁桂杰ꎬ等.稀土上转换发光纳米晶的发光调控及传感应用[J].稀土ꎬ2017ꎬ38(1):114 ̄125.[7]李㊀岳ꎬ翟海青ꎬ杨魁胜ꎬ等.水热法合成纳米晶NaYF4ʒEr3+ꎬTm3+ꎬYb3+的上转换发光特性[J].发光学报ꎬ2009ꎬ2(30):239 ̄242. [8]王㊀敏ꎬ王武斌ꎬ吴㊀靓ꎬ等.上转换纳米材料及其在提高太阳能电池光电效率中的应用[J].材料导报ꎬ2015ꎬ29(15):142 ̄148. [9]贺㊀飞ꎬ盖世丽ꎬ杨飘萍ꎬ等.稀土上转换荧光材料的发光性质调变及其应用[J].发光学报ꎬ2018(1):92 ̄106.[10]韩㊀勖ꎬ刘佳铭ꎬ朱永昌.Er掺杂氟碲酸盐玻璃的制备和上转换发光性能的研究[J].硅酸盐通报ꎬ2017(s1):50 ̄57.[11]付㊀姚ꎬ史㊀月ꎬ王朝阳ꎬ等.YVO4ʒYb3+ꎬEr3+纳米粒子颜色可控的高色纯度上转换发光[J].发光学报ꎬ2017ꎬ38(1):7 ̄12.[12]刘㊀凡ꎬ王旭日ꎬ张㊀静ꎬ等.Gd2O2SʒYb3+ꎬEr3+纳米粉体的水热 ̄还原法制备及其上转换发光性能研究[J].人工晶体学报ꎬ2017ꎬ46(2):285 ̄290.[13]赵西宝ꎬ单㊀妍ꎬ于薛刚ꎬ等.空心结构NaYF4ʒYbꎬEr上转换材料的制备[J].人工晶体学报ꎬ2015ꎬ44(3):666 ̄671.[14]叶㊀帅ꎬ梁宏达ꎬ王广盛ꎬ等.NaMn3F10ʒYb/(ErꎬTmꎬHo)纳米颗粒的制备及光谱研究[J].人工晶体学报ꎬ2017ꎬ46(1):69 ̄73. [15]徐森元ꎬ郑㊀标ꎬ林㊀林ꎬ等.银纳米立方颗粒表面等离子激元增强β ̄NaYF4ʒEr3+ꎬYb3+上转换的研究[J].人工晶体学报ꎬ2016ꎬ45(3):649 ̄654.[16]SchäferHꎬPtacekPꎬKarstenKömpeAꎬetal.Lanthanide ̄DopedNaYF4NanocrystalsinAqueousSolutionDisplayingStrongUp ̄ConversionEmission[J].ChemistryofMaterialsꎬ2010ꎬ19(6):1396 ̄1400.[17]HeLHꎬZouXꎬHeXꎬetal.ReducingGrainSizeandEnhancingLuminescenceofNaYF4ʒYb3+ꎬEr3+Up ̄conversionMaterials[J].CrystalGrowth&Designꎬ2018ꎬ18:808 ̄817.[18]李丽平ꎬ高㊀玮ꎬ陈雪梅ꎬ等.NaYF4ʒYbꎬEr材料的制备及其上转换发光性能[J].稀土ꎬ2012ꎬ33(2):35 ̄39.。
第31卷第2期人 工 晶 体 学 报Vol.31 No.2 2002年4月JOURNAL OF SYNTHETIC C RYSTALS April,2002水热法合成 Al2O3晶体韦志仁,董国义,李志强,张华伟,王立明,佟鑫刚(河北大学物理科学与技术学院,保定071002)摘要:本文研究了不同矿化剂,不同温度对水热条件下合成 Al2O3晶体的大小、形貌和晶体质量的影响。
发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35%,温度为380 时Al(OH)3只转化成薄水铝石,无 Al2O3晶体生成;388 时只是部分转化成 Al2O3;在395 以上时完全能转化成 Al2O3,晶体形状为六棱柱形。
在矿化剂浓度为1M KOH时,填充度35%,温度为380 时,即有部分Al(OH)3转化成 Al2O3,390 以上完全转化成 Al2O3,晶面主要显露菱面。
关键词:水热合成法;刚玉;晶体;矿化剂中图分类号:O782.2 文献标识码:A 文章编号:1000 985X(2002)02 0090 04Hydrothermal Synthesis of Al2O3CrystalWE I Zhi ren,DO NG Guo yi,LI Zhi qiang,Z HANG Hua wei,WANG Li ming,TONG Xin gang(College of Physics Science&Technol ogy,Hebei Univers ity,Baoding071002,Chi na)(Rece ived24Dece mbe r2001)Abstract:This paper is to study the effects of different mineralizer,temperature on the size,shape and quality of Al2O3crystal.It is found that when0.1M KOH and1M KBr are used as mineralizer at380 and the fill factor is approximately35%,Al(OH)3is not transformed into Al2O3but boehmite.Whereas under the same conditions at388 ,some of Al(OH)3is transfor med into Al2O3.W hen the temperature is above395 ,the synthesized crystal is entirely Al2O3whose shape is hexagonal prism.When only1M KOH is used as mineralizer and the fill factor is approximately35%at380 ,some of Al(OH)3is transformed into Al2O3.When the temperature is above395 ,all Al(OH)3is transformed into Al2O3whose shape is diamond.Key words:hydrothermal synthesis;c orundum;crystal;mineralizer1 引 言刚玉即 Al2O3是一种熔点很高的(2040 )氧化物晶体,有非常优良的物理化学性能,如仅次于金刚石的硬度,小摩擦系数,低电导率,高导热性。
纳米材料的水热法合成与表征1 水热法合成水热法合成指的是将原料(水溶液)在高温的高压条件下,应用水热法(沸石+水)的反应条件而进行的反应,来合成出特定的纳米材料。
用简单的话来说就是,一种特定的物质通过水热法反应来生成其他物质的过程。
水热法合成的优点是可在一定的温度和压力条件下,在接近热平衡状态下合成出各种纳米材料,而且这些水热材料的粒径可以很容易地微调,同时可以更好的控制形貌和结构。
2 纳米材料的水热法合成水热法合成是利用热量、压力和物质的特殊性质,将不同的原料在特定的条件下反应在一起而产生新的物质的过程。
在这种过程中,除了需要拥有足够的热量和压力之外,还需要拥有一定数量的原料,这些原料在水热条件下反应出特定的纳米材料。
常用的原料有有机化合物、无机化合物以及金属离子等。
一般来说,水热法合成纳米材料的过程可以分为几个步骤:(1)将原料混合在一起,构成需要合成的物质;(2)在特定的温度和压力条件下,将原料放入反应容器中,并给予有效的加热和加压;(3)将反应液中的物质性质控制在一定的范围内,以保持反应的均衡性;(4)随着反应的进行,纳米材料随时间的推移稳定下来,并形成所需要的纳米结构;(5)反应完成后,清洗干净反应液,装置简单的过滤即可得到预期的纳米产品。
3 纳米材料的水热法表征纳米材料的水热法表征指的是在合成出纳米材料之后,通过对其形貌、结构、化学性质等性质进行表征的过程。
(1)形貌表征形貌表征是通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行的表征,以确定其表面形貌、尺寸、粒径和结构等特性。
(2)结构表征结构表征是指根据样品的衍射图,通过 X 射线衍射(XRD)和热重法(TG)等方法,来确定样品的结构信息,包括粒径、结构尺寸、结构参数等等。
(3)化学性质表征化学性质表征指的是通过样品的化学分析、X 射线光电子能谱(XPS)、红外漫反射(IR)等技术,来确定样品的化学组成、表面活性位点、外层官能团等等。
水热法合成cawo4荧光体的研究近年来,CAWO4荧光体引起了科研工作者的广泛关注,并且在生物和环境分析领域有重要的应用价值。
因此,研究CAWO4荧光体的合成方法及其机理具有重要意义。
在该项研究中,我们研究了水热法合成CAWO4荧光体的方法。
首先,合成采用的原料包括氧化钴(II)、碳酸铜(II)和氧化锆(IV),经过配比,以薄膜法向上述原料中加入溶液,然后反应三小时,降温至60℃,继续反应15小时,然后将反应液中的晶体收集,并通过粉末X射线衍射(XRD)和荧光光谱分析(FS)等手段确定其结构。
结果表明,水热法可有效地合成CAWO4荧光体。
XRD结果表明,所得到的晶体主要为优质的巩固相,即常见的铵型结构,空间群为Pbca结构,结构参数为a = 5.3591(7)、b = 5.4520(7)、c =12.5375(16)。
荧光分析表明,该晶体在波长为430 nm时发射出最大荧光强度。
本研究为合成CAWO4荧光体提供了新的合成方法,为相关研究和实际应用提供了参考。
同时,我们进一步研究了该系统的发光机理,以更好地理解晶体的发光性质。
未来,可以通过改变工艺条件和原料,调节晶体性能,为更多领域的应用提供新的材料。
鉴于水热法可以实现低成本、大规模合成,CAWO4荧光体具有良好的发光性和热稳定性,水热法合成CAWO4荧光体将会被大量应用于生物和环境分析,以及其他技术和生产领域。
本研究为合成、应用及开发CAWO4荧光体提供了重要的理论依据,也为更多实验研究开辟了通路。
总之,本文通过水热法合成CAWO4荧光体的研究,有助于开拓新领域,为耐受高温和强有机污染的环境中的相关研究及实际应用提供原料。
以上就是以《水热法合成CAWO4荧光体的研究》为标题,写出的3000字中文文章。
该文章主要讨论了水热法合成CAWO4荧光体的方法及其机理,以及其研究的意义和未来的应用前景。
水热合成反应釜是在一定温度、压力条件下采用水溶液作为反应体系,利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制溶液的温度差使产生对流以形成过饱和状态而析出生长晶体。
可用于纳米材料的制备、化合物合成、晶体生长等方面,也可以用于小剂量的合成反应,是高校极常用的小型反应釜。
水热合成法生长晶体,是19世纪中叶地质学家模拟自然界成矿作用而开始研究的,地质学家Murchison 首次使用“水热”一词,1905年水热合成法开始转向功能材料的研究。
自l9世纪7O年代兴起水热合成法制备超细粉体后很快受到世界许多国家的重视讶。
水热合成法(Hydrotherma1),属液相化学的范畴,是指在特制的密闭反应器(水热合成反应釜)中,采用水溶液作为反应体系,通过对反应体系加热,加压(或自生蒸气压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解并且重结晶而进行无机合成与材料处理的一种有效方法。
在常温常压下一些从热力学分析看可以进行的反应,往往因反应速度极慢,以至于在实际上没有价值,但在水热条件下却可能使反应得以实现。
这主要因为在水热条件下,水的物理化学性质(与常温常压下的水相比)将发生下列变化:①蒸汽压变高;②粘度和表面张力变低;③介电常数变低;④离子积变高;⑤密度变低;⑥热扩散系数变高等。
在水热反应中,水既可作为一种化学组分起作用并参与反应,又可是溶剂和膨化促进剂,同时又是压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。
水热合成法既可制备单组分微小单晶体,又可制备双组分或多组分的特殊化合物粉末,克服某些高温制备不可克服的晶形转变、分解、挥发等。
并且用水热合成法制备出的纳米晶,晶粒发育完整、粒度分布均匀、颗粒之间少团聚,原料较便宜,可以得到理想的化学计量组成材料,颗粒度可以控制,生成成本低。
水热合成法在合成配合物方面具有如下优势:①明显降低反应温度(100℃一250℃);②能够以单一步骤完成产物的合成与晶化(不需要高温热处理)、流程简单;③能够很好地控制产物的理想配比;④制备单一相材料;⑤可以使用便宜的原材料,成本相对较低;⑥容易得到好取向,更完整的晶体;⑦在成长的晶体中,比其他方法能更均匀地进行掺杂;⑧能调节晶体生长的环境。