固体材料表面与界面电子过程
- 格式:ppt
- 大小:8.55 MB
- 文档页数:15
第四章表面与界面1.表面与界面的意义表面的质点由于受力不均衡而处于较高的能阶。
这就使物体表面呈现一系列特殊的性质。
高分散度物系比低分散度物系能量高得多,必然使物系由于分散度的变化而使两者在物理性能(如熔点、沸点、蒸气压、溶解度、吸附、润湿和烧结等)和化学性质(化学活性、催化、固相反应)方面有很大的差别。
随着材料科学的发展,固体表面的结构和性能日益受到科学界的重视。
随着近年来表面微区分析、超高真空技术以及低能电子衍射等研究手段的发展,使固体表面的组态、构型、能量和特性等方面的研究逐渐发展和深入,并逐渐形成一门独立学科——表面化学和表面物理。
表面与界面的结构、性质,在无机非金属固体材料领域中,起着非常重要的作用。
例如固相反应、烧结、晶体生长、玻璃的强化、陶瓷的显微结构、复合材料都与它密切相关。
2.固体的表面表面——一个相和它本身蒸汽(或真空)接触面~;界面——一个与另一个相(结构不同)接触的分界面~;固体表面力——固体表面质点排列的周期重复性中断质点的对称性破坏,表现出剩余的键力~。
2.1表面力场1.长程力:作用范围较范德华力大得多,两相分子间的分子引力,实质是范德华力。
2.范德华力:A-静电力(极性分子之间);B诱导力(极性与非极性分子);C色散力(非极性分子之间)2.2晶体表面结构2.2.1晶体表面的微观排列状态(维尔威结构学说)A.松弛过程:如图(图4-1)表面层负电子外侧不饱和,电子云将被拉向内侧正离子一方,极化变形,通过电子云极化变形来降低表面能过程~(瞬间完成改变表面层键性)B.重排过程:晶格必须稳定,作用力大,极化率小的正离子应处于稳定位置,正离子向内负离子排斥向外——重排。
C.离子键逐渐过渡为共价键,表面为一层负离子所屏蔽——表面双电层。
D.表面等负性:易吸附正离子E.双电层厚度由极化程度来决定,并影响表面能和硬度(极化变形大——表面能小——硬度小)2.2.2晶体表面的几何结构2.2.2.1洁净晶体的表面结构图4-2是一个具有面心立方结构的晶体的表面结构,详细描述了(100)、(110)、(111)三个低指数面上原子的分布。
无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。
这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。
我们来看看固体表面的物理化学。
固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。
这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。
例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。
界面在无机材料中同样扮演着重要的角色。
在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。
这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。
例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。
我们还研究了固体表面和界面在光电、催化、储能等领域的应用。
这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。
例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。
无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。
通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。
在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。
无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。
然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。
为了解决这些问题,表面修饰改性成为了一种有效的手段。
通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。
第二章表面与界面电子过程第二章表面与界面的电子过程第二章表面与界面的电子过程第二章表面与界面的电子过程第一节晶体电子的表面势第一节第一节晶体电子的表面势1.2V对总表面势的贡献)表面区域势垒示意图。
,平均体势能约在价带底上体内平均势能与真空电子能级的差约14.8eV,可间的差(9.6eV)可看成为价电)第二节表面态第二节第二节表面态2.1表面态的产生原因和特征第二节表面态●波矢的可取之值要满足一定的边界条件,所以是值对称而单调地变化,在布里渊区的边界能量发生区第二节表面态(2)表面电子态第二节表面态(3)金属、氧化物、半导体表面态的特点第二节表面态(2)本征表面态与外诱表面态第二节表面态(3)本征表面态的类型(a)两个不连续的能级; (b)两个能带; (c)两带交迭; (d)类sh带;(e)类离子带;(f)分布有各种可能的非本征表面态;第三节清洁表面的电子结构ρs、V es、V ST与z的关系第三节清洁表面的电子结构第三节清洁表面的电子结构3.2半导体清洁表面的电子结构第三节清洁表面的电子结构(2)Si(111)一个在禁带中,宽约0.2eVSi(111)-2⨯1重构表面上分裂后的悬挂键表面状态密度第三节清洁表面的电子结构3.3氧化物表面的电子结构第三节清洁表面的电子结构氧化物(TiO 2)•在TiO 2中,离子的电子结构是Ti 4+(3d 0),Ti 的最高填满轨道是3p,低于Fermi 能级约3.5eV 。
•TiO 2是宽禁带材料(E g =3.1eV),它的满带是O 的2p,空导带由Ti 的3d,4s,4p 等组成;3d 带的能量最低。
第三节清洁表面的电子结构金刚石结构氧化物电子结构变化不大第三节清洁表面的电子结构无空位表面桥氧空位桥联OH 水分子吸附轰处后,空面电大第三节清洁表面的电子结构不同的表面缺陷引起的表面态位置和分布是的为氧原子位置(吸附),B 为氧空位,C 为氧空位列,为沉积在表面的金属钛A B CBC VB第四节表面空间电荷层第四节双电层左图平行板模型; 右图: 空间电荷模型(a )原子模型,(b)能带模型,(c)电势变化化时,表面形成平面负电荷层,第四节表面空间电荷层空间电荷分布的原因是半导体或绝缘体内载流第四节表面空间电荷层4.1表面空间电荷的形成及表面能带的穹曲第四节表面空间电荷层半导体材料第四节表面空间电荷层在空间电荷层中,有电场存在。
第七章表面与界面第一节固体的表面一、固体表面的类型:(1)表面:一个物相和它本身蒸气(或真空)接触的分界面,即物体对真空或与本身蒸气接触的面。
如固相与气相、液相与气相的分界面等---如固体表面、液体表面。
(2)相界:一个物相与另一个物相(结构不同)接触的分界面,即结构不同的两块晶体或结构相同而点阵参数不同的两块晶体接合所形成的交界面。
(3) 晶界:不论结构是否相同而取向不同的晶体相互接触的分界面。
注意界面是一个总的名称,即两个独立体系的相交处,它包括了表面、相界和晶界。
二、固体表面的特征:(P107)1、固体表面的特点:固体表面与固体内部的结构和性质是不相同的,原因是(1)固体表面的缺陷要多得多,且复杂得多---有自身的,也有外来的。
(2)现在的材料都是高分散的粉体,其从粉碎时消耗的机械能获得的表面能十分巨大。
从块状粉磨成粉体,其表面能一般都增加上百万倍。
2、固体表面力场(P107两个力)处于内部的质点,受力是均衡的,而处在表面的质点,由于力场不平衡,因此有剩余键力,使表面有吸附作用。
这种固体表面和被吸附质点之间的作用力称为表面力。
分为:1、化学力:固体表面和被吸附质点之间发生了电子转移,形成不饱和价键产生的力。
2、物理力:即范德华力---分子引力,因固体表面形成物理吸附或表面水蒸气凝聚而产生。
又分为三种力:(P107)三、固体(晶体)表面的结构(P108)表面是指晶体与真空(或与本身蒸汽)之间的界面。
由于表面的能量较高,所以液体表面总是力图形成球形表面来降低系统的表面能;而晶体由于质点不能自由流动,只能借助离子极化、变形、重排其结构引起表面处晶格畸变来降低表面能,从而引起表面层与内部结构差异。
其差异体现在微观质点的排列状态(原子尺寸大小范围)和表面几何状态(一般显微结构范围)两个方面。
1、表面微观质点的排列状态(1).表面对键强分布的影响:表面的存在会影响晶体内部键强的分布。
表面的键强两极分化,最强键、最弱键都分布在表面,总的结果是引起表面的表面能降低。
§5.3 晶体的界面晶 界孪晶界相 界小角度晶界大角度晶界外表面内界面固体的表面与界面固体的接触界面一般可分为表面、界面和相界面:1)表面: 表面是指固体(三维结构)与真空的界面。
2)界面: 相邻两个结晶空间的交界面称为“界面”。
n界面不只是指一个几何分界面,而是指一个薄层,这种分界的表面(界面)具有和它两边基体不同的特殊性质。
n物体界面原子和内部原子受到的作用力不同,它们的能量状态也就不一样,这是一切界面现象存在的原因。
n界面是晶体中的二维缺陷,是一种不平衡缺陷。
高倍电子显微镜下聚四氟乙烯表面结构图n CVD 氧化铝涂层剖面n 氧化铝涂层表面1µm相界面3)相界面: 相邻相之间的交界面称为相界面。
相界面有三类: 固相与固相的相界面(s/S);固相与气相之间的相界面(s/V);固相与液相之间的相界面(s/L)。
液-液界面液-固界面(一)晶界与亚晶界•晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界(grain boundary)•亚晶界:每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界(sub-grain boundary)(二)晶界的分类与结构小角度晶界——相邻晶粒的位向差小于10°的晶界;亚晶界均属小角度晶界,一般小于2°;大角度晶界——相邻晶粒的位向差大于10°的晶界;多晶体中90%以上的晶界属于此类。
倾斜晶界与扭转晶界示意图1. 小角度晶界小角晶界分类对称倾斜晶界不对称倾斜晶界扭转晶界相邻晶粒各转θ/2b 不对称倾斜晶界相互垂直的两组刃位错垂直排列c 扭转晶界两组螺位错构成小角度晶界特点1. 位向差小于10°2. 由位错构成3.位错密度↑—— 位向差↑——晶格畸变↑——晶界能↑注:位错密度 —— 决定位向差与晶界能位错类型与排列方式 —— 决定小角晶界的类型晶界的显微照片晶界的高分辨TEMNi0.76Al0.24:500ppm B 的小角晶界(倾斜7°)2. 大角度晶界——一般在30°~ 40°重合点阵模型↓重合点阵+台阶模型↓重合点阵+台阶+小角晶界模型Ni3(Al-Ti)中的倾斜晶界 —— 旋转36.87°,重合5重位晶界三个晶界相交于一条直线(三)晶界能切变模量积分常数泊松比单位面积能量小角度晶界θ<15°γ0(常数)界面张力晶界能在0.25~1.0J/m 2与θ无关,为定值大角度晶界多晶体材料的晶界均属于大角晶界,界面能大致相等,尽管在交汇处应互成120o,但晶粒大小不同,邻近晶粒数也不等,晶界不成直线,而形成不同方向的曲线(曲面)。